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Abstract. Endorheic and arid regions around the world are
suffering from serious drought problems. In this study, a
drought forecasting system based on eight state-of-the-art
climate models from the North American Multi-Model En-
semble (NMME) and a Distributed Time-Variant Gain Hy-
drological Model (DTVGM) was established and assessed
over the upstream and midstream of Heihe River basin
(UHRB and MHRB), a typical arid endorheic basin. The 3-
month Standardized Precipitation Index (SPI3) and 1-month
Standardized Streamflow Index (SSI1) were used to capture
meteorological and hydrological drought, and values below
−1 indicate drought events. The skill of the forecasting sys-
tems was evaluated in terms of anomaly correlation (AC)
and Brier score (BS) or Brier skill score (BSS). The pre-
dictability for meteorological drought was quantified using
AC and BS with a “perfect model” assumption, referring to
the upper limit of forecast skill. The hydrological predictabil-
ity was to distinguish the role of initial hydrological condi-
tions (ICs) and meteorological forcings, which was quanti-
fied by root-mean-square error (RMSE) within the ESP (En-
semble Streamflow Prediction) and reverse ESP framework.
The UHRB and MHRB showed season-dependent meteoro-
logical drought predictability and forecast skill, with higher
values during winter and autumn than that during spring.
For hydrological forecasts, the forecast skill in the UHRB
was higher than that in MHRB. Predicting meteorological
droughts more than 2 months in advance became difficult be-
cause of complex climate mechanisms. However, the hydro-
logical drought forecasts could show some skills up to 3–6
lead months due to memory of ICs during cold and dry sea-

sons. During wet seasons, there are no skillful hydrological
predictions from lead month 2 onwards because of the dom-
inant role of meteorological forcings. During spring, the im-
provement of hydrological drought predictions was the most
significant as more streamflow was generated by seasonal
snowmelt. Besides meteorological forcings and ICs, human
activities have reduced the hydrological variability and in-
creased hydrological drought predictability during the wet
seasons in the MHRB.

1 Introduction

Drought is among the most costly natural hazards in many
parts of the world. It is defined as a prolonged period of
below-average rainfall, leading to water shortages in soil and
the hydrologic system. Drought can have a substantial effect
on many sectors, such as agriculture, ecosystem and econ-
omy, and its impacts can vary from region to region. Mit-
igation of drought impact requires improved understanding
of the predictability of drought and the capability to predict
drought at sufficient lead times (Below et al., 2007; Sheffield
and Wood, 2012; Smith and Katz, 2013). Statistical, dynamic
and hybrid (statistical–dynamic) methods have been used for
drought predictions (Mariotti et al., 2013; Hao et al., 2018;
Mishra and Singh, 2011; Pozzi et al., 2013; Luo and Wood,
2007; Luo et al., 2008). The statistical method is based on the
historical relationship between some aspects of drought and
a number of predictors (e.g., large-scale climate signals). The
dynamic method relies on the skill of state-of-the-art general
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circulation models (GCMs) or hydrologic models that repre-
sent physical processes linked with drought development. A
hybrid method combines the statistical and dynamic meth-
ods, which has been shown to improve drought prediction in
certain case studies (Pan et al., 2013; Schepen et al., 2016).
However, drought remains one of the least understood natu-
ral hazards that are affected by many contributing factors, in-
cluding meteorological anomalies, land–atmosphere interac-
tion and human activities (Van Loon et al., 2016a, b), which
makes accurate drought prediction a challenge (Hao et al.,
2018).

Recently, climate forecasts from the North American
Multi-Model Ensemble (NMME; Kirtman et al., 2014) have
been widely applied to drought predictions globally and
regionally (Ma et al., 2015, 2017; Mo and Lyon, 2015;
Thober and Kumar, 2015; Yuan and Wood, 2013; Yuan,
2016). The NMME-based climate forecasts (e.g., precipita-
tion and temperature) for hydrometeorological forecasts ex-
hibit some improvement in skills over the reference forecasts
such as climatology forecasts, persistence forecasts or en-
semble streamflow prediction (ESP) (e.g., Ma et al., 2015,
2017; Mo and Lettenmaier, 2014; Shukla et al., 2016; Yuan,
2016). However, the improvement varies with different re-
gions and seasons, and the understanding of its application
in endorheic and semi-arid and arid basins remains poor. En-
dorheic regions cover ∼ 11.4 % of global land, which are
mostly located in semi-arid and arid regions (Li et al., 2018).
The semi-arid and arid regions occupy approximately 40 %
of earth’s land surface, and show an accelerated expansion
trend (Huang et al., 2016b). The fragile ecosystems in such
regions are sensitive to climate change and human activities
(Huang et al., 2016a). Therefore, the aim of this study is to
fill the gaps in understanding drought predictions and pre-
dictability in endorheic and arid basins by addressing the fol-
lowing questions:

How do climate forecasts perform for meteorological and
hydrological drought forecasting in an endorheic river basin?

How do meteorological forcings, initial hydrologic condi-
tions and human activities influence hydrological predictabil-
ity?

Here, predictability is considered as the possible maxi-
mum forecast skill that a forecast system can achieve (Luo
and Wood, 2006). The Heihe River basin, which is a typi-
cal endorheic river basin in the semi-arid and arid region of
northwestern China, is selected in this study to address the
above questions. The Heihe River basin is an important part
of the historic Silk Road and an important breadbasket in
northwestern China (Zhang et al., 2015). However, the basin
is subject to serious drought problems historically and in re-
cent decades related to climate change and intensified human
activities (Zhang et al., 2016). Therefore, it is crucial to de-
velop a drought forecast system to promote the development
of adapting strategies for sustainable water resource and eco-
logical management in the Heihe River basin.
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Figure 1. Geographical location of the study area (upstream and
midstream of Heihe River basin) used in this study. The top dia-
gram shows the location of the entire Heihe River basin. The bottom
diagram shows the geographic distribution of hydrometeorological
stations in the UHRB and MHRB.

The study is organized as follows: in Sect. 2, we provide
a brief description of the study region and data used in this
study; in Sect. 3, we introduce the framework of the study
and methods used; in Sect. 4, we present the analysis results
and discussion, followed by conclusions in Sect. 5. Because
few studies have focused on dynamic drought predictions
based on GCMs and/or hydrological models in the region,
this study will offer new clues for the development of more
accurate drought monitoring and forecasting systems.

2 Study area and data

2.1 The Heihe River basin

The Heihe River basin (HRB; Fig. 1) is the second largest
inland river basin of China, located deep in the hinterland
of Eurasia. The river originates from the north side of Qil-
ian Mountain, with a drainage area of 128 900 km2 (37◦41′–
42◦42′ N, 96◦42′–02◦00′ E; Ma and Frank, 2006). The HRB
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has an apparent landscape, ecological and climate gradient
from upstream to downstream. The landscape varies from
glaciers and alpine biomes in the upstream to oases with ir-
rigated agriculture in the midstream, to riparian ecosystems
and the vast Gobi desert in the downstream. Most precipita-
tion is concentrated in the upstream during wet season (June–
September). During spring and summer, as temperature rises,
snowmelt and glacier melt and permafrost thaw generally oc-
cur. Most of the streamflow in the HRB originates from pre-
cipitation, snowmelt, glacier melt and permafrost thaw in the
upstream mountains (Wang et al., 2008), which contribute
approximately 71 %, 25 % and 4 % of the total runoff (Li
et al., 2018). Most water consumption happens in the mid-
stream for human activities (e.g., agricultural irrigation). In
this study, we focus on the upstream (UHRB) and midstream
(MHRB) of HRB, as these two subbasins show drastic differ-
ences in terms of impacts of human activities on hydrological
processes.

2.2 Data

Daily temperature and precipitation data at 0.5◦ spatial res-
olution (Zhao and Zhu, 2015) are obtained for 1961–2016,
which were interpolated using thin plate spline (TPS) and
3-D geospatial information from 2472 meteorological sta-
tions by the National Meteorological Information Center,
China Meteorological Administration (CMA) (Hutchinson,
1998a, b). Hydrological data (1982–2011) used in this study
were monthly streamflow datasets from Yingluoxia (YLX)
and Zhengyixia (ZYX) hydrologic stations that are located at
the outlet of UHRB and MHRB. The data for the hydrolog-
ical model (the Distributed Time-Variant Gain Hydrological
Model, DTVGM, in this study) setup and calibration were
mainly obtained from the Chinese Academy of Sciences,
Gansu Water Resources Bulletin, and Statistical Yearbooks,
which are presented in Ma et al. (2018) in detail.

Climate hindcast data with 1◦× 1◦grids (Table 1) were
obtained from the North American Multi-Model Ensem-
ble (NMME; Kirtman et al., 2014) archive (http://iridl.ldeo.
columbia.edu/SOURCES/.Models/.NMME/; last access: 13
February 2018). Monthly precipitation, maximum, mean and
minimum temperature data covering 1982–2010 were used
for this study. The climate models with real-time forecast
were selected for drought forecasting. In this study, “lead
month 1” refers to forecasts initialized at the beginning of
one month for itself, and “lead month 2” is that for the next
month.

3 Methodology

3.1 Meteorological and hydrological drought index

To analyze meteorological and hydrological drought, the
Standardized Precipitation Index (SPI, McKee et al., 1993)
and Standardized Streamflow Index (SSI; Vicente-Serrano et

al., 2012) were used in this study. In the calculation, a proba-
bility distribution of monthly precipitation or streamflow for
each month was generated and standardized using the em-
pirical Gringorten plotting position (Farahmand and AghaK-
ouchak, 2015; Gringorten, 1963):

p(xi)=
i−0.44
n+ 0.12

, (1)

where n is the time span, i is the position of precipitation
or streamflow time series sorted from smallest to largest
and p(xi) is the corresponding empirical probability. Finally,
normalization was calculated to make the index compara-
ble over time and space. For SPI in the upstream and mid-
stream, catchment average precipitation in the upstream and
midstream were used respectively. SSI in the upstream and
midstream was calculated using streamflow at YLX (the out-
let of the upstream) and the streamflow difference between
ZYX (the outlet of the midstream) and YLX. SPI-3 and SSI-
1 were selected to characterize the seasonal meteorological
and hydrological droughts, respectively. We select SSI-1 for
its good description of hydrological drought (e.g., Barker et
al., 2016; Gustard et al., 1992; Huang et al., 2017; Ma et al.,
2018). A total of 9 different lead months’ forecasts are com-
bined with observation to construct 3 months’ accumulated
precipitation for computing SPI3. For example, for SPI3 in
August, lead month 1 uses the forecast at lead month 1 (Au-
gust) combined with 2 months’ observation (June to July).
Lead month 2 means the sum of forecasts at lead month 1–2
(July and August) and 1 month of observation in June. Lead
month 3 refers to forecasts at lead month 1–3 (June to Au-
gust). In this study, drought is defined when the drought in-
dex value is below −1.

3.2 Seasonal drought forecasting system

In this study, meteorological drought forecasting was pro-
duced using NMME climate forecasts, and hydrological
drought forecasting makes use of a hydrological model
forced by NMME climate forecasts (Fig. 2). To improve
the forecast skill and drive the hydrological model, the
NMME hindcasts were bias-corrected and downscaled us-
ing the quantile mapping method (Wood et al., 2002). The
1 ◦ monthly NMME precipitation and temperature hindcasts
were interpolated into 0.5 ◦ with bilinear interpolation over
the Heihe River basin. Then the cumulative distribution func-
tions (CDFs) of NMME hindcasts and observations were
constructed with all years except the target year (leave-one-
out), and matched to remove model forecast bias. The daily
hindcasts were then generated using a temporally down-
scaled technique by matching the monthly hindcasts with the
daily samples from observations. In this approach (Luo and
Wood, 2008), a randomly selected daily observation time se-
ries from the entire historical period (1961–2016) is used as
a candidate for each member, and they are adjusted to match
the predicted monthly values from the distributions obtained
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Table 1. Information of NMME models.

NMME models Spatial resolution Hindcast Member Max lead months

CMC1-CanCM3 Global, 1× 1 1981–2010 10 12
CMC2-CanCM4 Global, 1× 1 1981–2010 10 12
COLA-RSMAS-CCSM3 Global, 1× 1 1982–2010 6 12
COLA-RSMAS-CCSM4 Global, 1× 1 1982–2010 9 12
GFDL-CM2p1-aer04 Global, 1× 1 1982–2010 10 12
GFDL-CM2p5-FLOR-A06 Global, 1× 1 1980–2010 12 12
NASA-GMAO-062012 Global, 1× 1 1981–2010 7 9
NCEP-CFSv2 Global, 1× 1 1982–2010 24 10
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Figure 2. Flow chart explaining the seasonal meteorological and
hydrological drought forecasting system. The numbers (1)–(5) re-
fer to the steps for the development and assessment of a seasonal
drought prediction system.

in the previous step. Finally, the 0.5 ◦ bias-corrected daily
hindcasts were bilinearly interpolated into 140 subbasins to
drive the hydrological model over the HRB. The last step
is only necessary in this study as our hydrological model as
described below runs on subbasin scales instead of regular
latitude–longitude grids.

In this study, the Distributed Time-Variant Gain Hydro-
logical Model (DTVGM; Mao et al., 2016) was used to sim-
ulate and predict streamflow. It is a distributed, catchment-
based hydrological model with modules to simulate snow,
runoff, streamflow routing, water use and reservoir opera-
tion. The degree-day factor (DDF) method is used to com-
pute snowmelt. The runoff module is based on the water
balance equation, and the routing is based on a kinematic
scheme (Ye et al., 2010, 2013). Three runoff components for
each subbasin, i.e., surface runoff, subsurface runoff and base
flow, are computed based on precipitation, soil hydraulic pa-
rameters, and land cover parameters and sets of calibrated

parameters (Ma et al., 2018; Ye et al., 2010). The human
activities module, i.e., water use and reservoir models, can
be switched on or off to simulate real streamflow and nat-
uralized streamflow. Here, water use includes irrigation wa-
ter, industrial water and domestic water, which are derived
from irrigation areas and irrigation quota, industrial GDP and
population distribution, respectively. The reservoir regulation
rules are defined according to reservoir storage capacity and
ecological flow during wet (June–September) and dry sea-
sons. The DTVGM model has been calibrated with the hu-
man activities module turned on using observed streamflow
at YLX, Gaoya and ZYX stations. The DTVGM could cap-
ture the variations of streamflow well, with Nash–Sutcliffe
efficiency coefficient (NSE) values greater than 0.86 and 0.52
for the UHRB and MHRB during both calibration and valida-
tion periods, respectively. In the MHRB, except for input and
structural errors, the unrefined human activities module also
increases the uncertainties of the hydrology model, leading
to a NSE value lower than that in the UHRB. Detailed de-
scription of the DTVGM model and its calibration process
can be found in Mao et al. (2016) and Ma et al. (2018). Be-
fore making forecasts, the DTVGM was continuously run for
the period of 1961–1981 to spin up the hydrological model,
and continuously driven by observed meteorological forcings
from 1982 to 2010 to generate the offline initial hydrolog-
ical conditions (ICs) for NMME-based and ESP-type fore-
cast experiments. In this study, ESP (Ensemble Streamflow
Prediction) forecasts (see Sect. 3.4), which were based on
ensemble of historical meteorological forcings, were used as
a reference hydrological forecast.

3.3 Forecast verification

The meteorological and hydrological drought forecast skills
for 9 different lead months were evaluated using both deter-
ministic and probabilistic metrics. The deterministic metric
that we use is the anomaly correlation (AC; Wilks, 2011),
which is calculated as
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AC=

n∑
i

F ′iO
′
i〈

n∑
i

F ′2i ×
n∑
i

O ′2i

〉1/2 , (2)

where F ′i is the anomaly for NMME hindcasts and O ′i is
the anomaly for observations; for a given lead and target
month/season and member, i is the target month/season and
n is the time span (29 years in this study).

The probabilistic metric that we use is the Brier score (BS;
Wilks, 2011), which is the mean squared error of probabil-
ity forecasts, considering that the observation is ok = 1 if
drought occurs, otherwise ok = 0. The BS can be defined as

BS=
1
n

n∑
k=1

(yk−ok)
2, (3)

where k means a numbering of the n forecast–event pairs and
yk is the forecast probability. The BS is negatively oriented
(0≤BS≤ 1), with perfect forecast exhibiting BS= 0. The
Brier skill score (BSS; Wilks, 2011) is then calculated as

BSS= 1−
BS
BS∗

, (4)

where BS* is the BS for the reference system. A positive
BSS value indicates a better forecast, while a negative value
indicates a worse forecast than the reference system.

3.4 Experiment design for understanding the
hydrological predictability

With the calibrated DTVGM hydrological model, two exper-
iments were carried out to distinguish the importance of ini-
tial hydrological conditions (ICs) and meteorological forc-
ings in the hydrological forecasting. The first experiment is
the Ensemble Streamflow Prediction (ESP), which was ini-
tialized at the beginning of each month during 1982–2010,
with 28 ensemble members of 9-month meteorological forc-
ings taken from the same period without the target year.
For example, the ESP simulation starting in January 1982
was initialized on the first day in January, and driven by 28
9-month meteorological forcings during January–September
of 1983, 1984, . . . , 2010. The second experiment is the so-
called reverse-ESP (revESP; Shukla and Lettenmaier, 2011;
Shukla et al., 2013; Wood and Lettenmaier, 2008), which
was driven by the observed meteorological forcings of the
target year, but with 28 different ICs except the target year.
For example, the revESP simulation starting in January 1982
was driven by the meteorological forcings during January–
September of 1982, but initialized with hydrological condi-
tions in January of 1982, 1984, . . . , 2010.

To determine whether the meteorological forcings or ICs
are more important in the hydrologic cycle, the RMSE ratio

was calculated, which is defined as

RMSEratio=
RMSEESP

RMSErevESP
, (5)

where RMSEESP and RMSErevESP are the root-mean-square
error (RMSE) for ESP and revESP. Here, the RMSE was cal-
culated using the ensemble means of ESP and revESP. The
RMSE ratio is lower than 1 when ICs play a more impor-
tant role than the meteorological forcings in the hydrologic
predictability, and the ratio is larger than 1 when the meteo-
rological forcings dominate.

4 Results and discussion

4.1 The predictability and forecast skill for
meteorological droughts

To evaluate the performance of seasonal drought prediction
system, we first examined the predictability and forecast skill
of NMME meteorological predictions based on SPI3 series
in terms of AC metric (Fig. 3). The red box refers to the
AC for predictability, and the blue box is the AC for fore-
cast skill. Here, predictability is defined by using a “perfect
model” assumption (Luo and Wood, 2006; Wang and Yuan,
2018), which considers one member of the ensemble as the
“observation”, and the average of remaining members as pre-
diction. The analysis is rotated through using all 88 ensemble
members as the observations, and 88 values of AC are then
calculated as the ensemble of predictability. For each season
(3 months), there are 29 year hindcasts leading to a sample
size of 87, so a correlation of 0.21 is statistically significant
using a 95 % significance interval.

Meteorological predictability is higher than the forecast
skill in terms of AC in most cases (Fig. 3), indicating some
room for improving the meteorological predictions. The me-
teorological predictability and forecast skill depend on the
target season because of a strong seasonality for climate in
the HRB. The predictability is higher in autumn and win-
ter than that in summer and spring, which corresponds to
a higher forecast skill in autumn and winter. Most climate
anomalies (i.e., sea surface temperature (SST) anomaly) oc-
cur in winter and autumn, and SST is also a potentially im-
portant predictor (Becker et al., 2014). In addition, the cli-
matic noise of monthly precipitation over China has obvious
seasonal variation and it is greater in summer than in win-
ter (Liu et al., 2000). The multi-model ensemble mean skill,
shown by the blue diamonds, is generally located at the upper
part of the distribution, indicating that the forecast skill of the
grand ensemble mean is higher than that of most members. It
is not surprising that the SPI3 predictions perform well in the
first 2 lead months, where 1 or 2 of the three months come
from observations. However, as the lead month increases be-
yond 2 months, both the predictability and forecast skill de-
crease significantly, for which correlations of most of mem-
bers are lower than 0.21.
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Figure 3. Anomaly correlation (AC) of the forecast of seasonal SPI3. The red box plots show the spread of predictability, and the blue box
plots show the spread of forecast skill for each ensemble member. The blue diamonds show the AC of the grand ensemble mean. The blue
(red) crosses show the outliers for forecast skill (predictability). The dashed black line indicates the threshold (AC= 0.21) of 95 % confidence
intervals calculated from the t test.

In fact, NMME climate predictions have lower predictabil-
ity and forecast skill in the northwest inland areas of China,
in comparison with southeast monsoon regions (Ma et al.,
2016). The HRB is located far from oceans and in mid-
latitudes, and is little affected by SST from oceans, espe-
cially equatorial oceans, which are the major source of pre-
dictability at a seasonal timescale. Topographic influence on
regional and local weather and climate cannot be resolved by
GCMs, for example, local ascending motion affected by the
Qinghai–Tibet Plateau exists and has a considerable impact
on precipitation over the HRB (Sun et al., 2011). In addition,
the joint extreme phases of climate oscillations instead of a
single one could trigger extremes (e.g., drought) over the arid
endorheic basin, and almost no climate models can capture
the complex and multiple teleconnections (Shi et al., 2016).

When defining a meteorological drought as SPI3 below
−1, the results of predictability and forecast skill for meteo-
rological drought predictions are similar to that for SPI3 pre-
dictions. Figure 4 shows the BS for meteorological drought
events in the upstream and midstream of Heihe River basin.
AC of SPI3 reflects the forecast skill for both the dry spells
and wet spells. The BS for the different months shows the
forecast skill, which primarily aims at predicting drought

events. It can be seen that the NMME-based meteorologi-
cal droughts show higher predictability and forecast skill in
the first 2 lead months, especially during October–January.
The results indicate that the NMME-based SPI3 predictions
could reasonably capture meteorological drought conditions
in the first 2 lead months.

4.2 The predictability and forecast skill for
hydrological droughts

Hydrological processes and predictions are more complex,
especially in the MHRB. Figure 5 shows the performance of
NMME for SSI1 predictions compared to ESP, which is as-
sessed using the AC metric. The predictions from NMME
and ESP experiments are verified against DTVGM offline
simulations, driven by observed meteorological forcings and
calibrated against observed streamflow at Yingluoxia, Gaoya
and Zhengyixia stations. Ensemble hydrological predictions
from NMME show less spread than ensemble meteorolog-
ical predictions, especially in the cold seasons. Due to the
memory of initial hydrologic conditions, hydrological pre-
dictions show less uncertainty than the corresponding me-
teorological forcings. There are notable differences in hy-
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Figure 5. Anomaly correlation (AC) of the forecast of seasonal SSI1. The red box plots show the spread of AC of each member from NMME,
and the blue box plots show that from ESP. The blue (red) crosses show the outliers for NMME (ESP) forecast skill. The dashed black line
indicates the threshold (AC= 0.21) of 95 % confidence intervals calculated from the t test. The predictions and simulations are carried out
with the human activities module switched on.
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Figure 6. Brier skill score (BSS) of NMME forecast for hydro-
logical drought events. Here, a hydrological drought event happens
when the SSI1 value is below −1. The reference forecasts are sim-
ulations from the ESP experiment. The predictions and simulations
are carried out with the human activities module switched on.

drological predictions between the upstream and midstream,
with higher overall forecast skill in the upstream. The winter
season shows the highest forecast skill, followed by autumn,
spring and summer. During spring, NMME hydrological pre-
dictions show the most significant improvement over ESP, in
spite of low forecast skill for precipitation predictions. Dur-
ing March–June, approximately 70 % of streamflow is gener-
ated by seasonal snowmelt (Wang and Li, 1999). Therefore,
hydrological predictions skill may also rely more on tem-
perature predictions, which are generally more skillful than
precipitation predictions (Becker et al., 2014; Shukla et al.,
2016), and the accuracy of the initial hydrological condition
in terms of snow amount. In summer, NMME hydrologi-
cal predictions show some improvement compared to ESP
in the upstream, especially in the first lead month. However,
in the midstream, low forecast skills were detected in all lead
months, which are likely due to poor precipitation predic-
tions and effects from human activities. Predicting seasonal
streamflow during summer in advance is difficult and both
NMME and ESP exhibit weak skills. In autumn, lead time
with good forecast skill could be up to 3 months in the up-
stream and 2 months in the midstream, which are similar to
meteorological predictions. In addition, NMME hydrologi-
cal predictions also show improvement over ESP in the first
3–4 lead months. In winter, until lead month 6, both ESP and
NMME show skillful hydrology predictions due to the more
important role of initial conditions, which will be discussed
in the later part of this section.
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Figure 7. The RMSE ratio (RMSEESP/RMSErevESP) as a func-
tion of start month and lead time over the upstream and midstream.
The RMSEESP (RMSErevESP) is calculated between the SSI1 series
from the offline simulation and that from the ESP (revESP) experi-
ments with the human activities module switched on.

To further evaluate the performance of NMME-based hy-
drological predictions compared with ESP for droughts (i.e.,
SSI1 < 1), the BSS metric is used and shown in Fig. 6. The
skill for hydrological drought predictions from NMME is
higher than that from ESP during late spring. The improve-
ment is even more clear for longer lead times (6–7 lead
months), which may be linked with the higher skill in tem-
perature forecasting. In general, NMME outperforms ESP
for the 1–4 lead months (with some exceptions), but the im-
provement is not obvious due to a long memory of initial
conditions during the cold season and poor meteorological
predictions during summer.

As mentioned above, the forecast skill for NMME shows a
notable difference between meteorological and hydrological
droughts during different seasons, that is because besides me-
teorological forcings, initial conditions also play an impor-
tant role in hydrological predictions. Figure 7 shows the rela-
tive role of initial hydrological conditions (ICs) in hydrologi-
cal predictability for different months and lead times over the
upstream and midstream of Heihe River basin. During cold
and dry seasons (October–March), the RMSE ratio is lower
than 1 in the first 2–7 months, indicating that the hydrolog-
ical initial conditions play a more important role in hydro-
logical predictability up to 2–7 lead months. The maximum
lead times in which the ICs prevail over the meteorological
forcings in the hydrological predictability could even be up
to 5–7 months during October–December. In general, as the
lead time increases, the contribution of initial conditions de-
creases, while that of the meteorological forcings gradually
increases over the ICs. For the forecasts in April–August, the
influence of ICs could not persist for 1 month, and the meteo-
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Figure 8. The RMSE ratio (RMSEESP/RMSErevESP) as a func-
tion of start month and lead time over the upstream and midstream.
The RMSEESP (RMSErevESP) is calculated between the SSI1 series
from the offline simulation and that from the ESP (revESP) experi-
ments with the human activities module switched off.

rological forcings significantly contribute to the hydrological
predictability. This means that the ICs make more contribu-
tion to hydrological predictability during the cold and dry
season than that during the warm and wet season. This helps
to explain why hydrological predictions are more skillful in
the dry season than that in the wet season.

From a hydrological perspective, the MHRB is a human-
dominant basin (Ma et al., 2018). To explore the influence of
human activities on hydrological predictability, an additional
experiment is conducted by turning off the human activities
module in the hydrological model. The RMSE ratios of ESP
and revESP without human activities are then calculated, and
the results are shown in Fig. 8. The impact of human activi-
ties is less noticeable in the upstream because there is less hu-
man activity there. As for the midstream, without the impact
of human activities, the RMSE ratio is less than 1 in the first
lead month initialized in May and July–September (Fig. 8b).
This indicates that the initial hydrological conditions have
less variability in the wet seasons due to more human activi-
ties (e.g., irrigation and reservoir regulation), and human ac-
tivities reduce the effect of ICs on hydrological predictability
for 1 month. Therefore, the memory from ICs could only last
for less than 1 month and would not contribute much to the
hydrological prediction when human activities are the inter-
ference, which makes hydrological predictability rely more
on meteorological prediction. In addition, the RMSE ratios
in the midstream have a smaller spread for all forecast lead
times when human activities are considered (Figs. 7b, 8b).
This indicates that human activities reduce hydrologic vari-
ability between years, and could potentially increase the hy-
drological predictability. Considering droughts (i.e., dry con-

ditions), human activities could also increase hydrological
drought predictability, mainly by reasonable reservoir regu-
lation. When droughts happen, discharge from reservoir will
be increased, aiming to maintain ecological flow and human
(domestic, agricultural and industrial) water demand, which
will decrease the hydrological variability during dry peri-
ods. Therefore, human activities can outweigh meteorologi-
cal variability and play a more important role in hydrological
predictability. The results are similar to Yuan et al. (2017),
which found human interventions can outweigh the climate
variability for the hydrological drought forecasting over the
Yellow River basin.

How do human activities influence hydrological drought
forecast skill? Figures 9–10 show NMME-based hydrolog-
ical drought forecast skill against ESP in terms of AC and
BSS, when the human activities module is switched off. The
forecast skill for NMME-based and ESP-based hydrologi-
cal forecasts without influence of human activities (Fig. 9)
is higher than that with human intervention (Fig. 5), espe-
cially in the midstream. The influence of human activities
mainly occurs in the spring and early summer. Comparing
Figs. 6 and 10 shows that NMME-based drought predictions
have more skill improvement over the ESP-based predictions
when human activities are involved. The improvement can be
attained at lead times of 1–4 months in the winter, and longer
lead times during April–September in the midstream. That
means human activities have reduced the influence of ICs on
hydrological drought predictions.

5 Conclusions

Understanding the performance of climate predictions at re-
gional or global scales provides an important basis for the
utility and improvement of these products. In recent decades,
drought prediction based on climate predictions at seasonal
scales has improved significantly due to a range of global
climate models (Hao et al., 2018). However, hydroclimatic
drought prediction and predictability over an endorheic and
arid basin that is affected by complex climate mechanisms
remains a great challenge. A breakthrough in predicting hy-
droclimatic drought over endorheic basins can bring major
improvements in the development of reliable drought moni-
toring and prediction systems at regional and global scales.
In this study, the seasonal meteorological and hydrological
drought predictability and forecast skill in the Heihe River
basin (HRB), a typical endorheic and arid basin with distinc-
tive characteristics from upstream to midstream, were pre-
sented in detail. Here, meteorological predictability refers
to the upper limit of forecast skill using a perfect model
assumption, while hydrological predictability is to quantify
the role of initial hydrological conditions (ICs) and meteo-
rological forcings. The meteorological drought forecasting
system was based on bias-corrected and downscaled 88-
member North American Multimodel Ensemble (NMME)
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Figure 9. Anomaly correlation (AC) of the forecast of seasonal SSI1. The red box plots show the spread of AC of each member from NMME,
and the blue box plots show that from ESP. The blue (red) crosses show the outliers for NMME (ESP) forecast skill. The dashed black line
indicates the threshold (AC= 0.21) of 95 % confidence intervals calculated from the t test. The predictions and simulations are carried out
with the human activities module switched off.

climate hindcasts during 1982–2010, and the hydrological
drought forecasting system was established using the Dis-
tributed Time-Variant Gain Hydrological Model (DTVGM)
driven by the post-processed predictions. The NMME-based
hydrological predictions were compared with the ESP-type
predictions, verified by offline simulations to ignore hydro-
logical model structural errors. The DTVGM, with human
activities modules (i.e., reservoir module and water use mod-
ule), has been calibrated well over 140 subbasins in the HRB
based on observed streamflow at three mainstream gauges
and meteorological forcings for the period of 1981–2000.
The Nash–Sutcliffe efficiency (NSE) values at a monthly
scale were greater than 0.86 in the upstream during the cali-
bration and validation periods. Given extensive irrigation and
water diversions in the midstream, the NSE was greater than
0.52, indicating a reasonable human activities module in the
DTVGM hydrological model.

For meteorological drought predictions, the upstream and
midstream show higher meteorological drought predictabil-
ity than forecast skill in terms of anomaly correlation (AC)

and Brier score (BS). The forecast skill of the overall NMME
mean is higher than that of most individual members. The
NMME climate predictions show statistically significant pre-
dictability and forecast skills for meteorological drought in
the first 2 lead months, with higher values in autumn and
winter. For the hydrological drought predictions, the up-
stream shows higher skill than the midstream in terms of
AC and Brier skill score (BSS), due to more complex hy-
drological processes and human activities in the midstream.
The highest forecast skill occurs during winter and au-
tumn, while the lowest skill exists during summer. During
spring, the NMME-based hydrological predictions outper-
form ESP-type predictions up to 7 lead months, in spite
of poor precipitation predictions. This may be due to more
seasonal snowmelt having contributed to the streamflow in
spring, which relies on the temperature predictions. The
NMME-based hydrological predictions show some improve-
ment against ESP up to 2–3 months lead during autumn. The
highest forecast skill in winter could continue up to 6 months,
probably due to the long memory of hydrological conditions.
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Figure 10. Brier skill score (BSS) of NMME forecast for hydro-
logical drought events. Here, a hydrological drought event happens
when the SSI1 value is below −1. The reference forecasts are sim-
ulations from ESP experiment. The predictions and simulations are
carried out with the human activities module switched off.

Besides the ESP experiment, the reverse ESP was also
conducted to investigate the relative role of initial condi-
tions (ICs) in hydrological forecasting. The role of ICs could
be more significant during the cold and dry seasons; for
example, ICs prevail over the meteorological forcings up
to 5–7 months during October–December and 2–3 months
during January–March. However, the meteorological forc-
ings outweigh the ICs in all lead months during warm and
wet seasons (April–September). That reasonably explains the
season-dependent hydrological forecast skill and inconsis-
tency between meteorology and hydrology. In addition, a
comparative experiment was conducted to explore the effect
of human activities on hydrological predictability, via remov-
ing the human activities module from the DTVGM. Results
show that human activities actually reduced the hydrological
variability and increased the hydrological predictability dur-
ing wet seasons (May and July–September) in the midstream.
Therefore, the improvement of simulation of human activ-
ities could increase the hydrological drought forecast skill
over a human-dominant basin.

Although the NMME-based forecasting system shows cer-
tain skill for meteorological and hydrological drought predic-
tions, more efforts are needed to tackle issues in the follow-
ing areas: (1) the physical mechanisms that caused climate
anomalies need to be considered to improve climate mod-
els and the meteorological forecasting skill, as meteorologi-
cal forcings play a dominant role in hydrological predictabil-
ity during wet seasons. (2) The NSE value for the MHRB
is greater than 0.52, which is still unsatisfactory. An unre-

fined human activities module in the hydrology model can
lead to some uncertainties in the simulated streamflow and
hydrological drought and thus the performance evaluation.
For example, inaccurate calculations of irrigation water re-
quirements and groundwater can increase errors in river flow
and uncertainties in the influence of human activities on hy-
drological droughts. Therefore, refining the human activities’
processes in the hydrological forecasting system could facil-
itate the understanding of the hydrological predictions over
the regions with vast human activities. (3) Data assimilation
and observation need to be improved for initial hydrological
conditions (e.g., snow and soil moisture), which could pro-
mote the development of high-precision hydrological predic-
tions. This requires more collaborations between scientists
from different disciplines, including climate science, hydrol-
ogy, agriculture, ecology and social economy.
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