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Abstract. In many simulations of historical daily streamflow
distributional bias arising from the distributional properties
of residuals has been noted. This bias often presents itself as
an underestimation of high streamflow and an overestimation
of low streamflow. Here, 1168 streamgages across the con-
terminous USA, having at least 14 complete water years of
daily data between 1 October 1980 and 30 September 2013,
are used to explore a method for rescaling simulated stream-
flow to correct the distributional bias. Based on an existing
approach that separates the simulated streamflow into com-
ponents of temporal structure and magnitude, the temporal
structure is converted to simulated nonexceedance probabil-
ities and the magnitudes are rescaled using an independently
estimated flow duration curve (FDC) derived from regional
regression. In this study, this method is applied to a pooled
ordinary kriging simulation of daily streamflow coupled with
FDCs estimated by regional regression on basin characteris-
tics. The improvement in the representation of high and low
streamflows is correlated with the accuracy and unbiasedness
of the estimated FDC. The method is verified by using an
idealized case; however, with the introduction of regionally
regressed FDCs developed for this study, the method is only
useful overall for the upper tails, which are more accurately
and unbiasedly estimated than the lower tails. It remains for
future work to determine how accurate the estimated FDCs
need to be to be useful for bias correction without unduly
reducing accuracy. In addition to its potential efficacy for
distributional bias correction, this particular instance of the
methodology also represents a generalization of nonlinear
spatial interpolation of daily streamflow using FDCs. Rather
than relying on single index stations, as is commonly done to

reflect streamflow timing, this approach to simulation lever-
ages geostatistical tools to allow a region of neighbors to re-
flect streamflow timing.

1 Introduction

Simulation of historical daily streamflow at ungauged loca-
tions is one of the grand challenges of the hydrological sci-
ences (Sivapalan, 2003; Sivapalan et al., 2003; Hrachowitz
et al., 2013; Parajka et al., 2013). Over the past 20 years, at
least, research into simulation of historical streamflow has
increased. In addition to ongoing international efforts, the
US Geological Survey has embarked upon a National Water
Census of the USA (Alley et al., 2013), which seeks to quan-
tify hydrology across the country to provide information to
help improve water use and security. However, regardless of
the method used for the simulation, uncertainty will always
remain and may result in some distributional bias (Farmer
and Vogel, 2016). The objective of this work is to present a
technique to correct for bias in the magnitudes of a stream-
flow simulation. While the mechanics of this technique are
not novel, the novelty of this work lies in the generalization
of this technique for use in bias correction. The method is in-
tended for use at ungauged sites and an idealized experiment
is constructed to demonstrate both the potential utility and
one example of realized utility.

As defined here, distributional bias in simulated stream-
flow is an error in reproducing the tails of streamflow distri-
bution. As attested to by many researchers focused on the re-
production of historical streamflow, this bias commonly ap-
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pears as a general overestimation of low streamflow and un-
derestimation of high streamflow (Skøien and Blöschl, 2007;
Rasmussen et al., 2008; Farmer et al., 2014, 2015; Farmer,
2016; Farmer and Vogel, 2016; Archfield et al., 2010, 2013).
The result is an effective squeezing of the streamflow dis-
tribution, bringing the tails of the distribution closer to the
central values. This distributional squeezing is often most
notable in the downward bias of extreme high-flow events
(as in, e.g., Lichty and Liscum, 1978; Thomas, 1982; Sher-
wood, 1994). Bias of high streamflows is particularly con-
cerning, as examinations of extreme high-flow events are
a common and influential use of historical simulation and
long-term (decadal) forecast. Consider, for example, the mo-
tivation for work by Archfield et al. (2013): as simulated
streamflows were being routed through a reservoir operations
model for flood mitigation, large bias in high streamflows
would have severely affected resulting decisions. Of course,
this tendency towards distributional compaction is not a uni-
versal truth that occurs without variation; the resulting bias
will vary widely depending on the structure of the residuals
(Farmer and Vogel, 2016).

Because of the importance of accurately representing ex-
treme events, it is necessary to consider how the distribu-
tional bias of streamflow simulations can be reduced. The
approach presented here assumes that, while the streamflow
magnitudes of a historical simulation are biased, the temporal
structure or rank order of simulated streamflows is relatively
accurate. The nature of this approach is predicated on an as-
sumption that although a historical simulation may produce
a distribution of streamflow with biased tails, the temporal
sequence of relative rankings or nonexceedance probabili-
ties of the simulated streamflow retains valuable information.
With this assumption, it can be hypothesized that distribu-
tional bias can be reduced, while not negatively impacting the
overall performance, by applying a sufficiently accurate in-
dependently estimated representation of the period-of-record
flow duration curve (FDC) to rescale each streamflow value
based on the streamflow value of the regional FDC for the
corresponding nonexceedance probabilities (see Sect. 2 be-
low).

The approach presented here can be perceived as a gen-
eralization of the nonlinear spatial interpolation of daily
streamflow using FDCs as conceived by Fennessey (1994)
and Hughes and Smakhtin (1996) and widely used thereafter
(Smakhtin, 1999; Mohamoud, 2008; Archfield et al., 2010;
Shu and Ouarda, 2012). As traditionally applied, nonlinear
spatial interpolation proceeds by simulating nonexceedance
probabilities at a target location using a single neighbor-
ing streamgage (though Hughes and Smakhtin, 1996, rec-
ommend and Shu and Ouarda, 2012, test the use of multi-
ple streamgages) and then interpolating those nonexceedance
probabilities along a FDC. The approach tested here seeks to
bias-correct a simulated time series of daily discharge using
an independently estimated FDC, and, when viewed in an-

other way, presents a novel form of nonlinear spatial interpo-
lation.

Furthermore, though necessarily explored in this study
through the use of a single technique for hydrograph sim-
ulation, this approach may be a means to effectively bias-
correct any simulation of streamflow, including those from
rainfall–runoff models, as presented by Pugliese et al. (2018).
Pugliese et al. (2018) used a geostatistical tool to produce
site-specific FDCs and then used this information to post-
process simulated hydrographs from a deterministic model.
Though the underlying methods of producing the FDC and
simulated hydrograph are different, the approach proposed
by Pugliese et al. (2018) is the same as that explored here.
Further discussion of the relationship of the approach pre-
sented here to others in the field is provided below.

The remainder of this work is organized in the follow-
ing manner. Section 2 provides a description of the retrieval
of observed streamflow, the estimation of simulated stream-
flows, the calculations of observed FDCs, the estimation of
simulated FDCs, and the application and evaluation of the
bias correction. Section 3 follows and it documents the bias
in the original simulated streamflows and analyzes the poten-
tial bias correction that could be achieved if it were possible
to know the observed FDC at an ungauged location and the
bias correction that would be realized through an application
of regional regression. Section 4 considers the implications
of these results and hypothesizes how the methodology might
be applied and improved. The major findings of this work are
then summarized in Sect. 5.

2 Material and methods

This section, which is divided into four subsections, provides
a description of the methods applied here. The first subsec-
tion describes the collection of observed streamflow as well
as the initial simulation of streamflow. As the approach used
here is applicable to any simulated hydrograph, the details
of hydrograph simulation are not exhaustively documented.
Instead, beyond a brief introduction, the reader is directed
to relevant citations, as no modifications to previous meth-
ods are introduced here. The second subsection discusses
the use of regional regression to define independently es-
timated FDCs. Again, as any method for the estimation of
FDCs could be used and this application is identical to pre-
viously reported applications, following a brief introduction,
the reader is directed to the relevant citations. The third sub-
section provides a description of how bias correction was ex-
ecuted, and the fourth subsection describes how the perfor-
mance of this approach to bias correction was assessed.

2.1 Observed and simulated streamflow

The proposed approach was explored using daily mean
streamflow data from the reference quality streamgages in-
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Figure 1. Map of the locations of 1168 reference quality streamgages from the GAGES-II database (Falcone, 2011) used for analysis. All
streamgages used have more than 14 complete water years between 1 October 1980 and 30 September 2013. The outlines of two-digit
hydrologic units, which define the regions used here, are provided for further context.

cluded in the GAGES-II database (Falcone, 2011) within
the conterminous USA for the period from 1 October 1980
through 30 September 2013. To allow for the interpolation,
rather than extrapolation, of all quantiles considered later,
streamgages were screened to ensure that at least 14 com-
plete water years (1 October through 30 September) were
available for each record considered; 1168 such streamgages
were available. The selected reference streamgages are in-
dicated in Fig. 1. The streamflow data were obtained di-
rectly from the website of the National Water Information
System (NWISWeb, http://waterdata.usgs.gov; last access:
20 September 2017). For each streamgage, associated basin
characteristics were obtained from the GAGES-II database
(Falcone, 2011).

To control for streamflow distributions that vary over or-
ders of magnitude, the simulation and analysis of streamflow
at these streamgages is best explored through the applica-
tions of logarithms. To avoid the complication of taking the
logarithm of a zero, a small value was added to each stream-
flow observation. The US Geological Survey rounds all mean
daily streamflow to two decimal places in units of cubic feet
per second (cfs, which can be converted to cubic meters per
second using a factor of 0.0283). As a result, any value be-
low 0.005 cfs is rounded to and reported as 0.00 cfs. Because
of this rounding procedure, the small additive value applied
here was 0.0049 cfs. While there may be some confounding
effect produced by the use of an additive adjustment, as long
as this value is not subtracted on back transformation, the fol-
lowing assessment of bias and bias correction will remain ro-
bust. That is, rather than evaluating bias in streamflow, tech-

nically this analysis is evaluating the bias in streamflow plus
a correction factor. The conclusions remain valid as the as-
sessment still evaluates the ability of a particular method to
remove the bias in the simulation of a particular quantity.

Though the potential for distributional bias applies to any
hydrologic simulation (Farmer and Vogel, 2016), for this
study, initial predictions of daily streamflow values for each
streamgage were obtained by applying the pooled ordinary
kriging approach (Farmer, 2016) to each two-digit hydro-
logic unit (Fig. 1) through a leave-one-out cross-validation
procedure on the streamgages within the two-digit hydro-
logic unit. The hydrologic unit system is a common method
for delineating watersheds in the USA. As described by
Seaber et al. (1987), the two-digit hydrologic units, or re-
gions (as seen in Fig. 1), roughly align with the major river
basins of the USA. This approach considers all pairs of com-
mon logarithmically transformed unit streamflow (discharge
per unit area) for each day and builds a single, time-invariant
semivariogram model of cross-correlation that is then used
to estimate ungauged streamflow as a weighted summation
of all contemporary observations. A spherical semivariogram
was used as the underlying model form. Additional informa-
tion on the time series simulation procedure is provided by
Farmer (2016). Note that the choice of pooled ordinary krig-
ing is only made as an example of a streamflow simulation
method; it is not implied that the bias observed or methods
applied are relevant only to this approach to simulation. Be-
cause the novelty of this work is in the application of bias cor-
rection, further details on the particular simulation method
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employed are left for the reader to investigate in the cited
works (Farmer, 2016).

2.2 Estimation of flow duration curves

Daily period-of-record FDCs were developed independently
of the streamflow simulation procedure by following a re-
gionalization procedure similar to that of Farmer et al. (2014)
and Over et al. (2018). Observed FDCs were obtained by
determining the percentiles of the streamflow distribution
across complete water years between 1981 and 2013 us-
ing the Weibull plotting position (Weibull, 1939). A total
of 27 percentiles with exceedance probabilities of 0.02 %,
0.05 %, 0.1 %, 0.2 %, 0.5 %, 1 %, 2 %, 5 %, 10 %, 20 %,
25 %, 30 %, 40 %, 50 %, 60 %, 70 %, 75 %, 80 %, 90 %,
95 %, 98 %, 99 %, 99.5 %, 99.8 %, 99.9 %, 99.95 %, and
99.98 % were considered. The selection of streamgages with
at least 14 complete water years ensures that all percentiles
can be calculated from the observed data. These percentiles
derived from the observed hydrograph represent the “un-
knowable observation” in an application for prediction in
ungauged basins. Therefore, to simulate the truly ungauged
case, these same percentiles were estimated using a leave-
one-out cross-validation of regional regression.

A regional regression across the streamgages in each two-
digit hydrologic unit of each of the 27 FDC percentiles was
developed using best subsets regression. Best subsets regres-
sion is a common tool for exhaustive exploration of the space
of potential explanatory variables. All models with a given
number of explanatory variables are computed, exploring all
combinations of variables. The top models for a given num-
ber of explanatory variables are then identified by a perfor-
mance metric like the Akaike information criterion. This is
repeated for several model sizes to fully explore the pos-
sibilities for variables and regression size. For each regres-
sion, the drainage area was required as an explanatory vari-
able. At a minimum, one additional explanatory variable was
used. The maximum number of explanatory variables was
limited to the smaller of either six explanatory variables or
5 % of the number of streamgages in the region, rounded
up to the next larger whole number. The maximum of six
arises from what is computationally feasible for the best sub-
sets regression function used, whereas the maximum of 5 %
of streamgages was determined from a limited exploration
of the optimal number of explanatory variables as a func-
tion of the number of streamgages in a region. Explanatory
variables were drawn from the GAGES-II database (Falcone,
2011). As documented by Farmer et al. (2014) and Over et al.
(2018), a subset of the full GAGES-II dataset was chosen to
avoid strong correlations. As the focus of this work is not
on the estimation of the FDCs, the reader is referred to the
works of Farmer et al. (2014, 2018) and Over et al. (2018) to
explore the exact procedures.

In order to allow different explanatory variables to be used
to explain percentiles at different streamflow regimes, the

percentiles were grouped into a maximum of three contigu-
ous streamflow regimes based on the behavior of the unit
FDCs (i.e., the FDCs divided by drainage area) in the two-
digit hydrologic units. The regimes are contiguous in that
only consecutive percentiles from the list above can be in-
cluded in the same regime; the result is a maximum of three
regimes that can be considered “high”, “medium”, and “low”
streamflows, though the number of regimes may vary across
two-digit hydrologic units. The percentiles in each regime
were estimated by the same explanatory variables, allowing
only the fitted coefficients to change. The final regression
form for each regime was selected by optimizing the aver-
age adjusted coefficient of determination, based on censored
Gaussian (Tobit) (Tobin, 1958) regression to allow for val-
ues censored below 0.005 cfs, across all percentiles in the
regime. The addition of a small value was used to avoid
the presence of zeros and enable a logarithmic transforma-
tion, but this does not avoid the problem of censoring. Cen-
soring below the small value added must still be accounted
for so that smaller numbers do not unduly affect the regres-
sion. This approach to percentile grouping was found to pro-
vide reasonable estimates while minimizing the risk of non-
monotonic or otherwise concerning behavior. Further details
on this methodology can be found in the associated data and
model archive (Farmer et al., 2018) and in Over et al. (2018).

When estimating a complete FDC as realized through
a set of discrete points, non-monotonic behavior is likely
(Poncelet et al., 2017). If the regression for each percentile
were estimated independently, non-monotonicity would be
almost unavoidable. By using three regimes and keeping the
explanatory variables the same within each, the potential
for non-monotonicity is reduced. The greatest risk of non-
monotonic behavior occurs at the regime boundaries. If the
FDC used to bias-correct is not perfectly monotonic, the ef-
fect will be to alter the relative timing of streamflows. While
it would be ideal to avoid any risk of non-monotonic behav-
ior, it is a rather difficult task. An alternative might be to
consider the FDC as a parametric function, but Blum et al.
(2017) demonstrate how difficult this can be for daily stream-
flows. Of course, the use of regional regression is not the only
tool for estimating an FDC (for reviews, see Castellatin et al.,
2013; Pugliese et al., 2014, 2016).

2.3 Bias correction

To implement bias correction, the initial predictions of the
daily streamflow values using the ordinary kriging approach
were converted to streamflow nonexceedance probabilities
using the Weibull plotting position (Weibull, 1939). The
nonexceedance probabilities were then converted to standard
normal quantiles and linearly interpolated along an indepen-
dently estimated FDC. For the linear interpolation, the in-
dependently estimated FDC was represented as the standard
normal quantiles of the associated nonexceedance probabil-
ities versus the common logarithmic transformation of the

Hydrol. Earth Syst. Sci., 22, 5741–5758, 2018 www.hydrol-earth-syst-sci.net/22/5741/2018/
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Figure 2. Diagram showing the bias correction methodology applied here. The simulated daily hydrograph at the ungauged site is presented
in (a). For any particular point on the hydrograph (point A) the daily volume of streamflow can be mapped to a nonexceedance probability
using the rank order of simulated streamflows (points B and C). With an independently estimated flow duration curve (FDC) from some
procedure such as regional regression, the nonexceedance probability can be rescaled to a new volume (point D) and placed back in same
sequence as the simulated streamflows (point E) to produce a bias-corrected hydrograph. This example is shown for 1 month, though the
FDC applies across the entire period of record. As these data are based on an example site, the observed streamflows and FDC are shown in
grey on each figure.

streamflow percentiles. In the case for which the standard
normal quantile being estimated from the simulated hydro-
graph was beyond the extremes of the FDC, the two nearest
percentiles were used for linear extrapolation. In this way, the
ordinary kriging simulations were bias-corrected, based on
the assumption that the simulated volumes are less accurate
than the relative ranks of the simulated values, by rescaling
the simulated volumes to an independently estimated FDC.
By changing the magnitudes of the simulated streamflow dis-
tribution, this approach rescales the distribution of the simu-
lated streamflow.

Figure 2 provides a simplified representation of this bias
correction methodology. Starting in panel a and proceed-
ing clockwise, after simulating the hydrograph with a given
methodology (pooled ordinary kriging was used here), the re-
sulting streamflow value on a given day can be converted to
appropriate nonexceedance probabilities by proceeding from
point A, through point B, and down to point C. Moving then

from point C to point D maps the estimated nonexceedance
probability onto an independently estimated FDC. Finally,
the streamflow value produced at point D is mapped to the
original date (point E) to reconstruct a bias-corrected hy-
drograph. Note that this is a simplified description: as de-
scribed above a slightly more complex interpolation proce-
dure is used for the FDCs represented by a set of discrete
points.

As can be seen in Fig. 2, this methodology is quite simi-
lar to that conceived by Fennessey (1994) and Hughes and
Smakhtin (1996). The novelty of this work lies in its ap-
plication. That is, both Fennessey (1994) and Hughes and
Smakhtin (1996) imagine a case in which the original hy-
drograph from which nonexceedance values will be drawn
(Fig. 2a) is drawn from an index station of some sort; here
the temporal structure could be drawn from any technique
for at-site hydrograph simulation. This generalization allows
bias correction of any hydrograph simulation.
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2.4 Evaluation

The hypothesis of this work, that distributional bias in the
simulated streamflow can be corrected by applying indepen-
dently estimated FDCs, was evaluated by considering the
performance of these bias-corrected simulations at both tails
of the distribution. The differences in the common logarithms
of both high and low streamflow were used to understand and
quantify the bias (simulation minus observed) and the correc-
tion thereof. That is,

biass =

n∑
i=1

(
log10

(
Q̂s,i

)
− log10

(
Qs,i

))
n

, (1)

where s indicates the site of interest, Q̂ indicates the pre-
dicted streamflow, whether the original simulation or the
bias-corrected simulation, Q indicates the observed stream-
flow, and n indicates the number of values being assessed.
This difference can be approximated as a percent by comput-
ing 10 to the power of the difference and subtracting 1 from
this quantity (Eng et al., 2009):

biass,% = 100 ·
(

10biass − 1
)
. (2)

The differences in the root mean squared error of the com-
mon logarithms of the predicted streamflow were used to
quantify improvements in accuracy. The root mean squared
error of the common logarithms of streamflow is calculated
as

rmsels =

√√√√√ n∑
i=1

(
log10

(
Q̂s,i

)
− log10

(
Qs,i

))2

n
. (3)

Improvements in accuracy may or may not occur when bias
is reduced. The significance of both these quantities, and the
effects of bias correction on these quantities, was assessed
using a Wilcoxon signed rank test (Wilcoxon, 1945). For as-
sessments of bias, the null hypothesis was that the bias was
equivalent to zero. For assessments of the difference in bias
or accuracy with respect to the baseline result, the null hy-
pothesis was that this difference was zero.

Distributional bias and improvement of that bias were con-
sidered in both the high and low tails of the streamflow
distribution. Two methods were used to capture the bias
in each tail. One method, referred to herein as an assess-
ment of the observation-dependent tails, considers the ob-
served nonexceedance probabilities to identify the days on
which the highest and lowest 5 % of streamflow occurred.
For each respective tail, the errors were assessed based on
the observations and simulations of those fixed days. The
other method, referred to herein as an assessment of the
observation-independent tails, compares the ranked top and
bottom 5 % of observations with the independently ranked
top and bottom 5 % of simulated streamflow. Errors in the

observation-dependent tails are an amalgamation of errors in
the sequence of nonexceedance probabilities (the temporal
structure) and in the magnitude of streamflow, whereas errors
in the observation-independent tails only reflect bias in the
ranked magnitudes of streamflow. In the same fashion, eval-
uation of the complete hydrograph can be assessed sequen-
tially (sequential evaluation), retaining the contemporary se-
quencing of observations and simulations, or distributionally
(distributional evaluation), considering the observations and
simulations ranked independently. Though the overall accu-
racy will vary between the sequential and distributional case,
overall bias will be identical in both cases.

With an analysis of both observation-dependent and
observation-independent tails, it is possible to begin to tease
out the effect of temporal structure on distributional bias. The
bias in observation-independent tails is not directly tied to the
temporal structure, or relative ranking, of simulated stream-
flow. That is, if the independently estimated FDC is accu-
rate, then even if relative sequencing of streamflow is badly
flawed, the bias correction of observation-independent tails
will be successful. However, even if the distribution is accu-
rately reproduced after bias correction, the day-to-day per-
formance may still be poor. For observation-dependent tails,
the temporal structure plays a vital role on the effect of bias
correction. If the temporal structure is inaccurate in the un-
derlying hydrologic simulation, then the bias correction of
observation-dependent tails will be less successful.

The bias correction approach was first tested with the ob-
served FDCs. These observed FDCs would be unknowable
in the truly ungauged case, but this test allows for an as-
sessment of the potential utility of this approach. This ex-
amination is followed by an application with the regionally
regressed FDCs described above, demonstrating one realiza-
tion of this generalizable method. This general approach to
bias correction could be used with other methods for estimat-
ing the FDC and could also be used with an observed FDC
for record extension, though neither of these possibilities are
explored here.

3 Results

Figures 3 and 4 show the overall bias and accuracy of the
reproduced hydrographs; these figures are quantified in Ta-
bles 1 and 2. Figure 5 and Table 1 summarize the tail bias
in all approaches to streamflow simulation considered here.
Similarly, Fig. 6 and Table 2 summarize the tail accuracy of
all approaches. These results are discussed in detail below,
beginning with a discussion of the bias and accuracy in the
original kriged simulations. This is followed by a consider-
ation of the effectiveness of bias correction with observed
FDCs as emblematic of the theoretical potential of this ap-
proach. The realization of this theoretical potential through
the regionally regressed FDCs is subsequently presented.
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Figure 3. Distribution of logarithmic bias, measured as the mean
difference between the common logarithms of simulated and ob-
served streamflow (simulated minus observed) at 1168 streamgages
across the conterminous USA. Orig. refers to the original simula-
tion with pooled ordinary kriging, BC-RR refers to the Orig. hydro-
graph bias-corrected with regionally regressed flow duration curves,
and BC-Obs. refers to the Orig. hydrograph bias-corrected with ob-
served flow- duration curves. The tails of the box plots extend to the
5th and 95th percentiles of the distribution; the ends of the boxes
represent the 25th and 75th percentiles of the distribution; the heav-
ier line in the box represents the median of the distribution; the open
circle represents the mean of the distribution; outliers beyond the
5th and 95th percentile are shown as horizontal dashes.

Complete results can be explored and reproduced using the
associated model and data archive (Farmer et al., 2018).

3.1 Simulated hydrographs without correction

There is statistically significant overall bias at the me-
dian (−7.1 %; 10−0.0318

− 1) in the streamflow distribution
simulated by the kriging approach applied here (Fig. 3,
box plot A), but more significant bias is apparent in the
upper and lower tails of the distribution (Fig. 5, box
plots A, D, G, and J). Both the observation-dependent and
observation-independent upper tails of the streamflow distri-
bution demonstrate significant downward bias (Fig. 5, box
plots D and J). At the median, the observation-dependent up-
per tail is underestimated by approximately 38 % (Table 1,
row 1; Fig. 5, box plot D), while the observation-independent
upper tail is underestimated by approximately 23 % (Table 1,
row 2; Fig. 5, box plot J). For the lower tail, the observation-
dependent tail shows a median overestimation of 36 % (Ta-
ble 1, row 1; Fig. 5, box plot A), while the observation-
independent tail is underestimated by less than 1 % (Table 1,
row 2; Fig. 5, box plot G). The bias is much more vari-
able, producing greater magnitudes of bias more often, in the
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Figure 4. Distribution of logarithmic accuracy, measured as the root
mean squared error between the common logarithms of observed
and simulated streamflow at 1168 streamgages across the contermi-
nous USA. Orig. refers to the original simulation with pooled ordi-
nary kriging, BC-RR refers to the Orig. hydrograph bias-corrected
with regionally regressed flow duration curves, and BC-Obs. refers
to the Orig. hydrograph bias-corrected with observed flow dura-
tion curves. Sequential indicates that contemporary days were com-
pared, while distributional indicates that days of equal rank were
compared. The tails of the box plots extend to the 5th and 95th per-
centiles of the distribution; the ends of the boxes represent the
25th and 75th percentiles of the distribution; the heavier line in the
box represents the median of the distribution; the open circle rep-
resents the mean of the distribution; outliers beyond the 5th and
95th percentile are shown as horizontal dashes.

lower tails than in the upper tails. Generally, biases in the
observation-independent tails are less severe, both in the me-
dian and in range, than those in the observation-dependent
tails. To provide some information on regional performance
and incidence of bias, Fig. 7 shows the spatial distribution of
bias in each tail (discussion of this distribution is provided
below).

In both observation-dependent and observation-
independent cases, downward bias in the upper tail is
more probable than upward biases in the lower tail. For
the observation-dependent tails, approximately 89% of
streamgages show downward bias for the upper tail (Fig. 5,
box plot D), and approximately 61 % of the streamgages
upward bias in the lower tail (Fig. 5, box plot A). For
the observation-independent tails, approximately 80 % of
streamgages show downward bias in the upper tail (Fig. 5,
box plot J) and approximately 50 % of the streamgages
exhibit upward bias in the lower tail (Fig. 5, box plot G),
indicating, as does the small median bias value, that the
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Figure 5. Distribution of logarithmic bias, measured as the mean
difference between the common logarithms of simulated and
observed streamflow at 1168 streamgages across the contermi-
nous USA for observation-dependent and observation-independent
upper and lower tails. Observation-dependent tails retain the
ranks of observed streamflow, while matching simulations by day.
Observation-independent tails rank observations and simulation in-
dependently. The upper tail considers the highest 5 % of stream-
flow, while the lower tail considers the lowest 5 % of streamflow.
Orig. refers to the original simulation with pooled ordinary krig-
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the Orig. hydrograph bias-corrected with observed flow duration
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centiles of the distribution; the ends of the boxes represent the
25th and 75th percentiles of the distribution; the heavier line in the
box represents the median of the distribution; the open circle rep-
resents the mean of the distribution; outliers beyond the 5th and
95th percentile are shown as horizontal dashes.

lower tail biases are relatively well balanced around zero for
the observation-independent case for these simulations.

With respect to their central tendencies, these results show
upward bias in lower tails and downward bias in upper tails of
the distribution of streamflows from the original simulations
for both observation-dependent and observation-independent
cases. There is, of course, a great degree of variability around
this central tendency. With these baseline results, the bias
correction method presented here seeks to mitigate these bi-
ases.

3.2 Bias correction with observed FDCs

The results for this idealized case that could not be applied
in practice provide clear evidence that distributional bias in
simulated streamflow can be reduced by rescaling using in-
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Figure 6. Distribution of logarithmic accuracy, measured as the
root mean squared error between the common logarithms of sim-
ulated and observed streamflow (simulated minus observed) at
1168 streamgages across the conterminous USA for observation-
dependent and observation-independent upper and lower tails.
Observation-dependent tails retain the ranks of observed stream-
flow, while matching simulations by day. Observation-independent
tails rank observations and simulation independently. The upper tail
considers the highest 5 % of streamflow, while the lower tail consid-
ers the lowest 5 % of streamflow. Orig. refers to the original simula-
tion with pooled ordinary kriging, BC-RR refers to the Orig. hydro-
graph bias-corrected with regionally regressed flow duration curves,
and BC-Obs. refers to the Orig. hydrograph bias-corrected with ob-
served flow duration curves. The tails of the box plots extend to the
5th and 95th percentiles of the distribution; the ends of the boxes
represent the 25th and 75th percentiles of the distribution; the heav-
ier line in the box represents the median of the distribution; the open
circle represents the mean of the distribution; outliers beyond the
5th and 95th percentile are shown as horizontal dashes.

dependently estimated FDCs. This evidence is apparent in
the reduction of the magnitude and variability of overall bias
(Fig. 3, box plot C; Table 1, rows 5 and 6) and of the bias in
the observation-independent tails of the streamflow distribu-
tion (Fig. 5, box plots I and L) when observed FDCs are used
for rescaling. Similarly, the overall distributional accuracy is
much improved (Fig. 4, box plot F; Table 2, rows 5 and 6),
as is the accuracy of observation-independent tails (Fig. 6,
box plot I and L). The effect on observation-dependent tails
(Fig. 5, box plots C and F) and overall sequential accuracy
(Fig. 4, box plot C) is less compelling but still substantial.

Whereas the measures of bias and accuracy are summa-
rized in Tables 1 and 2, Tables 3 and 4 summarize the change
in absolute bias and in accuracy, respectively. With the use
of observed FDCs, the overall bias is reduced to a tenth of
a percent at the median (Table 1, rows 5 and 6). This repre-
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Figure 7. Maps showing the distribution of logarithmic bias, measured as the mean difference between the common logarithms of simulated
and observed streamflow (simulated minus observed) at 1168 streamgages across the conterminous USA for observation-dependent and
observation-independent upper and lower tails. Observation-dependent tails retain the ranks of observed streamflow, while matching simu-
lations by day. Observation-independent tails rank observations and simulation independently. The upper tail considers the highest 5 % of
streamflow, while the lower tail considers the lowest 5 % of streamflow. The bias is derived from the original simulation of daily streamflow
using pooled ordinary kriging at 1168 sites regionalized by the two-digit hydrologic units (polygons).

sents a significant median reduction of 0.14 common log-
arithm units in the overall absolute bias (Table 3, rows 3
and 4). Overall, the distributional accuracy is improved by
a median of 0.21 common logarithm units (Table 4, row 4).
Of all streamgages considered, 99 % saw a reduction in the
overall absolute bias, and all saw improvements in overall
distributional accuracy. These improvements extend to both
observation-independent tails of the distributions. The lower
observation-independent tails have a median 0.35 common
logarithm unit reduction in absolute bias (Table 3, row 4).
For the upper tail, the median reduction in absolute bias is
0.14 common logarithm units (Table 3, row 4). Nearly all
streamgages (99 %) saw reduction in absolute bias of the
observation-independent tails. Table 4 (row 4) shows simi-
lar improvements in tail accuracy: −0.37 and −0.15 units in

the lower and upper tails, respectively, with nearly all stream-
gages (excepting the lower tail of a single streamgage, likely
the result of the interpolation procedure) showing improved
tail accuracy.

With the use of a perfect, observed FDC for bias cor-
rection, one would expect that nearly all bias would disap-
pear, but the results do not show this. The temporal struc-
ture of the simulated hydrograph continues to play a role
in the bias of observation-dependent tails. The observation-
independent tail continues to exhibit a small degree of resid-
ual bias, though it is still slightly nonintuitive. This residual
bias arises from the effect of representing the FDC as a set
of discrete points and interpolating between them. There may
be some additional effect from the small value added to avoid
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zero-valued streamflows or the censoring procedure, but ini-
tial exploration found little impact.

The overall sequential performance (Fig. 4, box plot C)
and the performance of observation-dependent tails (Figs. 5
and 6, box plots C and F) demonstrate the degree to which er-
rors in the temporal structure result in bias in the observation-
dependent case even when observed FDCs are used for bias
correction. Both the observation-dependent lower and upper
tails exhibit bias: 30 % and −20 %, respectively, at the me-
dian (Table 1, row 5, with transformation using Eq. 2). Ab-
solute bias in both tails shows median reductions; sequential
accuracy and observation-dependent tail accuracy are also
improved at the median (Tables 3 and 4, row 3). Propor-
tionally, 82 % of the observation-dependent lower tails and
86 % of the observation-dependent upper tails showed reduc-
tion in absolute bias (Fig. 5, box plots C and F); 85 % of
observation-dependent lower tails and 79 % of observation-
dependent upper tails showed improvements in accuracy
(Fig. 6, box plots C and F). Despite improvements in overall
bias and accuracy from rescaling with observed FDCs, the
residual bias in the observation-dependent lower tail (Fig. 5,
box plot C) is almost always positive (upward bias) and up-
per tails (Fig. 5, box plot F) are almost negative (downward
bias), a result which arises primarily from errors in the sim-
ulated temporal structure.

To understand the effect of errors in the temporal struc-
ture further, consider Fig. 8, which shows the mean er-
ror in the nonexceedance probabilities, i.e., the difference
in the ranks of the observed and simulated streamflows, of
the observation-dependent upper and lower tails. The nonex-
ceedance percentages in the lower tail are overestimated by
a median of 3.8 points, with 5th and 95th percentiles of 0.9
and 20.5, while the percentages in the upper tail are under-
estimated by 2.4 points, with 5th and 95th percentiles of
−0.5 and −12.6 points. The distributions of errors in the
nonexceedance probabilities closely reflect the distribution
of bias in the observation-dependent tails (Fig. 5, box plots C
and F). These results show that the inaccuracy in the nonex-
ceedance probabilities (i.e., errors in temporal structure) will
obscure, at least partially, the improvement offered by bias
correction when considering the observation-dependent er-
rors, even when an observed FDC is used for bias correction.
These errors in temporal structure also almost always result
in errors in a particular direction – low for high flow and high
for low flows.

3.3 Bias correction with regionally regressed FDCs

When the uncertainty of regionally regressed FDCs is intro-
duced into the bias correction procedure, the potential value
of the bias correction procedure is not as convincing. There is
a slight, but significant, increase in the overall bias (Table 3,
rows 1 and 2). Whereas the original estimated streamflow
displays a median bias of approximately 7.1 %, the median
overall bias is approximately 7.6 % after bias correction with
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Figure 8. Distribution of mean error in the simulated nonex-
ceedance probabilities of the lowest and highest 5 % of observed
daily streamflow (simulated minus observed) at 1168 streamgages
across the conterminous USA. The upper tail considers the high-
est 5 % of streamflow, while the lower tail considers the lowest
5 % of streamflow. The tails of the box plots extend to the 5th and
95th percentiles of the distribution; the ends of the boxes represent
the 25th and 75th percentiles of the distribution; the heavier line in
the box represents the median of the distribution; the open circle
represents the mean of the distribution; outliers beyond the 5th and
95th percentile are shown as horizontal dashes.

estimated FDCs (Table 1, rows 3 and 4). Though statistically
significant, the distribution of bias does not appear to have
changed in a meaningful way (Fig. 3, box plots A and B).
The overall accuracy, sequential and distributional, is also
degraded (Fig. 4, box plots B and E; Table 4, rows 3 and 4),
with more than 60 % of streamgages showing degradation in
sequential and distributional accuracy.

The observation-independent tails, which are not affected
by errors in temporal structure, show a divergence in per-
formance between the results obtained using observed FDCs
and those obtained using regionally regressed FDCs. With
observed FDCs, both tails demonstrated substantial reduc-
tions in absolute bias and improvements in accuracy. With re-
gionally regressed FDCs, the upper observation-independent
tails continue to show reductions in absolute bias (Table 3,
row 2; Fig. 5, box plots J and K) and improvements in ac-
curacy (Table 4, row 2; Fig. 6, box plots J and K), while
the lower observation-independent tails show a significant in-
crease in absolute bias (Table 3, row 2; Fig. 5, box plots G
and H) and a degradation of accuracy (Table 4, row 2; Fig. 6,
box plots G and H). After bias correction with regionally
regressed FDCs, only 44 % of observation-dependent lower
tails showed reductions in absolute bias; 58 % of upper tails
showed reductions in absolute bias.
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The effects of the rescaling with FDCs estimated with re-
gional regression on overall and observation-independent tail
bias and accuracy can be better understood if the properties
of the estimated FDCs are considered. Figure 9 shows the
bias (panel a) and accuracy (panel b) of the lower and up-
per tails of the regionally regressed FDCs. Recall that the
estimated FDCs are composed of 27 quantiles, of which
the upper and lower tails contain only the eight values with
nonexceedance probabilities 95 % and larger and 5 % and
smaller, respectively. The upper tails are reproduced through
regional regression with an insignificant 2.5 % median down-
ward bias, but the lower tails exhibit a significant negative
median bias of 38.35 % (Table 1, row 7). Because of this
bias in the lower tail of the regionally regressed FDCs, the
regionally regressed FDCs are unable to correct the bias in
the simulated hydrograph, instead turning a small median
bias into large one. As there is no temporal uncertainty in
the observation-independent tails, the resulting bias arises
from the bias of the regionally regressed FDC. Illustrating
this fact, the −38 % bias in the lower tail of the regionally
regressed FDC approximates the −33 % in the observation-
independent lower tail, while the −2.5 % bias in the up-
per tail of the regionally regressed FDC approximates the
−3.7 % bias in the observation-independent upper tail. The
introduction of this additional bias, beyond failing to cor-
rect any underlying bias in the simulated hydrograph, also
markedly increased the variability of both bias and accuracy.

The results are similar for the observation-dependent tails
produced after bias correction with regionally regressed
FDCs, even when complicated by the addition of temporal
uncertainty as discussed in Sect. 3.2 with reference to Fig. 8.
In some cases, the errors in the temporal structure (nonex-
ceedance probability) counteract the additional bias from
regionally regressed FDCs. For example, the observation-
dependent lower tails have a median bias of 13 %, which
possesses a smaller magnitude and different sign than the me-
dian −33 % bias seen in the observation-independent lower
tail (Table 1, rows 3 and 4). The addition of temporal uncer-
tainty actually reduced the increase in absolute bias (Table 3,
rows 1 and 2) and reduced the degradation of accuracy in the
lower tail (Table 4, rows 1 and 2). These slight improvements
result from an offsetting of the underestimated regionally re-
gressed FDCs by the overestimated nonexceedance probabil-
ities. While interesting, it seems unlikely that this result can
be generalized in a simple way: that is, the errors in esti-
mated FDCs cannot be expected to balance out the errors in
nonexceedance probabilities without deleterious effects on
other properties. To this point, as noted, rescaling by these
regionally regressed FDCs with underestimated lower tails
results in similarly underestimated observation-independent
lower tails.

The introduction of uncertainty from regionally regressed
FDCs diminishes the advantages gained by biased cor-
rection with observed FDCs. Considering the observation-
independent lower tails, 55 % of streamgages show reduc-
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Figure 9. Distribution of logarithmic bias (a), measured as the
mean difference between the common logarithms of quantiles of
observed and simulated streamflow (simulated minus observed) at
1168 streamgages across the conterminous USA, and logarithmic
accuracy (b), measured as the root mean squared error between the
common logarithms of quantiles of observed and simulated stream-
flow at the same streamgage, in the upper and lower quantiles of re-
gionally regressed flow duration curves. The upper tail considers the
eight quantiles in the highest 5 % of streamflow, while the lower tail
considers the eight quantiles in the lowest 5% of streamflow. The
tails of the box plots extend to the 5th and 95th percentiles of the
distribution; the ends of the boxes represent the 25th and 75th per-
centiles of the distribution; the heavier line in the box represents
the median of the distribution; the open circle represents the mean
of the distribution; outliers beyond the 5th and 95th percentile are
shown as horizontal dashes.

tions in absolute bias with observed FDCs that were re-
versed into increases of absolute bias by the introduction
of regionally regressed FDCs. Another 43 % of streamgages
show smaller reductions in absolute bias when observed
FDCs were replaced with regionally regressed FDCs. For the
observation-dependent lower tails, 37 % of streamgages have
reversals and 31 % show smaller reductions in absolute bias.
For the observation-independent upper tails, 41 % show re-
versals and 56 % yield smaller reductions in absolute bias.
For the observation-dependent upper tails, 24 % produce re-
versals and 40 % provide smaller reductions in absolute bias.
Results are similar with respect to accuracy: while many
streamgages saw reversals, a large proportion of streamgages
continue to demonstrate improvements.

4 Discussion

Though the first analysis presented, which utilized observed
FDCs for bias correction, represents only an assessment of
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hypothetical potential of this general approach, the approach
to bias correction presented here produced near universal
and substantial reduction in bias and improvements in accu-
racy, overall and in each tail, for both observation-dependent
and observation-independent evaluation cases when the un-
certainty in independently estimated FDCs was minimized.
For the observation-independent evaluation case, the errors
are removed almost completely, and the remaining errors in
the observation-dependent case mimic the temporal struc-
ture (nonexceedance probability) errors. These results, which
are not applicable under the conditions of the true ungauged
problem, demonstrate that the bias correction approach in-
troduced here is theoretically valid. However, this improve-
ment becomes inconsistent with respect to bias and gener-
ally reduces the accuracy when the biased and uncertain re-
gionally regressed FDCs are used. Furthermore, in both the
observation-dependent and observation-independent tails in
the case of rescaling by regionally regressed FDCs, the im-
provements in the lower tails are much more variable than
the improvements in the upper tail (Figs. 5 and 6; Tables 3
and 4). This result is not surprising, given the more variable
nature of lower tail bias and accuracy (Figs. 5 and 6).

The regional regressions developed here were much bet-
ter at estimating the upper tail of the streamflow distribution
than estimating the lower tail. This provides a convenient
comparison: the bias correction of lower tails with regionally
regressed FDCs only improved the bias in the observation-
dependent case when the low bias of the regionally regressed
FDC offset the high bias of the observation-dependent tails,
and did not improve accuracy in either case. However, the
bias correction of upper tails with regionally regressed FDCs,
which produced the upper tails with much less bias, contin-
ued to show, like in the case of observed FDCs, improve-
ments in bias and accuracy, though to a much smaller degree
than the improvements produced by observed FDCs.

Particularly in the lower tail of the distribution, the effec-
tiveness of this bias correction method is strongly influenced
by the accuracy of the independently estimated FDC. The
change in the absolute bias of the observation-independent
lower tail has a 0.72 Pearson correlation with the absolute
bias of the lowest eight percentiles of the FDC estimated with
regional regression, showing that the residual bias in the FDC
of the bias-corrected streamflow simulations is strongly cor-
related with the bias in the independently estimated FDC.
The analogous correlation for the upper tail is 0.31. For the
observation-dependent these correlations are only 0.33 for
each tail, the reduced correlation for the lower tail being a
result of the combination of the uncertainty in the temporal
structure and in the regionally regressed FDC. Therefore, as
regional regression is not the only tool for estimating FDCs
(for other examples, see Castellatin et al., 2013; Pugliese
et al., 2014, 2016), improved methods for FDC estimation
would further increase the impact of this bias correction pro-
cedure. There are also hints that the representation of the
FDC as a set of discrete points degraded performance. Fur-

ther work might address the question of improving FDC sim-
ulation. Still further, seasonal FDCs or some other methods
of increasing the temporal variability of FDCs could improve
performance of this general bias correction approach.

While this method of bias correction, as implemented here
using regionally regressed FDCs, improves the bias in the
upper tails, it had a negative impact on lower tails. This
makes the question of application or recommendation more
poignant. Under what conditions might this approach be
worthwhile? Initial exploration did not find a strong regional
component to performance of the bias correction method.
Figure 7 shows the original tail bias from pooled ordinary
kriging; at each point the accuracy of the bias correction
method is dependent on the original bias present as well as
the error in the independently estimated FDC. For some re-
gions, like New England, USA, where FDCs are well esti-
mated by regional regression, there is a general improvement
in accuracy under bias correction with regionally regressed
FDCs, but the improvement is highly variable. Instead, the
strongest link is with the reproduction of the FDC. When
the magnitude of tail biases of the regionally regressed FDC
was under 20 %, more than 50 % of streamgages showed im-
provements in bias, both overall and in the tails of the dis-
tribution. At a particular ungauged site, it may not always
be possible to determine the accuracy with which a given
FDC estimation technique might perform beyond a regional
cross-validated assessment of general uncertainty, making it
difficult to determine if these results can be generalized. If
accuracy of the estimated FDCs can be estimated, it may also
be useful to consider rescaling one tail and not the other, de-
pending on the estimated accuracy. Further work might ex-
plore the effects of hydroclimates on the ability to reproduce
reliable FDCs with which to implement this bias correction
procedure.

The results of this work were also discussed in reference
to earlier work that suggested a prevalence, though not a uni-
versality, of underestimation of high streamflows and over-
estimation of low streamflows. Similarly, the bias correction
approach produced a wide variability of results; where the
high tails might have been improved, the lower tails might
have been degraded. Figure 10 shows the correspondence of
tails across all sites. While there is a move towards unbiased-
ness at some sites (along the vertical axis), there is a great
degree of variability that makes it difficult to draw general
conclusions. In some situations, as in panel d, the variabil-
ity may actually be increasing with bias correction. Though
all methods will produce variability, it remains for future re-
search to determine if a more consistent representation of the
FDC might reduce the variability of this performance.

When looked at from the point of view of the estimated
FDCs that need temporal information in order to simulate
streamflow, this approach to bias correction is as akin to an
extension of the nonlinear spatial interpolation using FDCs
developed by Fennessey (1994) and Hughes and Smakhtin
(1996) as it is bias correction. Here it is approached as a
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(a) Observation−dependent upper tail
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(d) Observation−independent lower tail
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(b) Observation−independent upper tail
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Figure 10. Scatter plots showing the correspondence of logarithmic bias, measured as the mean difference between the common logarithms
of simulated and observed streamflow (simulated minus observed) at 1168 streamgages across the conterminous USA for observation-
dependent and observation-independent upper and lower tails. Observation-dependent tails retain the ranks of observed streamflow, while
matching simulations by day. Observation-independent tails rank observations and simulation independently. The upper tail considers the
highest 5 % of streamflow, while the lower tail considers the lowest 5 % of streamflow. Orig. refers to the original simulation with pooled
ordinary kriging, and BC-RR refers to the Orig. hydrograph bias-corrected with regionally regressed flow duration curves.

method for bias correction, but it can also be thought of as
a novel approach to simulate the nonexceedance probabili-
ties at an ungauged location to be used with estimated distri-
butional information (FDCs) to simulate streamflow. In the
early uses of nonlinear spatial interpolation using FDCs, the
simulated nonexceedance probabilities were obtained from
a hydrologically appropriate neighboring or group of neigh-
boring streamgages (Shu and Ouarda, 2012), though the ap-
proach to identifying a hydrologically appropriate neighbor
has varied. Here, the entire network is used to approximate
the ungauged nonexceedance probabilities, much like the in-
dexing problem being overcome with ordinary kriging of

streamflow directly (Farmer, 2016). Two major sources of
uncertainty are inherent in nonlinear spatial interpolation us-
ing FDCs: uncertainty in the nonexceedance probabilities
and uncertainty in the FDC. This work addresses the general
approach by attacking the former and observing that perfor-
mance may be further limited by the latter. The potential suc-
cess of this approach to bias correction is likely not specific
to simulation with ordinary kriging.

That this approach to bias correction does improve the
observation-dependent tails and the overall performance
when observed FDCs are used shows that the temporal struc-
ture of the underlying simulation retains useful information,
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even if the tails of the original simulation are biased. How-
ever, some error remains in the simulated nonexceedance
probabilities. A natural extension would be to investigate if it
might be more reasonable to estimate nonexceedance prob-
abilities directly rather than extracting their implicit values
from the estimated streamflow time series as was done here.
Here, the nonexceedance probabilities were derived from a
simulation of the complete hydrograph. In this alternative ap-
proach, the discharge volumes would not be estimated but
rather only the daily nonexceedance probabilities. Farmer
and Koltun (2017) executed a kriging approach to estimate
daily nonexceedance probabilities in a smaller data set in
Ohio. They found that modeling probabilities directly re-
sulted in similar tail biases of nonexceedance probability to
that observed when, as in Farmer (2016), simulating stream-
flow directly. In earlier work, Farmer (2015) showed that
kriging nonexceedance probabilities directly and then redis-
tributing them via an estimated FDC, as compared with krig-
ing streamflow directly, had only a marginal effect on bias
in the tails. Further exploration of this question, whether
to estimate nonexceedance probabilities directly or derive
them from streamflow simulations, is left for future research.
This current study focuses on the more general question of
whether the distributional bias in a set of simulated stream-
flow, the provenance thereof being more or less inconsequen-
tial, could be reduced using a regionally regressed FDC.

As mentioned earlier, recent work by Pugliese et al. (2018)
explores how this generalization of nonlinear spatial interpo-
lation using FDCs can be used to improve simulated hydro-
graphs produced by a continental scale deterministic model.
They consider it as an approach to inform a large-scale model
with local information, thereby improving local application
without further calibration. In 46 basins in Tyrol, Pugliese
et al. (2018) saw universal improvement in the simulated hy-
drographs, though they did not explore tails biases. The re-
sults presented here provide an analysis across a wider range
of basin characteristics and climates, demonstrating a link
between how well the FDC can be reproduced and ultimate
improvements in performance or reductions in bias.

Although the results presented here are promising, they
demonstrate that the performance of two-stage modeling,
where temporal structure and magnitude are largely decou-
pled, is limited by the less well performing stage of model-
ing. In this case, alternative methods for estimating the FDC
might prove worthwhile (e.g., see Castellatin et al., 2013;
Pugliese et al., 2014, 2016).

5 Summary and conclusions

Regardless of the underlying methodology, simulations of
historical streamflow often exhibit distributional bias in the
tails of the distribution of streamflow, usually an overestimate
of the lower tail values and an underestimate of the upper tail
values. Such bias can be extremely problematic, as it is often

these very tails that affect human populations and other wa-
ter management objectives the most and, thus, these tails that
receive the most attention from water resources planners and
managers. Therefore, a bias correction procedure was con-
ceived to rescale simulated time series of daily streamflow
to improve simulations of the highest and lowest stream-
flow values. Being akin to a novel implementation of non-
linear spatial interpolation using flow duration curves, this
approach could be extended to other methods of streamflow
simulation.

In a leave-one-out fashion, daily streamflow was simu-
lated in each two-digit hydrologic unit code using pooled
ordinary kriging. Regional regressions of 27 percentiles of
the flow duration curve in each two-digit hydrologic unit
code were independently developed. Using the Weibull plot-
ting position, the simulated streamflow was converted into
nonexceedance probabilities. The nonexceedance probabil-
ities of the simulated streamflow were used to interpolate
newly simulated streamflow volumes from the regionally re-
gressed flow duration curves. Assuming that the sequence of
relative magnitudes of streamflow retains useful information
despite possible biases in the magnitudes themselves, it was
hypothesized that simulated magnitudes can be corrected us-
ing an independently estimated flow duration curve. This hy-
pothesis was evaluated by considering the performance of
simulated streamflow observations and the performance of
the relative timing of simulated streamflow. This evaluation
was primarily focused on the examination of errors in both
the high and low tails of the streamflow distribution, defined
as the lowest and highest 5 % of streamflow, and considering
changes in both bias and accuracy.

When observed flow duration curves were used for bias
correction, representing a case with minimal uncertainty in
the independently estimated flow duration curve, bias and ac-
curacy of both tails were substantially improved and overall
accuracy was noticeably improved. The use of regionally re-
gressed flow duration curves, which were observed to be ap-
proximately unbiased in the upper tails but were biased low
in the lower tails, corrected the upper tail bias but failed to
consistently correct the lower tail bias. Furthermore, the use
of the regionally regressed flow duration curves degraded the
accuracy of the lower tails but had relatively little effect on
the accuracy of the upper tails. Combining the bias correc-
tion and accuracy results, the test with regionally regressed
flow duration curves can be said to have been successful with
the upper tails (for which the regionally regressed flow dura-
tion curves were unbiased) but unsuccessful with the lower
tails. The effect on accuracy of the bias correction approach
using estimated flow duration curves was correlated with the
accuracy with which each tail of the flow duration curve was
estimated by regional regression.

In conclusion, this approach to bias correction has signif-
icant potential to improve the accuracy of streamflow sim-
ulations, though the potential is limited by how well the
flow duration curve can be reproduced. While conceived as
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a method of bias correction, this approach is an analog of
a previously applied nonlinear spatial interpolation method
using flow duration curves to reproduce streamflow at un-
gauged basins. While using the nonexceedance probabilities
of kriged streamflow simulations may improve on the use
of single index streamgages to obtain nonexceedance prob-
abilities, further improvements are limited by the ability to
estimate the flow duration curve more accurately.
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