No.	Author	Original location	Data requirements	Equation	Other studies that utilised similar methods
1	Wischmeier and Smith (1978)	USA	Slope length and angle	$LS = \left(\frac{\lambda}{72.6}\right)^m \times \left[\left(65.41 \times \sin^2\theta\right) + (4.56 \times \sin\theta) + 0.065\right]$ $\lambda:$ slope length (ft) $\Theta:$ angle of slope m: dependent on the slope -0.5 if slope > 5% -0.4 if slope is between 3.5% and 4.5% -0.3 if slope is between 1% and 3% -0.2 if slope is less than 1%	Thailand (Eiumnoh, 2000; Merritt et al., 2004); Vanuatu (Dumas and Fossey, 2009); Iran (Bagherzadeh, 2014)
2	Renard et al. (1997)	USA	Slope length and angle	$L = \left(\frac{\lambda}{72.6}\right)^m$ $m = \frac{\beta}{1+\beta}$ $\beta = \frac{\left(\frac{\sin\theta}{0.0856}\right)}{\left[3.0 \times (\sin\theta)^{0.8} + 0.56\right]}$ If slope is less than 9 %: $S = 10.8 \times \sin\theta + 0.03$ If slope is greater or equal to 9 %: $S = 16.8 \times \sin\theta - 0.50$ But if the slope is shorter than 15 ft: $S = 3.0 \times (\sin\theta)^{0.8} + 0.56$ $\lambda:$ slope length (ft) $\Theta:$ angle of slope m: dependent on the slope -0.5 if slope is between 3.5% and 4.5% $-0.3 if slope is less than 1%$	Philippines (Schmitt, 2009); China (Li et al., 2014); Thailand (Nontananandh and Changnoi, 2012); Turkey (Ozsoy et al., 2012)
3	David (1988), based on work by Madarcos (1985) and Smith and Whitt (1947)	Philippines, but based on work from the USA	Slope rise in percent	$LS = a + b \times S_L^{4/3}$ a = 0.1 b = 0.21 $S_L: \text{ slope (\%)}$	Philippines (David, 1988)
4	Morgan (2005) but previously published in earlier editions	Britain	Slope length and gradient in percent	$LS = \left(\frac{l}{22}\right)^{0.5} (0.065 + 0.045s + 0.0065s^2)$ <i>l</i> : slope length (m) <i>s</i> : slope steepness (%)	India (Nakil and Khire, 2016; Sinha and Joshi, 2012); Greece (Rozos et al., 2013)
5	Moore and Burch (1986) as cited in Mitasova et al. (1996) Desmet and Govers (1996); Mitasova et al. (2013);	USA	Upslope con- tributing area per unit width, which can be approximated through flow accumulation, cell size, slope	$LS = (m+1) \left(\frac{U}{L_0}\right)^m \left(\frac{\sin\beta}{s_0}\right)^n$ $U \ (m^2 \ m^{-1})$: upslope contributing area per unit width as a proxy for discharge U = flow accumulation × cell size L_0 : length of the unit plot (22.1) S_0 : slope of unit plot (0.09) β : slope m (sheet) and n (rill) depend on the prevail- ing type of erosion ($m = 0.4$ to 0.6) and n (1.0 to 1.3)	Philippines (Adornado and Yoshida, 2010; Ador- nado et al., 2009); Sri Lanka (Jayasinghe et al., 2010); China (Chen et al., 2011); Iran (Zaker- inejad and Maerker, 2015); Jordan (Farhan and Nawaiseh, 2015); Morocco (Raissouni et al., 2016); New Zealand (Fernandez and Daigneault, 2016). Similar methods from Moore and Burch (1986): India (Jain and Das, 2010); Portugal (Ferreira and Panagopoulos, 2014); Greece (Jahun et al., 2015); India (Nakil and Khire, 2016). Similar methods from Desmet and Govers (1996): USA (Boyle et al., 2011); Turkey (Demirci and Karaburun, 2012); Philippines (Delgado and Can- ters, 2012).