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Abstract. Understanding responses by changes in land use
and land cover (LULC) and climate over the past decades
on streamflow in the upper Blue Nile River basin is impor-
tant for water management and water resource planning in
the Nile basin at large. This study assesses the long-term
trends of rainfall and streamflow and analyses the responses
of steamflow to changes in LULC and climate in the upper
Blue Nile River basin. Findings of the Mann–Kendall (MK)
test indicate statistically insignificant increasing trends for
basin-wide annual, monthly, and long rainy-season rainfall
but no trend for the daily, short rainy-season, and dry sea-
son rainfall. The Pettitt test did not detect any jump point in
basin-wide rainfall series, except for daily time series rain-
fall. The findings of the MK test for daily, monthly, annual,
and seasonal streamflow showed a statistically significant
increasing trend. Landsat satellite images for 1973, 1985,
1995, and 2010 were used for LULC change-detection anal-
ysis. The LULC change-detection findings indicate increases
in cultivated land and decreases in forest coverage prior to
1995, but forest area increases after 1995 with the area of
cultivated land that decreased. Statistically, forest coverage
changed from 17.4 % to 14.4%, by 12.2 %, and by 15.6 %,
while cultivated land changed from 62.9 % to 65.6 %, by
67.5 %, and by 63.9 % from 1973 to 1985, in 1995, and in
2010, respectively. Results of hydrological modelling indi-
cate that mean annual streamflow increased by 16.9 % be-
tween the 1970s and 2000s due to the combined effects of
LULC and climate change. Findings on the effects of LULC

change on only streamflow indicate that surface runoff and
base flow are affected and are attributed to the 5.1 % re-
duction in forest coverage and a 4.6 % increase in cultivated
land areas. The effects of climate change only revealed that
the increased rainfall intensity and number of extreme rain-
fall events from 1971 to 2010 significantly affected the sur-
face runoff and base flow. Hydrological impacts by climate
change are more significant as compared to the impacts of
LULC change for streamflow of the upper Blue Nile River
basin.

1 Introduction

The Abay (upper Blue Nile) River in Ethiopia contributes
more than 60 % of the water resources in the Nile River
(McCartney et al., 2012). Due to the high potential of Abay
river flows, the Ethiopian government has conducted a series
of studies since 1964 (USBR, 1964) for supporting national
development and reducing poverty (BCEOM, 1998) by in-
creasing the number of water storage reservoirs in the upper
Blue Nile River basin (UBNRB), both for irrigation and hy-
dropower development. As a result, large-scale irrigation and
hydropower projects such as the Grand Ethiopian Renais-
sance Dam (GERD), which will be the largest dam in Africa
after completion, have been planned and realised along the
main stem of the Blue Nile River. However, its hydrology
exhibits high seasonal flows, as influenced by large varia-
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tions in climate, altitude and topography, and land-use and
land-cover (LULC) change. Over the past decades, changes
in climate (e.g. Haile et al., 2017) and changes in LULC
(e.g. Woldesenbet et al., 2017b) have affected the magnitude
of streamflow. Effective planning, management, and the reg-
ulation of water resource development is therefore required
to avert conflicts between the competing water users.

Only the understanding of the hydrological processes and
sources impacting water quantity, such as LULC change and
climate change, can achieve this, as they are the key driv-
ing forces that can modify the watershed’s hydrology and
water availability (Oki and Kanae, 2006; Woldesenbet et al.,
2017b; Yin et al., 2017). LULC change can modify the rain-
fall path to generate basin runoff by altering critical water-
balance components, such as groundwater recharge, infiltra-
tion, interception, and evaporation. McCartney et al. (2012)
and Alemseged and Tom (2015) described that the UBNRB
experiences significant spatial and temporal climate variabil-
ity. Less than 500 mm of precipitation falls annually near the
Sudanese border, whereas more than 2000 mm falls annually
in some areas of the southern basin (Awulachew et al., 2009).
Potential evapotranspiration (ET) also varies considerably
and is strongly correlated with altitude. At annual bases, it
varies from more than 2200 mm near the Sudanese border to
between about 1300 and 1700 mm in the Ethiopian highlands
(McCartney et al., 2012). The precipitation and ET cycles are
characterised by seasonal and inter-annual variability, which
affect the characteristics of the UBNRB streamflow.

A literature review shows that several sub-basin or basin
level studies were conducted in the UBNRB. Most of the
studies focused on the trend analysis of precipitation and
streamflow (see Bewket and Sterk, 2005; Cheung et al., 2008;
Conway, 2000; Gebremicael et al., 2013; Melesse et al.,
2009; Rientjes et al., 2011; Seleshi and Zanke, 2004; Teferi
et al., 2013; Tekleab et al., 2014; Tesemma et al., 2010),
and all reported no significant trend in annual and seasonal
precipitation totals within the Lake Tana sub-basin, whereas
Mengistu et al. (2014) reported statistically non-significant
increasing trends in annual and seasonal rainfall series, ex-
cept for a short rainy season (Belg) from February to May.

Gebremicael et al. (2013) reported statistically significant
increasing long-term annual streamflow (1970–2005) at the
El Diem gauging station for the UBNRB’s streamflow. How-
ever, Tesemma et al. (2010) reported no statistically signif-
icant trend for long-term annual streamflow (1964–2003) at
the El Diem gauging station but did report a significantly in-
creasing trend at the Bahir Dar and Kessie stations. At the
sub-basin scale, Rientjes et al. (2011) reported a decreas-
ing trend for the low flows of Gilgel Abay sub-basin (Lake
Tana catchment, the Blue Nile headwaters) during the 1973–
2005 period, specifically of 18.1 % and 66.6 % in the periods
1982–2000 and 2001–2005, respectively. However, the high
flows for the same periods show an increase of 7.6 % and
46.6 % due to LULC change and seasonal rainfall variability.

Although progress has been made in assessing the impacts
of LULC and climate change on the UBNRB’s hydrology,
only a few studies have endeavoured to assess the attribu-
tion of changes in the water balance to LULC change and
climate change. Woldesenbet et al. (2017b), used partial-
least-squares regression (PLSR) and a modelling approach
based on the Soil and Water Assessment Tool (SWAT) to
quantify the contributions of changes in individual LULC
classes to changes in hydrological components in the Lake
Tana and Beles sub-basins. Woldesenbet et al. (2017b) re-
ported that increases in cultivated land area and decreases in
woody shrub and woodland appear to be major environmen-
tal stressors affecting local water resources through, for ex-
ample, increasing surface runoff and decreasing ground wa-
ter contribution in both watersheds; however, the impacts of
climate change were not considered. Nonetheless, proper wa-
ter resource management requires an in-depth understanding
of the aggregated and disaggregated effects of LULC and cli-
mate change on streamflow, and water-balance components
such as the interaction between LULC, climate characteris-
tics, and the underlying hydrological processes are complex
and dynamic (Yin et al., 2017).

This study’s objectives are therefore to (i) assess the long-
term trend of rainfall and streamflow, (ii) analyse LULC
change, and (iii) examine streamflow responses to the com-
bined and isolated effects of LULC and climate change in the
UBNRB. This is doable by combining the analysis of statis-
tical trend tests, the change detection of LULC derived from
satellite remote sensing, and hydrological modelling during
the 1971–2010 period.

2 Study area

The UBNRB is located in north-western Ethiopia. Its catch-
ment area is about 172 760 km2. Highlands, hills, valleys,
and occasional rock peaks with elevations ranging from 500
to above 4000 m a.s.l. typically characterise the basin’s to-
pography (Fig. 1). According to BCEOM (1998), two-thirds
of the basin lies in Ethiopia’s highlands, with annual rain-
fall ranging from 800 to 2200 mm. The central and south-
eastern areas are characterised by relatively high rainfall
(1400 to 2200 mm), whereas in most of the eastern and north-
western parts of the basin, rainfall is less than 1200 mm.
Fenta Mekonnen and Disse (2018) showed that the UBNRB
has a mean areal annual rainfall of 1452 mm and mean annual
minimum and maximum temperatures of 11.4 and 24.7 ◦C,
respectively.

The subtropical climate of the basin is affected by the
movement of the intertropical convergence zone (ITCZ; Con-
way, 2000; Mohamed et al., 2005). NMA (2013) classified
the climate in Ethiopia into three distinct seasons. The main
rainy season (Kiremit) generally lasts from June to Septem-
ber, during which south-western winds bring rains from the
Atlantic Ocean. Some 70 %–90 % of the total rainfall occurs
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Figure 1. Locations of study area and meteorological and discharge stations, with the digital elevation model (DEM) data as the background
(where 1 denotes stations used for SWAT model, 2 denotes stations used for trend analysis, and 3 denotes stations removed from the analysis).

Table 1. The UBNRB’s areal long-term (1971–2010) mean annual and seasonal rainfall and streamflow.

Amount Contribution (%)

Station Kiremit Belg Bega Total Kiremit Belg Bega Mean Area (km2)

Flow (m3 s−1) 3506.3 300.4 1018.4 4825.1 72.7 6.2 21.1 1608 172 254
Flow (billion m3) 36.4 3.1 10.6 50.7
Rainfall (mm) 1070.1 140.8 238.9 1449.8 73.8 9.7 16.5

Kiremit: long rainy season, Belg: short rainy season, Bega: dry season.

during this season. A dry season (Bega) lasts from October to
January, and the short rainy season (Belg) lasts from Febru-
ary to May. According to BCEOM (1998), the average an-
nual discharge (1960 to 1992) at the Ethiopia–Sudan border
(El Diem) is about 49.4 billion m3, with the low-flow month
(April) equivalent to less than 2.5 % of that of the high-flow
month (August). The analysis of this study revealed that the
long-term (1971–2010) mean annual volume of streamflow

at El Diem is 50.7 billion m3, with low streamflow volume
(dry season) contributing 21.1 % and the short rainy season
contributing about 6.2 %. As such, some 73 % of streamflow
occurred during the rainy season (Table 1). The basin’s land
cover essentially follows the divide between highland and
lowland. Predominantly farmlands (about 90 %), bush and
shrubs cover the highlands. The lowlands, in contrast, are
still largely untouched by development. As a result, wood-

www.hydrol-earth-syst-sci.net/22/6187/2018/ Hydrol. Earth Syst. Sci., 22, 6187–6207, 2018



6190 D. F. Mekonnen et al.: Effects of LULC changes and climate change on the streamflow

lands, bush, and shrubs are the dominant forms of land cover
(BCEOM, 1998).

3 Input data sources

In this study, non-parametric Mann–Kendall (MK; Kendall,
1975; Mann, 1945) statistics and the SWAT, developed by
the Agricultural Research Service of the United States De-
partment of Agriculture (USDA-ARS; Arnold et al., 1998),
are used for statistical trend analysis and water-balance mod-
elling, respectively. Details of both methods are available in
Sect. 4. The input data sets used for the SWAT model can
be categorised into those containing weather and streamflow
data and spatially distributed data sets.

3.1 Weather and streamflow data

The daily weather variables used in this study for trend analy-
sis and for driving the water-balance model are precipitation,
minimum air temperature (Tmin), maximum air temperature
(Tmax), relative humidity (RH), hours of sunshine (SH), and
wind speed (WS). Weather data from 40 meteorological sta-
tions were obtained from the Ethiopian National Meteorolog-
ical Services Agency (ENMSA) for the 1971–2010 period.
Daily streamflow data for 25 gauging stations were collected
from the Federal Ministry of Water, Irrigation and Electric-
ity of Ethiopia for the same period 1971–2010. After screen-
ings and rigorous analyses of the weather data, a considerable
amount of time series data were found to be missing in most
of the stations (see Table S1 in the Supplement). The occur-
rences of civil war and defective and outdated devices were
the main causes for the missing data records. As a result, only
the 15 stations (Fig. 1) in which rainfall data are relatively
more complete proved to be suitable for trend analysis. Some
10 stations having complete climate variables, such as Tmax,
Tmin, RH, WS, and SH, were used as input for the SWAT
model (Fig. 1).

We resorted to spatial interpolation techniques, such as
the inverse distance weighting (IDW) and linear regression
(LR), to fill the gaps. Uhlenbrook et al. (2010) applied sim-
ilar approaches or methods to the Gilgel Abbay sub-basin,
which is the UBNRB’s headwater. The selection and num-
ber of adjacent stations for interpolation are important for
the accuracy of interpolated values. As mentioned by Wolde-
senbet et al. (2017a), different authors used different criteria
to select neighbouring stations. Because of the relatively low
number of network stations, a geographic distance of 100 km
was considered for most stations when selecting neighbour-
ing stations. If no station was located within 100 km of the
target station, then the search distance was increased until at
least one suitable station is reached. After the neighbouring
stations were selected, the two methods (IDW and LR) were
tested by means of cross-validation to fill in missing data sets.
The candidate methods’ performances were evaluated us-

ing the statistical metrics such as the root-mean-square error
(RMSE), mean absolute error (MAE), correlation coefficient
(R2), and percent bias (% bias) between observed and esti-
mated values for the target stations. Equally weighted statis-
tical metrics are applied to compare the performances of se-
lected methods at target stations and to establish the ranking.
A score was assigned to each candidate method according to
the individual metrics. For example, the candidate achieving
the smallest values of RMSE and MAE or the smallest per-
centage of bias received score 1, and score 2 was assigned
to the one with the larger value. The final score is obtained
by summing up the score pertaining to each candidate ap-
proach at each station. The method with the smallest score
is the best. The monthly, seasonal, and annual weather data
were aggregated from the daily time series data after filling
the gaps. While filling in the missing data, uncertainty is ex-
pected due to low station density, poor correlations, and the
considerable number of missing records. Similar techniques
and approaches were used for the analysis and filling in of
missing streamflow data records.

3.2 Spatial data

Spatially distributed data required for the SWAT model in-
cludes tabular and spatial soil data, tabular and spatial LULC
information, and elevation data. A Shuttle Radar Topo-
graphic Mission digital elevation model (SRTM DEM) with
a resolution of 90 m from the Consultative Group on Interna-
tional Agricultural Research – Consortium for Spatial Infor-
mation (CGIAR-CSI; http://srtm.csi.cgiar.org/SELECTION/
inputCoord.asp, last access: 21 February 2015) – was used
to represent land-surface drainage patterns. Terrain charac-
teristics, such as slope gradient and the slope length of the
terrain, and stream network characteristics, such as channel
slope, length, and width, were derived from the digital eleva-
tion model (DEM).

The soil map (1 : 5000000) developed by the Food
and Agriculture Organization of the United Nations
(FAO-UNESCO) was downloaded from http://www.fao.
org/soils-portal/soil-survey/soil-maps-and-databases/
faounesco-soil-map-ofthe-world/en/, last access:
4 April 2017. Soil information, such as the soil textu-
ral and physiochemical properties needed for the SWAT
model, were extracted from the Harmonized World Soil
Database v1.2, a database that combines existing re-
gional and national soil information (http://www.fao.
org/soils-portal/soil-survey/soil-maps-and-databases/
harmonized-world-soil-databasev12/en/, last access:
4 April 2017) with information provided by the FAO-
UNESCO soil map (Polanco et al., 2017).

The LULC maps were produced from satellite-remote-
sensing Landsat images for 1973, 1985, 1995, and 2010
at a scale of 30 m× 30 m resolution. Detailed descriptions
on image processing and classification are available under
Sect. 4.2.
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4 Methodology

4.1 Trend analysis

The non-parametric Mann-Kendall (MK; Kendall, 1975;
Mann, 1945) statistic is chosen to detect trends for rainfall
and streamflow time series data, as it is widely used for water
resource planning, design, and management (Yue and Wang,
2004). Its advantage over parametric tests such as t test is that
the MK test is more suitable for non-normally distributed and
missing data, which are frequently encountered in hydrolog-
ical time series (Yue et al., 2004). However, the existence of
positive serial correlation in time series data affects the MK
test results. If serial correlation exists in time series data, the
MK test rejects the null hypothesis of no trend detection more
often than specified by the significance level (Von Storch,
1995).

Von Storch (1995) proposed a prewhitening technique to
limit the influence of serial correlation on the MK test. The
effective or equivalent sample size (ESS) method developed
by Hamed and Rao (1998) has also been proposed to mod-
ify the variance. However, the study by Yue et al. (2002) re-
ported that von Storch’s prewhitening is effective only when
no trend exists, and the ESS approach’s rejection rate af-
ter modifying the variance is much higher than the actual
(Yue et al., 2004). Yue et al. (2002) then proposed trend-
free prewhitening (TFPW) prior to applying the MK trend
test in order to minimise its limitation. This study therefore
employed TFPW to remove the serial correlation and to de-
tect a trend in time data series with significant serial corre-
lation. Further details can be found in (Yue et al., 2002). All
the trend results in this study have been evaluated at the 5 %
level of significance to ensure the effective exploration of the
trend.

4.2 Change point test

The Pettitt test is used to identify whether or not there is a
point change or jump in the data series (Pettitt, 1979). This
method detects one unknown change point by considering a
sequence of random variables (Xt )=X1,X2, . . .,XN ,XN +

1, . . .,XT that may have a change point at N , if the Xt
variable for t = 1,2, . . . , N time step has a common dis-
tribution function, F1(x), and Xt for t =N + 1, . . . ; T
time step has a common distribution function, F2(x), where
F1(x) 6=F2(x).

4.3 Sen’s slope estimator

The trend magnitude is estimated using a non-parametric
median-based slope estimator proposed by (Sen, 1968), as it
is not greatly affected by gross data errors or outliers and can
be computed when data are missing. The slope estimation is

given by

β =Median
[
Xj −Xk

j − k

]
for all k < j, (1)

where xj and xk are the sequential data values, and n is the
number of the recorded data. 1< k < j < n, and β is con-
sidered as the median of all possible combinations of pairs
for the whole data set. A positive value of β indicates an
upward (increasing) trend, and a negative value indicates a
downward (decreasing) trend in the time series. All MK trend
tests, Pettitt change-point detections, and Sen’s slope analy-
ses were conducted using the XLSTAT add-in tool from Ex-
cel (https://www.xlstat.com).

4.4 Remote-sensing land-use and land-cover map

4.4.1 Landsat image acquisition

Landsat images from the years 1973, 1985, 1995, and 2010
were accessed from the US Geological Survey (USGS) Cen-
ter for Earth Resources Observation and Science (EROS) via
http://glovis.usgs.gov (last access: 29 December 2016). The
Landsat images were selected based on the criteria of the ac-
quisition period, availability, and percentage of cloud cover.
Hayes and Sader (2001) recommend acquiring images from
the same acquisition period to reduce the image-to-image
variation caused by the sun angle, soil moisture, atmospheric
condition, and vegetation-phenology differences. Cloud-free
images were hence collected for the dry months of January
to May. However, as the basin covers a large area, each of the
LULC map’s periods comprised 16 Landsat images. Access-
ing all the images during a dry season in a single year was
therefore difficult. Hence, images were acquired± 1 year for
each time period, and some images were also acquired in
the months of November and December. For example, 16
Landsat MSS image scenes were acquired in 1973 (10 im-
ages in January, four images in December and two images in
November;±1 year) and were merged to arrive at one LULC
representation for selected years. Please see Table S2 in the
Supplement for the details on Landsat images.

4.4.2 Preprocessing and processing images

Several standard preprocessing methods, including geomet-
ric and radiometric correction, were implemented to prepare
the LULC maps from Landsat images. Although many dif-
ferent classification methods exist, supervised and unsuper-
vised classifications are the two most widely used methods
for land-cover classification from remote-sensing images.
Hence, in this study, a hybrid supervised and unsupervised
classification approach was adopted to classify the images
from 2010 (LandsatTM). Iterative self-organising data anal-
ysis (ISODATA) clustering was first performed to determine
the image’s spectral classes or land cover classes. Polygons
for all of the training samples based on the identified LULC
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classes were then digitised using ground truth data. The sam-
ples for each land cover type were then aggregated. Finally,
a supervised classification was performed using a maximum
likelihood algorithm to extract four LULC classes.

A total of 488 ground control points (GCPs) regarding
land-cover types and their spatial locations were collected
from field observations in March and April 2017 using a
global positioning system (GPS). Reference data were col-
lected and taken from areas where there had not been any
significant land-cover change between 2017 and 2010. These
areas were identified by interviewing local elderly people and
were supplemented using high-resolution Google Earth im-
ages and the first author’s prior knowledge. As many as 288
GCPs were used for accuracy assessment, and 200 points
served as training sites to generate a signature for each land-
cover type. The classifications’ accuracy was assessed by
computing the error matrix (also known as the confusion ma-
trix), which compares the classification result with ground
truth information as suggested by DeFries and Chan (2000).
A confusion matrix lists the values for the reference data’s
known cover types in the columns and for the classified data
in the rows (Banko, 1998), as shown in Table 5. From the
confusion matrix, statistical metrics of overall accuracy, pro-
ducers’ accuracy, and users’ accuracy are used. Another dis-
crete multivariate technique useful in accuracy assessment
is called KAPPA (Congalton, 1991). The statistical metric
for KAPPA analysis is the Kappa coefficient, which is an-
other measure of the proportion of agreement or accuracy.
The Kappa coefficient is computed as

K =

N
i=r∑
i=1
xii

r∑
i=1
(xi+× x+i)

N2−
r∑
i=1
(xi+× x+i)

, (2)

where r is the number of rows in the matrix, xii is the number
of observations in row i and column i, and xi+ and x+i are
the marginal totals of row i and column i, respectively. N is
the total number of observations.

Once the land-cover classification of the year 2010 Land-
sat image had been completed and its accuracy checked, the
normalised difference vegetation index (NDVI) differencing
technique (Mancino et al., 2014) was applied to classify the
images from 1973, 1985, and 1995. This technique was cho-
sen to increase the accuracy of classification, as it is hard to
find an accurately classified digital or analog LULC map of
the study area during 1973, 1985, and 1995. The informa-
tion obtained from the elders is also more subjective, and its
reliability is questionable when there is a considerable time
gap. We first calculated the NDVI from the Landsat MSS
(1973) and three preprocessed Landsat TM images (1985,
1995, and 2010), following the general normalised differ-
ence between band TM4 and band TM3 images (Eq. 3).
The resulting successive NDVI images were subtracted from
each other to assess the1NDVI image with positive (vegeta-

tion increase), negative (vegetation cleared), and no changes
at a 30 m× 30 m pixel resolution (Eqs. 4–6). The Landsat
MSS 60 m× 60 m pixel-size data sets were resampled to a
30 m× 30 m pixel size using the “nearest neighbour” tech-
nique to have equal pixel sizes for the different images with-
out altering the image data’s original pixel values. This pro-
cess is represented by the following:

NDVI=
(TM4−TM3)
(TM4+TM3)

or
(MSS3−MSS2)

(MSS3+MSS2)
, (3)

1NDVI1995/2010 = NDVI1995−NDVI2010, (4)
1NDVI1985/1995 = NDVI1985−NDVI1995, (5)
1NDVI1973/1985 = NDVI1973−NDVI1985. (6)

The 1NDVI image was then reclassified using a threshold
value calculated as µ± nσ ; where µ represents the 1NDVI
pixels value mean, and σ represents the standard deviation.
The threshold identifies three ranges in the normal distribu-
tion: (a) the left tail (1NDVI< µ− nσ ), (b) the right tail
(1NDVI> µ+ nσ ), and (c) the central region of the nor-
mal distribution (µ−nσ < 1NDVI< µ+nσ ). Pixels within
the two tails of the distribution are characterised by signif-
icant land-cover changes, whereas pixels in the central re-
gion represent no change. To be more conservative, n= 1
was selected for this study in order to narrow the threshold
ranges for reliable classification. The standard deviation (σ)
is one of the most widely applied threshold identification ap-
proaches for different natural environments based on differ-
ent remotely sensed imagery (Hu et al., 2004; Jensen, 1996;
Lu et al., 2004; Mancino et al., 2014; Singh, 1989), as cited
by Mancino et al. (2014).
1NDVI pixel values (2010–1995) in the central region of

the normal distribution (µ− nσ < 1NDVI< µ+ nσ ) rep-
resent an absence of land-cover change between two differ-
ent periods (i.e. 1995 and 2010); therefore, pixels from 1995
corresponding to no land-cover change can be classified as
similar to the 2010 land-cover classes. Pixels with signifi-
cant NDVI changes are reclassified using supervised clas-
sification, taking signatures from the already classified, no-
change pixels. Likewise, 1985 and 1973 land-cover images
were classified based on the classified images of 1995 and
1985, respectively. Finally, after classifying the raw Land-
sat images into different land-cover classes, change detec-
tion, which requires the comparison of independently pro-
duced classified images (Singb, 1989), was performed by the
post-classification method. The post-classification change-
detection comparison was conducted to determine changes in
LULC between two independently classified maps of images
from two different dates. Although this technique has some
limitations, it is the most common approach, because it does
not require data normalisation between two dates (Singh,
1989). This is because data from two dates are separately
classified, thereby minimising the problem of normalisation
for atmospheric and sensor differences between two dates.
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4.5 SWAT hydrological model

The SWAT is an open-source-code, semi-distributed model
with a large and growing number of model applications in
a variety of studies, ranging from catchment to continental
scales (Allen et al., 1998, 2012; Neitsch et al., 2002). It en-
ables the impact of LULC change and climate change on
water resources to be evaluated in a basin with varying soil,
land-use, and management practices over a set period of time
(Arnold et al., 2012).

In SWAT, the watershed is divided into multiple sub-
basins, which are further subdivided into hydrological re-
sponse units (HRUs) consisting of homogeneous land-use
management, slope, and soil characteristics (Arnold et al.,
1998; Arnold et al., 2012). HRUs are the smallest units of the
watershed in which relevant hydrologic components, such as
evapotranspiration, surface runoff and peak rate of runoff,
groundwater flow, and sediment yield, can be estimated. Wa-
ter balance is the driving force behind all of the processes in
the SWAT calculated using Eq. (7),

SWt = SWo+

t∑
i=1

(7)(
Rday−Qs−Ql−Qb−Ea−Revap−DA_recharge

)
,

where SWt is the final soil-water content (mm H2O), SWo
is the initial soil-water content on day i (mm H2O), t is
the time (days), Rday is the amount of precipitation on day
i (mm H2O), Qs is the amount of surface runoff on day
i (mm H2O), Ql is the amount of return flow on day i

(mm H2O), Qb is the return flow from the shallow aquifer
on day i (mm H2O), Ea is the amount of evapotranspiration
from the canopy and soil surface on day i (mm H2O), Revap
is the amount of water transferred from the underlying shal-
low aquifer reversely upward to the soil-moisture storage on
day i (mm H2O) in response to water demand for evapotran-
spiration, and DA_recharge is the amount of water recharge
to the deep aquifer on day i (mm H2O).

Runoff is calculated separately for each HRU and routed to
obtain the total streamflow for the watershed using either the
soil-conservation-service (SCS) curve-number (CN) method
(Mockus, 1964) or the Green–Ampt infiltration method
(GAIM; Green and Ampt, 1911; see Fig. 2). However, spa-
tial connectivity and interactions among HRUs are ignored.
Instead, the cumulative output of each spatially discontinu-
ous HRU at the sub-watershed outlet is directly routed to the
channel (Pignotti et al., 2017). This lack of spatial connec-
tivity among HRUs makes implementation and the impact
analysis of spatially targeted management such as the soil-
and-water conservation structure difficult to incorporate into
the model. Different authors have made efforts to overcome
this problem, for instance, a grid-based version of the SWAT
model (Rathjens et al., 2015) or a landscape simulation on
a regularised grid (Rathjens and Oppelt, 2012). Moreover,
Arnold et al. (2010) and Bosch et al. (2010) further mod-

ified SWAT so that it allows landscapes to be subdivided
into catenas comprising upland, hillslope, floodplain units,
and flow to be routed through these catenas. However, the
SWAT grid, developed to overcome this limitation, remains
largely untested and computationally demanding (Rathjens
et al., 2015).

Hence, the standard SWAT CN method was chosen for this
study, because it was applied in many Ethiopian watersheds
(Gashaw et al., 2018; Gebremicael et al., 2013; Setegn et al.,
2008; Woldesenbet et al., 2017b). Furthermore, its ability to
use daily input data (Arnold et al., 1998; Neitsch et al., 2011;
Setegn et al., 2008) as compared to the GAIM, which re-
quires subdaily precipitation as a model input that can be dif-
ficult to obtain in data-scarce regions like the UBNRB. This
study focused on the effects of LULC change and climate
change on the basin’s water-balance components, which in-
clude the components of inflows, outflows, evapotranspira-
tion, losses, and the change in storage as shown in the general
water balance in Eq. (8).

R =Qt+TAE+Losses+1S, (8)

whereQt =Qs+Ql+Qb and total actual evapotranspiration
TAE=Ec+Es+Et+Er, as shown in Fig. 2.
R is the amount of precipitation (mm d−1) as the main in-

flow, Qt is the total amount of streamflow (mm d−1) as out-
flow, TAE is the total actual evapotranspiration (mm d−1),
Ec is evaporation from the canopy surface (mm d−1), Et is
the amount of plant transpiration (mm d−1), Es is evapora-
tion from the soil surface (mm d−1), Er or Revap is evap-
oration from the shallow aquifer (mm d−1; Abiodun et al.,
2018), losses are the amount of water lost from the system as
a recharge to the deep aquifer (DA_recharge; mm d−1), and
1S is the change in soil-water storage (mm d−1). SWAT has
four storages: canopy storage (CS), soil moisture (SM), shal-
low aquifer (SA), and deep aquifer (DA). Water movement
from the soil-moisture storage to the shallow aquifer is due
to percolation, whereas water movement from the shallow
aquifer reversely upward to the soil-moisture storage is Re-
vap, and further water movement from the shallow aquifer to
the deep aquifer is recharge. For a more detailed description
of the SWAT model, refer to Neitsch et al. (2011).

The SWAT model set-up and data preparation were done
using the ArcSWAT2012 tool in the ArcGIS environment,
whereas parameter sensitivity analysis and model calibration
and validation were performed using the SWAT-CUP (Cal-
ibration and Uncertainty Procedures) interface Sequential
Uncertainty Fitting (SUFI-2) algorithm (Abbaspour, 2008).
During model set-up, the observed daily weather and stream-
flow data from the given period were divided into three dif-
ferent periods: the first to warm up the model, the second to
calibrate it, and the third to validate it. Determining the most
sensitive parameters is the first step in the model calibration
and validation process using the global sensitivity analysis
option (Arnold et al., 2012). The second step is to complete
the calibration process, making necessary adjustments for the
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Figure 2. Schematic representation of the SWAT model structure modified from Marhaento et al. (2017). P is precipitation; CS is canopy
storage; TAE is total actual evapotranspiration; Ec is evaporation from the canopy surface; Es is evaporation from the soil surface; Et is
transpiration from plants; Perc is percolation from the soil storage to shallow aquifer; SM is soil-moisture storage; SA is shallow aquifer;
Er=Revap is evaporation from the shallow aquifer; Qt is total streamflow; DA is deep aquifer; HRU is hydrological response unit; Qb is
base flow; Ql is lateral flow; and Qs is surface runoff.

model’s input parameters to match model output with ob-
served data, thereby reducing the prediction uncertainty. Ini-
tial parameter estimates were taken from the default lower
and upper bound values of the SWAT model database and
from earlier studies in the basin, such as that of Gebremi-
cael et al. (2013). The final step, model validation, involves
running a model using parameters that were determined dur-
ing the calibration process and comparing the predictions to
independently observed data not used in the calibration.

In this study, both manual and automatic calibration strate-
gies were applied to attain the minimum differences between
observed and simulated streamflows in terms of surface flow,
peak flow, and total flow, following the steps recommended
by Arnold et al. (2012). For the purpose of impact analy-
sis, we divided the simulation period 1971–2010 into four
decadal periods, hereafter referred as the 1970s (1971–1980),
1980s (1981–1990), 1990s (1991–2000), and 2000s (2001–
2010), as shown in Table 2. The model’s performance for
the streamflow was then evaluated using statistical methods
(Moriasi et al., 2007) such as the Nash–Sutcliffe coefficient
of efficiency (NSE), the coefficient of determination (R2),
and the relative volume error (RVE %), which are shown in
Eq. (9)–(11). Furthermore, graphical comparisons of the sim-
ulated and observed data, as well as water-balance checks,
were used to evaluate the model’s performance. This evalua-

tion may be represented by the following:

R2
=

[
n∑
I=1

(
Qm,i −Qm

)(
Qs,i −Qs

)]2

n∑
I=1

(
Qm,i −Qm

)2 n∑
I=1
(Qs,i −Qs)

2
, (9)

NSE= 1−

n∑
I=1

(
Qm,−Qs

)2
i

n∑
I=1

(
Qm,i −Qm

)2 , (10)

RVE (%)= 100×

n∑
i=1
(Qm−Qs)i

n∑
i=1
Qm,i

, (11)

where Qm,i is the measured streamflow in m3 s−1, Qm are
the mean values of the measured streamflow (m3 s−1), Qs,i
is the simulated streamflow in m3 s−1, and Qs are the mean
values of simulated data in m3 s−1.

4.6 SWAT simulations

Three different approaches were applied for assessing the
effects of LULC change and climate change on streamflow
and water-balance components. The first approach is to as-
sess the response of streamflow to the combined effects of
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Table 2. Data sets of the baseline and altered periods for the SWAT simulation used to analyse the combined and isolated effect of LULC
and climate change on streamflow and water-balance components.

Model run no. Combined effect Isolated LULC change effect Isolated climate change effect Remark

Climate data set LULC map Climate data set LULC map Climate data set LULC map

1 1970s 1973 1970s 1973 1970s 1973 Base period
2 1980s 1985 1970s 1985 1980s 1973 altered Period 1
3 1990s 1995 1970s 1995 1990s 1973 altered Period 2
4 2000s 2010 1970s 2010 2000s 1973 altered Period 3

LULC change and climate change. We followed the ap-
proach in Marhaento et al. (2017) and divided the analy-
sis period, 1971–2010, into four periods of similar length
(four decades). These are periods when land-use changes
are expected to change the hydrological regime within a
catchment (Marhaento et al., 2017; Yin et al., 2017). The
first period, the 1970s, was regarded as the baseline period.
The other periods, the 1980s, 1990s, and 2000s, were re-
garded as altered periods. LULC maps of 1973, 1985, 1995,
and 2010 were used to represent LULC patterns during the
1970s, 1980s, 1990s, and 2000s, respectively. For analyses,
the SWAT model was calibrated and validated for each re-
spective period using the respective LULC map and weather
data (Table 2). The DEM and soil data sets remained un-
changed. The differences between the simulation result of
the baseline and altered periods represent the combined ef-
fects of LULC and climate change on streamflow and water-
balance components.

The second approach included simulations that attribute
the effects from LULC changes alone. It aimed to investi-
gate whether LULC change is the main driver for changes in
water-balance components. To identify the hydrological im-
pacts caused solely by LULC, a “fixing–changing” method
was used (Marhaento et al., 2017; Woldesenbet et al., 2017b;
Yan et al., 2013; Yin et al., 2017). The calibrated and vali-
dated SWAT model and its parameter settings in the baseline
period were forced by weather data from the baseline pe-
riod, 1973–1980, while changing only the LULC maps from
1985, 1995, and 2010, keeping the DEM and soil data con-
stant (Hassaballah et al., 2017; Marhaento et al., 2017; Wold-
esenbet et al., 2017b; Yin et al., 2017). We ran the calibrated
SWAT model for the baseline period (1970s) four times, only
changing the LULC map for the years 1973, 1985, 1995,
and 2010 and retaining the constant weather data set from
the 1970s (Table 2). The third approach is similar to the
second, but the simulations are attributed only for climate
change. The calibrated models for the baseline period were
run again four times, corresponding to the LULC periods us-
ing a unique LULC map of the year 1973 but altering the
four different periods of weather data sets for their respective
periods.

5 Results and discussions

5.1 Trend test

5.1.1 Rainfall

The summary of the MK trend test results for the rainfall
recorded at the 15 selected stations located in and around
the UBNRB revealed mixed trends (increasing, decreasing,
and no changes). For daily time series, the computed proba-
bility values (p values) for seven stations were greater, al-
though for eight stations, they were less than the selected
significance level (α = 5 %). This means that no statistically
significant trend existed in seven stations, but a monotonic
trend occurred in the remaining eight. Positive trends de-
veloped only at six stations, four of which were concen-
trated in the northern and central highlands (Bahir Dar, Dan-
gila, Debre Markos, and Gimijabet Mariam). The other two
stations, Assosa and Angergutten, are located in the south-
western and southern lowlands (see Fig. 1). The other two
stations, Alem Ketema and Nejo, which are located in the
east and south-west of the UBNRB, respectively, showed a
decreasing trend. On a monthly basis, the MK trend test re-
sult showed that no trend existed in 11 stations, while sta-
tistically non-significant increasing trends exist in 3 stations
(Dangila, Gimijabet Mariam, and Shambu) and a decreasing
trend exists in Alem Ketema station. On an annual timescale,
MK trend test could not find any trend in 11 stations, but did
exhibit a trend in 4 stations. The Debre Markos and Shambu
stations showed statistically non-significant increasing trend,
while Gimijabet Mariam and Alem Ketema showed statisti-
cally significant positive trends and non-significant decreas-
ing trends, respectively. The trend analysis result for the an-
nual rainfall time series agrees well with a previous study by
Gebremicael et al. (2013), who reported no significant annual
rainfall change at eight out of nine stations during the 1973–
2005 period. Hence, it is interesting to note that the timescale
of analysis is a critical factor in determining the given trends.

The basin-wide areal UBNRB rainfall trend and change
point analysis was again carried out on daily, monthly, sea-
sonal, and annual timescales using the MK and Pettitt tests.
We applied a widely used spatial interpolation technique, the
Thiessen polygon method, to calculate basin-wide rainfall
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Table 3. MK and Pettitt tests for the UBNRB’s rainfall and streamflow after TFPW at different timescales.

Streamflow Rainfall

p value p value

Time After∗ Before∗ Sen’s Change Pettitt After∗ Before∗ Sen’s Change Pettitt
scale slope point test slope point test

Daily < 0.0001 < 0.0001 0.013 1987 Increasing 0.387 0.953 0.000 1988 Increasing
Monthly < 0.0001 0.031 0.378 No change 0.010 0.640 0.009 No change
Annually < 0.0001 0.009 9.619 1995 Increasing 0.006 0.260 1.886 No change
Kiremit < 0.0001 0.014 20.30 No change 0.010 0.348 1.364 No change
Belg < 0.0001 0.004 3.593 1985 Increasing 0.822 0.935 0.068 No change
Bega 0.000 0.214 4.832 No change 0.527 0.755 0.169 No change

∗ Before and after TFPW; p probability at 5 % significance level.
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Figure 3. The Pettitt homogeneity test’s (a) annual rainfall, (b) annual flow of the UBNRB, (c) linear trend of mean annual rainfall, and
(d) linear trend of mean annual streamflow, where mu is the mean annual precipitation (mm), mu1 is the mean annual precipitation before
change (mm), and mu2 is the mean annual precipitation after change (mm).

series from station data. A summary is provided in Table 3
and Fig. 3. The MK test showed increasing trends for an-
nual, monthly, and long rainy-season rainfall series, whereas
no trend for daily, short rainy, and dry season rainfall series
appeared. The magnitude of trends for annual, monthly, and
long rainy-season rainfall series are not statistically signif-
icant, as explained by the values of Sen’s slope. However,
the Pettitt test could not detect any jump point in basin-wide
rainfall series except for daily time series rainfall (see Fig. S1
in the Supplement).

Previous studies (Conway, 2000; Gebremicael et al., 2013;
Tesemma et al., 2010) conducted trend analyses of basin-
wide rainfall and reported that no significant change in an-
nual and seasonal rainfall series across the UBNRB exists,
which contradicts the results of this study. This disagreement
could be due to the number of stations and their spatial distri-
bution across the basin, time period of the analysis, approach
used to calculate basin-wide rainfall from gauging stations,
and data sources. Tesemma et al. (2010) used monthly rain-
fall data downloaded from Global Historical Climatology
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Network (GHCN) database and 10 day rainfall data for the
10 selected stations obtained from the National Meteorolog-
ical Service Agency of Ethiopia from 1963 to 2003. Con-
way (2000) also constructed basin-wide annual rainfall in
the UBNRB for the 1900–1998 period from the mean of
11 gauges. Furthermore, (Conway, 2000) employed simple
linear regressions over time to detect trends in annual rain-
fall series without removing the serial autocorrelation effects.
Gebremicael et al. (2013), used only nine stations from the
1970–2005 period. However, in this study, we used daily ob-
served rainfall data from 15 stations collected from Ethiopian
Meteorological Agency from 1971 to 2010. The stations are
more or less evenly distributed over the UBNRB.

5.1.2 Streamflow

The MK test’s result for daily, monthly, annual, and seasonal
(long and short rainy season and dry season) streamflow time
series showed a positive trend, the magnitude of which is sta-
tistically significant, as summarised in Table 3. The Pettitt
test also detected change points for daily, annual, and short
rainy-season streamflow but did not detect change points for
monthly, long, and dry season streamflow (see Figs. 3 and
S2). The change point detected by the Pettitt test for annual
streamflow is in 1995, whereas for daily and short rainy sea-
sons, it is in 1985 and 1987, respectively. The result obtained
from the MK test agrees well with the findings in Gebremi-
cael et al. (2013), who reported an increasing trend in the ob-
served annual, short, and long rain seasons’ streamflow at the
El Diem gauging station, but our results disagree with find-
ings for dry-season streamflow. Furthermore, the increasing
trend of long rainy-season streamflow agrees well with the
result of Tesemma et al. (2010), but it disagrees with the re-
sults of short rainy season and annual flows. Tesemma et al.
(2010) reported that the short rainy season and the annual
flows are constant for the 1964–2003 period. This disagree-
ment is likely attributable to the difference in analysis period,
as can be seen from Fig. 3. The last 7 years, 2004–2010, had
relatively higher streamflow records.

Although, the results of the MK test for annual and long
rainy-season rainfall and streamflow show an increasing
trend for the last 40 years in the UBNRB, the magnitude
of Sen’s slope for streamflow is much greater than it is for
rainfall (Table 3). Moreover, short rainy-season streamflow
shows a statistically significant positive increase, whereas the
rainfall shows no change. The mismatch between the rain-
fall and the streamflow trend magnitude could be associated
with evapotranspiration and could be attributable to the com-
bined effect of LULC change, climate change, the infiltration
rate due to changing soil properties, rainfall intensity, and ex-
treme events.

5.2 LULC change analysis

According to the confusion-matrix report, with an overall ac-
curacy of 80 %, a producer’s accuracy values for all classes
ranged from 75.4 % to 100 %, user’s accuracy values ranged
from 83.7 % to 91.7 %, and a kappa coefficient (k) of 0.77
was attained for the 2010 classified image (Table 5). Mon-
serud (1990) suggested a kappa value of < 40 % as poor,
40 %–55 % as fair, 55 %–70 % as good, 70 %–85 % as very
good, and > 85 % as excellent. According to these ranges,
the classification in this study has very good agreement with
the validation data set and meets the minimum accuracy re-
quirements to be used for further change detection and im-
pact analysis.

The classified images of the basin (Fig. 4) have shown
different LULC proportions at four distinct time periods, as
shown in Fig. 5. In 1973, cultivated land dominantly cov-
ered (62.9 %) the UBNRB, followed by bushes and shrubs
(18 %), forest (17.4 %), and water (1.74 %). In 1985, culti-
vated land area increased to 65.6 %, followed by bushes and
shrubs (18.3 %), while forest decreased to 14.4 %, and wa-
ter remained unchanged at 1.7 %. In 1995, cultivated land
area further increased to 67.5 %, followed by bushes and
shrubs (18.5 %). Forest further decreased to 12.2 %, and wa-
ter remained unchanged at 1.7 %. In 2010, cultivated land
decreased to 63.9 %, bushes and shrubs increased to 18.8 %,
forest increased to 15.6 %, and water remained unchanged at
1.7 %. During the entire 1973–2010 period, cultivated land,
along with bushes and shrubs, remained the major propor-
tions compared to the other LULC classes. The highest in-
crease (2.7 %) and the largest decrease (−3.6 %) in cultivated
land occurred during the 1973–1985 and 1995–2010 peri-
ods, respectively. The largest increase in bushes and shrubs
was 0.3 % from 1973 to 1985, whereas the largest increase in
forest coverage (3.4 %) was recorded during the 1995–2010
period. Water coverage remained unchanged from 1973 to
2010.

Although, the image classification results show very good
accuracy, uncertainties in classification could be expected.
First, as elsewhere in Ethiopia, LULC may change rapidly
over the land surface of the basin, and image reflectance
may be confusing due to the topography and variation in
the image acquisition date. Landsat images were not all
available for a particular year or season (as described un-
der Sect. 4.2.1); images from different years and different
seasons might harbour errors. Secondly, the workflow asso-
ciated with LULC classification involves many steps and can
be a source of uncertainty. The errors are observed in the
classified LULC map, as shown in Fig. 4. On the western
side of the map in Fig. 4a, a rectangular section with forest
appears, which completely disappears in Fig. 4b. Rectangu-
lar forest cover appears in the northern part of the country
in Fig. 4b, which again disappears completely in Fig. 4c. In
Fig. 4d, forest cover with linear edges (north–south) appears
on the map’s eastern side. That being recognised, the land-
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Table 4. Confusion (error) matrix for the 2010 land-use and land-cover classification map.

LULC class Water Forest Cultivated Bushes Row Producers
and shrubs total accuracy

Water 44 0 0 0 44 100
Forest 1 46 6 8 61 75.4
Cultivated land 2 3 77 15 97 79.4
Bushes and shrubs 1 3 9 73 86 84.9
Column total 48 52 92 86 288
Users’ accuracy (%) 91.7 88.5 83.7 84.9
Overall accuracy (%) 80
Kappa 0.77

cover mapping is reasonably accurate overall, providing a
good base for land-cover estimation and for providing basic
information for the hydrological impact analysis.

The rate of expansion of cultivated land before 1995 was
higher than after 1995. Conversely, the area of the forest land
decreased in 1985 and 1995 with reference to the 1973 base-
line. However, after 1995, the forest’s size increased again,
whereas cultivated land decreased. The increased forest cov-
erage and the decrease in cultivated land over the period 1995
to 2010 showed that the environment was recovering from
the devastating drought, and forest clearing for firewood and
cultivation due to population growth has been minimised.
This could be due to the afforestation programme, which
the Ethiopian government initiated, and to the extensive soil-
and-water conservation measures carried out by the commu-
nity. Since 1995, eucalyptus tree plantations expanded sig-
nificantly across the country at the homestead level for fire-
wood, construction materials, charcoal production, and in-
come generation (Woldesenbet et al., 2017b). In summary,
forest coverage decreased by 1.8 %, while both bushes and
shrubs as well as cultivated land increased by 0.8 % and 1 %,
respectively, from the original 1973 level to the 2010 period.
This result agrees well with other studies (Gebremicael et al.,
2013; Rientjes et al., 2011; Teferi et al., 2013; Woldesenbet
et al., 2017b), which reported a significant conversion of nat-
ural vegetation cover into agricultural land.

5.3 SWAT model calibration and validation

The SWAT model’s most sensitive parameters for simulating
streamflow were identified using a global sensitivity analy-
sis of SWAT-CUP. Their optimised values were determined
by the calibration process that Arnold et al. (2012) recom-
mended. Parameters such as the SCS curve number (CN2),
base-flow alpha factor (ALPHA_BF), soil evaporation com-
pensation factor (ESCO), threshold water depth in the shal-
low aquifer required for return flow to occur (GWQMN),
groundwater “Revap” coefficient (GW_REVAP), and avail-
able water capacity (SOL_AWC) were found to be the most
sensitive parameters for the streamflow predictions.

Table 5. The SWAT model’s statistical performance measure val-
ues.

Period R2 NSE RVE (%)

1970s
Calibration (1973–1977) 0.79 0.74 −3.41

Validation (1978–1980) 0.84 0.83 7.18

1980s
Calibration (1983–1987) 0.80 0.74 −0.72

Validation (1988–1990) 0.86 0.82 0.73

1990s
Calibration (1993–1997) 0.91 0.91 1.79

Validation (1998–2000) 0.87 0.84 −3.56

2000s
Calibration (2003–2007) 0.86 0.86 3.99

Validation (2008–2010) 0.94 0.92 −7.51

Figure 6 shows the calibration and the validation results
for monthly streamflow hydrographs for each model. These
results revealed that the model represents the monthly hydro-
graphs well, as also indicated by R2, NSE, and RVE (%) sta-
tistical performance measures (Table 6). For the calibration
period, the values of R2, NSE, and RVE (%) range from 0.79
to 0.91, 0.74 to 0.91, and −3.4 % to 4 %, respectively. For
the validation period, they ranged from 0.84 to 0.94, 0.82 to
0.92, and−7.5 % to 7.2 %, respectively. According to the rat-
ing of Moriasi et al. (2007), the SWAT model’s performance
in the UBNRB can be categorised as very good, although un-
derestimation was observed in the base-flow simulation. The
optimal parameter values of the four calibrated-model runs
are shown in Table 7. A change was obtained for CN2 pa-
rameter values, which can be attributed to the catchment’s
response behaviour. For instance, an increase in the abso-
lute average (basin-wide) CN2 value from the 1970s to the
1980s and 1990s, from 72.9 to 74.7 and 75.6, respectively,
indicates a reduction in forest coverage and an expansion of
cultivated land. By contrast, a decrease in the CN2 value was
attained during the period 1990s to 2000s, from 75.6 to 73.6,
attributed to the increase in forest coverage and reduction in
cultivated land.

Hydrol. Earth Syst. Sci., 22, 6187–6207, 2018 www.hydrol-earth-syst-sci.net/22/6187/2018/



D. F. Mekonnen et al.: Effects of LULC changes and climate change on the streamflow 6199

Figure 4. Land-cover map of UBNRB derived from Landsat images from (a) 1973, (b) 1985, (c) 1995, and (d) 2010a (b).

5.4 Combined effects of LULC change and climate
change on streamflow and water-balance
components

The simulation results of the four independent, decadal-time-
scale calibrated and validated SWAT model runs reflect the
combined effect of both LULC and climate change during
the past 40 years (Table 8). From the simulation result, mean
annual streamflow increased by 16.9 % between the 1970s
and the 2000s, while the observed mean annual streamflow
increased by 15.3 % for the same period. However, the rate
of change is different in different decades. For example, it

increased by 3.4 % and 9.9 % during the 1980s and 1990s,
respectively, from the baseline 1970s period.

The ratio of mean annual streamflow to mean annual pre-
cipitation (Qt/P ) increased from 19.4 % to 22.1 %, while the
actual evaporation to precipitation (Ea/P ) ratio decreased
from 61.1 % to 60.5 % from the 1970s to 2000s. Moreover,
the ratio of surface runoff to streamflow (Qs/Qt) increased
notably, from 40.7 % in the 1970s to 50.1 % and 55.4 % in
the 1980s and 1990s, respectively, and it decreased to 43.7 %
in the 2000s. In contrast, the base-flow-to-streamflow ra-
tio (Qb/Qt) notably decreased from 17.1 % in the 1970s to
10.3 % and 3.2 % during the 1980s and 1990s, respectively,
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Figure 5. (a) LULC composition and (b) LULC change in the UBNRB during the period from 1973 to 2010.

Table 6. Summary of the UBNRB’s precipitation indices at decadal
time series.

Indices 1970s 1980s 1990s 2000s

Mean (mm) 4.17 4.05 4.42 4.16
95 % (mm) 12.57 12.52 13.66 13.31
99 % (mm) 17.34 17.77 19.44 19.65
1 day max (mm) 27.15 25.67 32.24 32.38
R20 mm (days) 16 15 30 35
SDII (mm d−1) 7.22 7.38 7.66 7.77

SDII is the ratio of total precipitation (mm) to R1 mm (days).

but it increased to 20 % in the 2000s. The result for surface
runoff agrees with findings in Gebremicael et al. (2013), but
disagreement is observed for base flow. The study reported
that the surface runoff (Qs) contribution to the total river
discharge increased by 75 %, while the base flow (Qb) de-
creased by 50 % from the 1970s to 2000s.

In general, 1.8 % forest cover loss and 1 % increased cul-
tivated land combined with 2.2 % increased rainfall from
the 1970s to the 2000s led to a 16.9 % increase in simu-
lated streamflow. The 1990s was the period during which
the greatest deforestation and expansion of cultivated land
was reported; meanwhile, it was the time when the rainfall
intensity and the number of rainfall events significantly in-
creased compared to the 1970s and 1980s, as shown in Ta-
ble 4. Hence, the increased mean annual streamflow could
be ascribed to the combined effects of LULC and climate
change. In the case of (Qs/Qt), the increasing pattern could
be ascribed to increasing rainfall intensities, the expansion of
cultivated land, and the diminution of forest coverage, which
might adversely affect soil and water storage and decrease
rainfall infiltration, thereby increasing water yield or stream-
flow. In contrast, the decreasing Qb/Qt is positively related
to the increasing evapotranspiration linked to both LULC and
climate factors (Table 8). This hypothesis can be explained
with the change in CN2 parameter values obtained during
calibration of the four SWAT model runs. The CN2 param-

Table 7. SWAT sensitive model parameters and their (final) cali-
brated values for the four model runs.

Parameter Optimum value

1970s 1980s 1990s 2000s

R-CN2 0.88 0.91 0.92 0.9
a-Alpha-BF 0.028 0.028 0.028 0.028
V -GW_REVAPMN 0.7 0.45 0.7 0.34
V -GWQMN 750 750 750 750
V -REVAPMN 550 450 425 550
a-ESCO −0.85 −0.85 −0.85 −0.85
R-SOL_AWC 6.5 6.5 6.5 6.5

R value from the SWAT database is multiplied by a given value; V replace the
initial parameter by the given value; a adding the given value to initial
parameter value.

eter value, which is a function of evapotranspiration derived
from LULC, soil type, and slope, increased in the 1980s and
1990s, relative to the 1970s, and could be associated with
the expansion of cultivated land and shrinkage of forest land.
The increasing CN2 results reflect more surface runoff and
less base flow being generated.

Another important factor contributing to decreasing sur-
face runoff and an increasing base-flow ratio from the 1990s
to the 2000s could be the establishment of soil-and-water
conservation (SWC) measures. According to Haregeweyn et
al. (2015), various nationwide SWC initiatives, such as Food
for Work (FFW), the Managing Environmental Resources
to Enable Transition (MERET) programme for more sus-
tainable livelihoods, the Productive Safety Net Programme
(PSNP), community mobilisation through free-labour days,
and the National Sustainable Land Management Project
(SLMP), have been undertaken since the 1980s. Haregeweyn
et al. (2015) evaluated these initiatives’ effectiveness and
concluded that community labour mobilisation seems to be
the best approach. This can reduce mean seasonal surface
runoff by 40 %, with broad spatial variability ranging from
4 % in Andit Tid (north-western Ethiopia) to 62 % in Gununo
(southern Ethiopia).
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Figure 6. Calibration and validation of the SWAT hydrological model (left and right, respectively) at monthly timescale:
(a) 1970s, (b) 1980s, (c) 1990s, and (d) 2000s.

5.5 Effects of an isolated LULC change on streamflow
and water-balance components

Yan et al. (2013) used a fixing–changing method, which was
also applied in this study to identify the hydrological im-

pacts of LULC change alone. The calibrated and validated
SWAT model and its parameter settings in the baseline period
was forced by weather data from the baseline 1973–1980 pe-
riod, while changing only the LULC maps from 1985, 1995,
and 2010, keeping the DEM and soil data constant, as sug-
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Table 8. Mean annual water-balance-component analysis in the upper Blue Nile River basin, considering LULC and climate change over
their respective periods. All streamflow estimates are for the El Diem station, where water yield (Qt)=Qs+Ql+Qb and change in soil
storage=P −Qs−Ql−Qb−Ea-Revap-Recharge.

Unit 1970s 1980s 1990s 2000s

Precipitation (P ) mm 1428.1 1397.1 1522.2 1462.5
Surface flow (Qs) mm 112.8 143.4 168.6 141.4
Lateral flow (Ql) mm 116.8 113.4 125.9 117.6
Base flow (Qb) mm 47.3 29.6 9.8 64.7
Total water yield (Qt) mm 276.9 286.3 304.3 323.7
Er=Revap (from shallow aquifer) mm 269.2 257.2 310.6 241.0
Ea (Ec+Et+Es) mm 871.6 852.6 904.3 885.0
TAE mm 1140.8 1109.8 1214.9 1126.0
Recharge (to deep aquifer) mm 16.7 15.0 16.7 16.3
Change in soil-water content mm −6.3 −14.0 −13.7 −3.5
Qs/Qt % 40.7 50.1 55.4 43.7
Qb/Qt % 17.1 10.3 3.2 20.0
Qt/P % 19.4 20.5 20.0 22.1
Er (Revap)/TAE % 23.6 23.2 25.6 21.4
Ea/P % 61.0 61.0 59.4 60.5
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Figure 7. Ratio of water-balance component analysis at the El Diem
station using an isolated effect (LULC/climate change).

gested by Hassaballah et al. (2017). The results from Fig. 7
indicated that Qs/Qt ratio changed from 40.7 % to 41.2 %,
41.9 %, and 40.9 % by using the LULC maps from 1973,
1985, 1995, and 2010, respectively, whereas the Qb/Qt ra-
tio changed from 17.1 % to 16.8 %, 16.5 %, and 16.9 %, re-
spectively. The largestQs/Qt ratio (41.9 %) and the smallest
Qb/Qt ratio (16.5 %) were recorded with the 1995 LULC
map. This could be attributed to the 5.1 % reduction in forest
coverage and the 4.6 % increase in cultivated land with the
1995 LULC map, relative to the 1973 LULC map.

On a basin scale over a decadal time period, water gains
are mainly from precipitation. The losses are mainly due to
runoff and evapotranspiration (Oki et al., 2006), as the losses
due to the deep percolation over the whole UBNRB are neg-
ligible (Steenhuis et al., 2009). The long-term mean annual
deep percolation simulated in this study is about 16.7 mm

and is constant in four decadal periods, which is about 6 %
of the total water yield. With the fixing–changing approach,
the change in streamflow attributable to LULC change was
essentially the change in evapotranspiration between the two
periods, as the amount of precipitation was constant (1970s),
and the change in water storage during the two periods was
similar (Yan et al., 2013). Annual Ea losses from seasonal
crops are smaller than those from forests, because seasonal
crops transpire during a relatively shorter time interval than
perennial trees do (Yan et al., 2013). As a result, the ac-
tual mean annual Ea simulated by the SWAT model was
871.6 mm at the baseline. It decreased to 871.4 and 871 mm
in 1985 and 1995, respectively, and increased to 872.1 mm
in 2010. This could be due to the simultaneous expansion of
cultivated land and the shrinkage in forest coverage in the
1985 and 1995 LULC maps, relative to the 1973 baseline.
Furthermore, this deforestation may reduce the canopy’s in-
terception of the rainfall, decrease soil infiltration by increas-
ing raindrop impacts, and reducing plant transpiration, which
can significantly increase surface runoff, reducing base flow
(Huang et al., 2013). Here, the evapotranspiration change
caused by the LULC change is minimal. As a result, the
change for surface runoff and base flow is not significant.

5.6 Effects of isolated climate change on streamflow
and water-balance components

The impacts of climate change are analysed by running the
four models using a unique LULC map from 1973 with its
model parameters, while changing only the weather data sets
from the 1970s, 1980s, 1990s, and 2000s. The simulated
water-balance components shown in Fig. 7 indicate that the
Qs/Qt ratio increased from 40.7 % to 45.2 %, 45.6 %, and
46.2 % during the 1970s, 1980s, 1990s, and 2000s, respec-
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tively, while theQb/Qt ratio changed from 17.1 % to 13.5 %,
14.9 %, and 12.7 % for the same simulation periods. The de-
creasing Qb/Qt ratio for the altered periods, compared to
the baseline period, could be attributed to evapotranspira-
tion changing from 872 to 854 mm, 906 mm, and 884 mm
in 1970s, 1980s, 1990s, and 2000s, respectively, which can
be linked to temperature and amount of rainfall. However, it
is important to know the dominant rainfall–runoff process in
the study area to fully understand the effect of climate change
on the water-balance components.

Although no detailed research has been conducted on
the upper Blue Nile River basin to investigate the runoff-
generation processes, Liu et al. (2008) investigated the
rainfall–runoff processes at three small watersheds located
inside and around the upper Blue Nile River basin, namely
Mayber, Andit Tid, and Anjeni. Their analysis showed that,
unlike in temperate watersheds, in monsoonal climates, a
given rainfall volume at the onset of the monsoon produces
a different runoff volume than the same rainfall at the end of
the monsoon. Liu et al. (2008) and Steenhuis et al. (2009)
showed that the ratio of discharge to precipitation minus
evapotranspiration, Q/(P –ET), increases with cumulative
precipitation from the onset of a monsoon. This suggests that
saturation excess processes play an important role in water-
shed response.

Furthermore, the infiltration rates that Engda (2009) mea-
sured in 2008 were compared with rainfall intensities in the
Maybar and Andit Tid watersheds located inside and around
the UBNRB. In the Andit Tid watershed, which has an area
of less than 500 ha, the measured infiltration rates at 10 lo-
cations were compared with rainfall intensities considered
from the 1986–2004 period. The analysis showed that only
7.8 % of rainfall intensities were found to be higher than the
lowest soil infiltration rate of 25 mm h−1. Derib (2005) per-
formed a similar analysis in the Maybar watershed (with a
catchment area of 113 ha). The infiltration rates measured
from 16 measurements ranged from 19 to 600 mm h−1, with
a 240 mm h−1 average and 180 mm h−1 median, whereas
the average daily rainfall intensity from 1996 to 2004 was
8.5 mm h−1. Hence, he suggested from these infiltration mea-
surements that infiltration excess runoff is not a common fea-
ture in these watersheds.

From the above discussion points, it is to be noted that
surface runoff could increase with increasing total rainfall
amount, regardless of rainfall intensity. However, the mean
annual rainfall amount in this study decreased from the 1970s
to the 1980s (1428 and 1397 mm, respectively), while the
(Qs/Qt) ratio increased from 40.7 % to 45.2 %. Similarly,
the mean annual rainfall amount in the 1990s (1522 mm)
was greater than the mean annual rainfall amount in the
2000s (1462 mm) while the (Qs/Qt) increased from 45.6 %
to 46.2 %. In contrast, in climate indices such as 99 % rain-
fall and SDII (ratio of total precipitation amount to num-
ber of days when rainfall > 1 mm; R1 mm), the number
of days when rainfall > 20 mm (R20 mm) increases consis-

tently from 1970 to the 2000s, as shown in Table 4. This in-
dicates that the increasing surface runoff might be due to an
increasing of number of extreme rainfall events and rainfall
intensity. Although we did not use hourly rainfall data for
the SWAT model, this study suggested that the excess infil-
tration of overland flow dominates the rainfall–runoff pro-
cesses in the UBNRB, not the saturation excess of overland
flow. The contradiction from the previous studies might be
due either to the limitation of the SWAT CN method when
applied in monsoonal climates or the overlooked tillage ac-
tivities, which significantly impact the soil infiltration rate.
Extensive tillage activities are carried out across the basin at
the beginning of the rainy season. Soils get disturbed as a
result, which can increase the infiltration rate and ultimately
decrease the amount of rainfall converted to runoff.

Although the CN method is easy to use and provides ac-
ceptable results for discharge at the watershed outlet in many
cases, researchers have concerns about its use in watershed
models (Steenhuis et al., 1995; White et al., 2011). The
SWAT CN model relies on a statistical relationship between
soil-moisture condition and CN values obtained from plot
data in the United States, with a temperate climate that was
never tested in a monsoonal climate, exhibiting two extreme
soil-moisture conditions. In monsoonal climates, long peri-
ods of rain can lead to prolonged soil saturation, whereas dur-
ing the dry period, the soil dries out completely, which may
not happen in temperate climates (Steenhuis et al., 2009).
Hence, further research that considers biophysical activities
such as tillage and the seasonal effects on soil moisture at
representative watersheds of the basin is necessary to prop-
erly assess the rainfall–runoff processes.

6 Conclusions

This study’s objectives were to understand the long-term
variations of rainfall and streamflow in the UBNRB using
statistical techniques (MK and Pettitt tests) and to assess the
combined and isolated effects of climate and LULC change
using a semi-distributed hydrological model (SWAT). Al-
though the results of the MK test for annual and long rainy-
season rainfall and streamflow show an increasing trend over
the last 40 years, the magnitude of Sen’s slope for stream-
flow is much larger than the Sen’s slope of areal rainfall.
Moreover, the short rainy-season streamflow shows a statisti-
cally significant positive increase, while the rainfall shows no
change. The mismatch of trend magnitudes between rainfall
and streamflow could be attributed to the combined effect of
LULC and climate change, associated with decreasing actual
evapotranspiration (Ea) and increasing rainfall intensity and
extreme events.

LULC change detection was assessed by comparing the
classified images. The result showed that the dominant pro-
cess is largely the expansion of cultivated land and a decrease
in forest coverage. The rate of deforestation is high during
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the 1973–1995 period. This is probably due to the severe
drought that occurred in the mid-1980s and to a large pop-
ulation increase resulting from the expansion of agricultural
land. On the other hand, forest coverage increased by 3.4 %
during the period 1995–2010. This indicates that the envi-
ronment was recovering from the devastating drought in the
1980s, regenerating the forests as the result of afforestation
programme initiated by the Ethiopian government and soil-
and-water conservation activities accomplished by the com-
munities.

The SWAT model was used to analyse the combined and
isolated effects of LULC and climate change on the monthly
streamflow at the basin outlet (El Diem station, located on
the Ethiopia–Sudan border). The result showed that the com-
bined effects of the LULC and climate change increased the
mean annual streamflow by 16.9 % from the 1970s to the
2000s. The increased mean annual streamflow could be as-
cribed to the combined effects of LULC and climate change.
The LULC change alters the catchment responses. As a re-
sult, SWAT model parameter values could be changed. For
instance, the expansion of cultivated land and the shrinkage
of forest coverage from 1973 to 1995 changed the basin aver-
age CN2 parameter values from 72.9 in 1973 to 74.7 and 75.6
in 1985 and 1995, respectively. Increasing the CN2 value
might increase surface runoff and decrease base flow. Sim-
ilarly, the increase in rainfall intensity and extreme precipita-
tion events led to a substantial increase in Qs/Qt, a substan-
tial decrease in Qb/Qt, and, ultimately, to increases in the
streamflow during the 1971–2010 simulation period.

The fixing–changing approach result using the SWAT
model revealed that the isolated effect of LULC change could
potentially alter the streamflow generation processes. The re-
sults of Fig. 7 show that surface runoff is increasing, while
base flow is decreasing due to the expansion of cultivated
land and reduction of forest coverage that reduce evapotran-
spiration during the periods 1985 and 1995, as compared
to the baseline-period 1973 LULC map. Furthermore, the
SWAT simulation results from Table 8 and Fig. 7 revealed
that the Revap has been a significant contributor to the TAE
in the UBNRB for the last 40 years, with a mean annual con-
tribution ranging from 21.4 % to 25.6 %; this could be due
to the large coverage of deep-rooted Eucalyptus tree species
that can access the saturated zone (Neitsch et al., 2011). The
Revap component of this study appears consistent with the
results of Abiodun et al. (2018) and Benyon et al. (2006),
who reported the annual groundwater ET contribution to to-
tal ET ranged from 13 % to 72 % and 20 %, respectively,
for south-eastern Australia and the Sixth Creek catchments.
However, a detailed investigation of the contribution of Re-
vap to the total actual evapotranspiration in the study area is
required, which is beyond the scope of this study. In general,
a 5.1 % reduction in forest coverage and a 4.6 % increase in
cultivated land led to a 9.9 % increase in mean annual stream-
flow from 1973 to 1995. This study provides a better under-
standing and substantial information about how climate and

LULC change affects streamflow and water-balance compo-
nents separately and jointly, which is useful for basin-wide
water resource management. The SWAT simulation indicated
that the impacts of climate change are more substantial than
the impacts of LULC change, as shown in Fig. 7. Surface wa-
ter is no longer used for agriculture and plant consumption in
areas such as the UBNRB, where water-storage facilities are
scarce. On the other hand, base flow provides the most reli-
able source of the irrigation needed to increase agricultural
production. Hence, the increasing amount of surface water
and diminished base flow, caused by both LULC and cli-
mate change, negatively affect socio-economic developments
in the basin.

Protecting and conserving the natural forests and expand-
ing soil-and-water conservation activities is therefore highly
recommended, not only to increase the base flow avail-
able for irrigation but also to reduce soil erosion. Doing
so might increase productivity and improve the livelihoods
and regional-water-resource-use cooperation. However, the
uncertainties of Landsat image classification and the model
uncertainty of the SWAT simulation might limit this study.
To improve the accuracy of LULC classification from Land-
sat images, further efforts, such as integrating other im-
ages with Landsat images through image-fusion techniques
(Ghassemian, 2016), are required. The SWAT model does
not adjust CN2 for slopes greater than 5 %. This could be
significant in areas where the majority of the area has a slope
greater than 5 %, such as in the UBNRB. We therefore sug-
gest that adjusting CN2 values for slopes > 5 % outside of
the SWAT model might improve the results. Moreover, fur-
ther research involving rainfall intensity, the infiltration rate,
and the event-based analysis of hydrographs and critical eval-
uation of rainfall–runoff processes in the study area might
overcome this study’s limitations. Finally, the authors would
like to point out that the impacts of current and future wa-
ter resource developments should be investigated to establish
comprehensive, holistic water resource management in the
Nile basin.
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