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Abstract. The upper Ganga Basin in Uttarakhand, India, has
high hydropower potential and plays an important role in the
development of the state economy. Thus, an accurate knowl-
edge of annual water yield is of paramount importance to
this region. This paper deals with use of contemporary wa-
ter yield estimation models such as the distributed Integrated
Valuation of Ecosystem Services and Tradeoffs (InVEST)
model and the Lumped Zhang model and their validation to
identify the most suited one for water yield estimation in the
upper Ganga Basin. In previous studies utilizing these mod-
els, water yield was estimated by considering a single value
of some important model parameters for the entire basin,
which in fact show distributed variation at a finer (pixel)
scale. Therefore, in this study, pixel-level computations are
performed to assess and ascertain the need for incorporat-
ing the spatial variation of such parameters in model appli-
cations. To validate the findings, the observed sub-basin dis-
charge data are analyzed with the computed water yield for
4 decades, i.e., 1980, 1990, 2001 and 2015. The results ob-
tained are in good agreement with the water yield obtained at
the pixel scale.

1 Introduction

An accurate assessment of key ecosystem services (ES) such
as water yield has gained focus in recent years in ES mod-
eling, as fresh-water availability in a region is essential
for agriculture, industry, human consumption, hydropower,
etc. (Redhead et al., 2016). Hydrological ecosystem services
generally include drinking water supply, power production,
industrial use, irrigation and many more. The accurate es-

timation of water yield further facilitates in the identifica-
tion of hotspots for storm-water harvesting in order to fulfill
fresh-water demand in the region (Pathak et al., 2017). The
hydrological ES are dependent on different factors, such as
watershed characteristics (e.g., topography, land use and land
cover – LULC, soil type and climatic condition. To incorpo-
rate these parameters into assessment and decision-making,
there has been a proliferation of ecosystem-modeling tools
and methods. Models for ES evaluation often focus on using
globally available data, accepting large number of spatially
explicit inputs producing spatially explicit output, and limit-
ing the model structure to key biophysical processes involved
in land use change (Guswa et al., 2014). The precise estima-
tion of ES using these models is a complicated task owing
to spatial variability and dependence of ES on various to-
pographical and climatic factors. Further, the validation and
uncertainty assessments in model outputs have proven to be
key obstacles to the application of ES models. In the litera-
ture, studies focusing on comparison of different ES models
have projected some light over the model output validation
issues; however, a lack of studies highlighting the validation
of these models for Indian river basins still exists. The ben-
efits that can be derived from ES should be analyzed and
quantified in a spatially explicit manner (Sánchez-Canales et
al., 2012). The uncertainties involved in the determination
of spatial and temporal distribution of the climatic variables,
especially precipitation, constitute a major obstacle to the un-
derstanding of hydrological behavior at the catchment scales
(Milly and Dunne, 2002).

The Integrated Valuation of ES and Tradeoffs (InVEST)
model, developed by Natural Capital Project (Tallis et al.,
2010), is a tool that provides a framework for planners and
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decision makers to assess trade-offs among ES and enables
their comparison in various climate and land use change sce-
narios. The model includes a biophysical component, which
facilitates the provision of fresh water or water yield from
different parts of the landscape, and a valuation component,
representing the benefits of water provisioning to people. The
model works on simplified Budyko theory, which has a long
history and still continues to receive attention in the hydro-
logical literature (Budyko and Ronov, 1979; Zhang et al.,
2001; Zhang et al., 2004; Ojha et al., 2008; Zhou et al., 2012;
Donohue et al., 2012; Xu et al., 2013; Wang and Tang, 2014).
The InVEST model applies a one-parameter formulation of
the Budyko theory in a semi-distributed manner (Zhang et
al., 2004). The model is capable of quantifying the water
yield of a catchment under the influence of change in differ-
ent drivers, viz. climate variables and catchment characteris-
tics (e.g., land use change). Various studies have been carried
out in the past demonstrating the application of the InVEST
model to different river basins around the world. Sánchez-
Canales et al. (2012) carried out a sensitivity analysis of
three parameters, i.e., z (seasonal precipitation coefficient),
precipitation (annual) and ET0 (annual reference evapotran-
spiration), and using the InVEST model for a Mediterranean
basin, they found precipitation to be the most sensitive pa-
rameter for the study region. Later, Terrado et al. (2014) ap-
plied the InVEST model for the heavily inhabited defined as
Llobregat river basin. The model is applied for both extreme
wet and dry conditions, and the role of climatic parameters
is emphasized. Hoyer and Chang (2014) applied this model
in the Tualatin and Yamhill basins of northwestern Oregon
under a series of urbanization and climate-change scenarios.
The results show that the climatic parameters have more sen-
sitivity than other inputs for a water yield model. Hamel and
Guswa (2015) applied the same water yield model for the
Cape Fear catchment, North Carolina, and concluded that the
precipitation is the most influencing parameter. Goyal and
Khan (2017) employed the InVEST water yield model for the
hilly catchment by considering two catchments, i.e., the Sut-
lej River catchment and Tungabhadra River catchment. The
climate parameters, i.e., precipitation and ET0, are observed
to be the most influencing parameters for water yield in both
the river basins. With the aforementioned studies, certain fac-
tors exist that limit the application of InVEST model such as
the absence or inadequate comparison with observed data,
the calibration of the model without prior identification of
sensitive parameters and a lack of validation of the predictive
capabilities in the context of land use and land cover change
(Bai et al., 2012; Nelson et al., 2010; Su and Fu, 2013; Ter-
rado et al., 2014).

The InVEST model operates on the principle of the
Budyko theory (Budyko, 1958, 1974). Based on works of
Schreiber (1904) and Ol’Dekop (1911), Budyko proposed
formulations explaining the relationship between precipita-
tion and potential evapotranspiration (PET) in order to cou-
ple water and energy balances, defined as the Budyko hy-

pothesis. Several attempts have later been made to obtain
an analytical solution of the Budyko hypothesis (Schreiber,
1904; Ol’Dekop, 1911; Turc, 1954; Mezentsev, 1955; Pike,
1964; Fu, 1981; Choudhury, 1999; Zhang et al., 2001, 2004;
Porporato et al., 2004; Yang et al., 2008; Donohue et al.,
2012; Wang and Tang, 2014; G. Zhou et al., 2015; S. Zhou
et al., 2015). Among these studies, solutions provided by
Fu (1981) called Fu’s equation, gained significant attention
as the work represented the effect of catchment properties on
water balance components by incorporating an addition pa-
rameter “w”. Fu’s equation can provide a full picture of the
evaporation mechanism at the annual timescale. Therefore,
Fu’s equation can be used through a top-down analysis for
providing insight into the dynamic interactions among cli-
mate, soils, vegetation, and their controls on the annual water
balance at the regional scale (Yang et al., 2007).

Considering the lack of studies on analysis and validation
of ES on the Indian subcontinent, especially for Himalayan
catchments, and to assess the applicability of various water-
balance models to Himalayan catchments, the present work
attempts to compute and analyze water yield in the upper
Ganga Basin using a semi-distributed InVEST model and a
Lumped Zhang model. The work primarily considers, in de-
tail, the spatial variation of InVEST model parameters and
uses different strategies to compute water yield. Accordingly,
water yield is estimated for 4 years, i.e., 1980, 1990, 2001
and 2015 and the most appropriate strategy is identified. The
parameters that are adopted as lumped at the basin scale in
previous studies are estimated at the pixel scale in order to
avoid the dependence of the model parameters on size of
the catchment. In addition, pixel-level estimations of water
yield are expected to be more accurate than output obtained
using the conventional approach with basin-lumped output.
The term “finer scale” in the paper represents the incorpora-
tion of spatial variations through the pixel-level estimation of
parameters involved in InVEST model, which are otherwise
taken as lumped. The work also compares the outcomes of
spatially distributed water yield models and the convention-
ally used Lumped Zhang model.

2 Background theory

2.1 Water yield models

In this section, two water yield models, i.e., the InVEST
water yield model, which is a distributed model, and the
Lumped Zhang model, are described.

2.1.1 InVEST model

The InVEST water yield model (Tallis et al., 2010) is de-
signed to provide information regarding the changes in the
ecosystem that are likely to alter the flow. It is based on the
Budyko theory, which is an empirical function that yields
the ratio of actual to potential evapotranspiration (PET)
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(Budyko, 1979). To describe the degree to which long-term
catchment water balance deviates from the theoretical limits,
a number of scholars have proposed one-parameter functions
that can replicate the Budyko curve (Fu, 1981; Choudhury,
1999; Zhang et al., 2004; Wang and Tang, 2014). To observe
and represent pixel-level changes to the landscape, InVEST
model incorporates, explicitly, the spatial variability in pre-
cipitation, PET, soil depth and vegetation. The model oper-
ates at the grid scale and acquires the inputs in the raster for-
mat into a GIS environment such as ArcGIS.

The InVEST water yield model is based on an empirical
function known as the Budyko curve (Budyko, 1974). An-
nual water yield, Y (x), is determined at each pixel of a land-
scape as follows;

Y (x)=

(
1−

AET(x)
P (x)

)
×P(x), (1)

where AET(x) is the actual annual evapotranspiration per
pixel x and P(x) is the annual precipitation per pixel x. Ac-
tual evapotranspiration (AET) is essentially determined by
climatic factors (precipitation, temperature, etc.) and is me-
diated by catchment characteristics (vegetation cover, soil
characteristics, topography, etc.). On the other hand, poten-
tial evapotranspiration (PET) represents the evaporating po-
tential of the climate system at a specific location and time
of year without the consideration of catchment characteris-
tics and soil properties (Allen et al., 1998). Several attempts
have been made in the past to establish a relationship be-
tween AET and PET, among which the solution provided
by Fu (1981) has been adopted worldwide. Fu (1981) pro-
vided an analytical solution to the Budyko hypothesis and
related AET with PET by incorporating a dimensionless pa-
rameter “w”, which denotes the effect of catchment charac-
teristics.

The InVEST model uses the expression of the Budyko
curve proposed by Fu (1981) and Zhang et al. (2004). The
ratio of mean annual PET to annual precipitation, known as
index of dryness, is expressed as

AET(x)
P (x)

= 1+
PET(x)
P (x)

−

[
1+

PET(x)
P (x)

](
1
w

)
, (2)

where PET(x) is the annual potential evapotranspiration per
pixel x (mm), and w(x) is a non-physical parameter that in-
fluences the natural soil properties. The PET(x) is calculated
using the following expression;

PET(x)=Kc(x)×ET0(x), (3)

where ET0(x) is the annual reference evapotranspiration per
pixel x, which is computed based on evapotranspiration from
alfalfa grass grown at that location using Eq. (6).Kc(x) is the
vegetation evapotranspiration coefficient that is influenced
by the change in characteristics of land use and land cover
at every pixel (Allen et al., 1998). The values of ET0(x) are

adjusted byKc(x) for each pixel over the map of land use and
land cover. w(x) is an empirical parameter, and the expres-
sion given by Donohue et al. (2012) for the InVEST model
has been applied to define w(x), which is expressed as fol-
lows:

w(x)= z×
AWC(x)
P (x)

+ 1.25. (4)

Thus, the minimum value of the parameter w(x) is 1.25, cor-
responding to bare soil where the root depth is zero (Dono-
hue et al., 2012). The Donohue model was originally de-
veloped for Australia, however, the online documentation
on InVEST model states its application globally. The pa-
rameter z is known as the seasonality factor whose value
varies from 1 to 30. It represents the nature of local precip-
itation and other hydrogeological parameters. The parame-
ter AWC(x) depicts volumetric plant available water content
expressed in depth (mm), which can be expressed by follow-
ing formula for each pixel x:

AWC(x)=Min.(Restricting layer depth, root depth)×PAWC. (5)

The root-restricting layer depth is defined as the depth of
the soil up to which the soil can allow the penetration of
the roots, and root depth is defined as the depth where
95 % of the root biomass occurs. Plant available water con-
tent (PAWC) is generally taken as the difference between
the field capacity and the wilting point. It depends upon the
soil properties and can be computed by the Soil-Plant-Air-
Water (SPAW) software. In the study, PAWC is calculated
using the method described by McKenzie et al. (2003). The
modified Hargreaves method and Hargreaves method were
employed for computing reference evapotranspiration for the
study area at pixel scale.
The modified Hargreaves method is expressed as

ET0 = 0.0013× 0.408×RA×
(
Tavg+ 17.0

)
× (TD− 0.0123×P)0.76, (6)

where ET0 is reference evapotranspiration, Tavg is the av-
erage daily temperature (◦C) defined as the average of
mean daily maximum and mean daily minimum temper-
ature, TD (◦C) is the temperature range computed as the
difference between mean daily maximum and mean daily
minimum temperature, and RA is extraterrestrial radiation
(MJ m−2 day−1).
According to the Hargreaves method,

ET0 = 0.0023× 0.408×RA×
(
Tavg+ 17.8

)
×TD0.5, (7)

where terms involved in the equation means same as those in
the modified Hargreaves method.

For computing the extraterrestrial radiation (RA), the fol-
lowing equation is used;
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RA=
24(60)
π
×Gsc× dr× [ws sin(ϕ)sin(δ)

+cos(ϕ)cos(δ)sin(ws)] , (8)

where RA is extraterrestrial radiation (MJ m−2 day−1), dr is
the inverse Earth–Sun relative distance, Gsc is the solar
constant equal to 0.0820 MJ m−2 min−1, ws is sunset hour
angle (rad), δ is the solar declination (rad) and ϕ is lati-
tude (rad).

Determination of the parameter “w”

The dimensionless parameter w depends upon the local cli-
matic variables such as the hydrological characteristics of
the area, its rainfall intensity and topography. In the InVEST
water yield model (Tallis et al., 2010), parameter w can be
computed in three different ways. The first method is sug-
gested by Donohue et al. (2012), in which parameter w is
computed using Eq. (4) and where sensitivity parameter z is
adopted as one fifth of the number of rain events per year.
The second method is suggested by Xu et al. (2013), which
compares w with latitude, the NDVI (normalized difference
vegetation index), area, etc. The third method experiments
with various selections of w (one value of w for the entire
study region) until there is a good match between observed
and computed water yield. Unfortunately, this method is not
suited for a pixel-based analysis, as the number of pixels will
be extremely large, making the method computationally in-
tensive.

2.1.2 Lumped Zhang model

In this model, the mean value of different parameters is used
as an input to compute the average value of the water yield
for the whole watershed. The average actual evapotranspira-
tion, potential evapotranspiration, w, precipitation, etc., are
described by Zhang et al. (2004).

3 Study area and data

3.1 Study area

The Ganga river in India is ranked amongst the world’s top
20 rivers in regards to the water discharge. The Ganga river
is segregated into three zones, viz. the upper Ganga Basin,
middle Ganga Basin and lower Ganga Basin. The area cho-
sen for the present study, i.e., the upper Ganga Basin, is sit-
uated in the northern part of India within the geographical
coordinates 29◦48′–31◦24′ N and 77◦49′–80◦22′ E, covering
an area of 22 292.1 km2 and reaching up to Haridwar. The
altitude of the study area varies from 275 m in the plains to
7512 m in the Himalayan terrains. A region of approximately
433 km2 of the basin is located under glacier landscape, and
288 km2 of the region is located under a fluvial landscape.

Figure 1. Graphical representation of the study area, the upper
Ganga Basin.

About 60 % of the basin is utilized for agricultural practices,
and 20 % of the basin is in the forest area, especially in the
upper mountainous region. Nearly 2 % of the basin is perma-
nently covered with snow in the mountain peaks. The most
predominant soil groups found in the region are sand, clay,
loam and their compositions. In the upper Ganga Basin, the
average annual rainfall varies from 550 to 2500 mm (Bharati
et al., 2011), where a major fraction of total annual rainfall is
received during monsoon months (June–September). The ge-
ographical location and other information of the upper Ganga
Basin are represented in Fig. 1.

3.2 Data

3.2.1 Precipitation and temperature

The daily time series of precipitation and temperature for the
study area are acquired from India Meteorological Depart-
ment (IMD) at a grid size of 0.25◦ and 1◦, respectively. The
upper Ganga Basin comes within the dataset latitude, which
ranges from 29.5◦ N to 31.5◦ N, and its longitude, ranging
from 77.75 to 80.25◦ E . The daily time series of precipita-
tion was aggregated to obtain the annual time series at each
grid point. Various analyses in the study are carried out for 4
years, i.e., 1980, 1990, 2001 and 2015.

3.2.2 Soil map

Spatial maps of soil were collected from the National Bu-
reau of Soil Survey and Land Use Planning (NBSSLUP) at
1 : 250000. Digital maps of soil available at a resolution of
1200 m× 1200 m were resampled to the resolution of land
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use data, i.e., 30 m× 30 m, using “resample” tool in ArcGIS
in order to maintain the scale homogeneity. The attribute ta-
ble of the raster layer contains fields like soil depth, soil tex-
ture, carbon content percentage, drainage, slope, erosion, soil
temperature and mineralogy. The relevant features, i.e., soil
depth and soil texture are converted into the raster image for
the upper Ganga Basin.

3.2.3 Map of land use and land cover

Satellite images were acquired from different sensors of
Landsat, viz. Landsat 3/4 Multispectral Scanner and The-
matic Mapper (MSS/TM), Landsat 4 Thematic Mapper
(TM), Landsat 7 Enhanced Thematic Mapper (ETM) and
Landsat 8 Operational Land Imager (OLI) sensors for the
years 1980, 1990, 2001 and 2015, respectively. The im-
ages are available at different resolutions and in several
wavelength bands, from which green (G), red (R) and near-
infrared (NIR) band images are combined to create a false
color composite (FCC) for the study area in ERDAS Imag-
ine. FCCs are then classified using supervised classification
in ERDAS in six different classes, i.e., forest, water, agri-
cultural, wasteland, snow and glacier, and built-up land. The
classification of the area is based on their similar response
under different bands. Each class is then recognized with the
help of ground-truth and high-resolution satellite images.

4 Methodology

In the present work, five different strategies are employed
to compute water yield. For the ease of presentation, these
strategies are referred to as A–E. In strategy A, an average
value of precipitation, temperature, extraterrestrial radiation
and parameter w is used for the entire basin. This strategy
is essentially based on Lumped Zhang model. Strategies B–
E are designated, corresponding to a particular variation of
the InVEST model where water yield is computed using dif-
ferent approach for estimating parameter w. For computing
parameter w, relationships for large basins and for the global
model from Xu et al. (2013) are given by Eqs. (9) and (10),
respectively.
For large basins,

w = 0.69387− 0.01042× lat+ 2.81063×NDVI
+ 0.146186×CTI. (9)

For the global model,

w = 3.50412− 0.09311× slp− 0.03288× lat+ 1.12312
×NDVI− 0.00205× long− 0.00026× elev, (10)

where, “slp” is the slope gradient, “lat” is the absolute lati-
tude of basin center, “CTI” is the compound topographic in-
dex, “NDVI” is the normalized difference vegetation index,
“lat” is latitude, “long” is longitude and “elev” is elevation.

In strategy B, the entire basin is considered for comput-
ing the parameter w for large basins, using Eq. (9), which
is given by Xu et al. (2013). In strategy C, the parameter w
is computed for entire basin using Eq. (10), which is given
by Xu et al. (2013). In strategy D, parameter w is computed
at each pixel in order to incorporate the spatial distribution
of the hydrologic variables involved in the computations. In
Strategy E, parameter z is computed according to the num-
ber of rain events in a year; subsequently, Eq. (4) is used to
compute the parameter w.

For all the strategies, the extraterrestrial radiation (RA)
parameter is computed for each month using Eq. (8), and a
raster layer is generated. Precipitation data are obtained from
Indian Meteorological Department (IMD) at a grid size of
0.25◦ for the study area. It has been interpreted and con-
verted to the raster format by using the inverse distance
weighted (IDW) interpolation technique in the ArcGIS envi-
ronment for obtaining the values for all pixels at a resolution
equal to the resolution of the Landsat satellite images. The
temperature dataset is obtained from the IMD at a grid size
of 1◦× 1◦ for the study area and has also been converted to
a raster format by using the IDW interpolation technique for
obtaining the values for all pixels. Subsequently, the mean
monthly value of average temperature (Tavg) and the differ-
ence between the mean daily maximum and mean daily min-
imum (TD) are obtained. The climate datasets used in the
present study are of the finest resolution available so far for
the study region. Gridded datasets of temperature and pre-
cipitation used in the present study have been developed us-
ing quality-controlled stations and well-proven interpolation
techniques. Further details about the datasets of precipitation
and temperature are given in Srivastava et al. (2009) and Pai
et al. (2014), respectively.

The modified Hargreaves method is applied for obtain-
ing the value of reference evapotranspiration at each pixel
for each month (Droogers et al., 2002). To compute poten-
tial evapotranspiration, the yearly values obtained for the
reference evapotranspiration are multiplied by the vegeta-
tion evapotranspiration coefficient (Kc), which depends on
the LULC characteristics, as expressed in Eq. (3). The value
of Kc is taken from Allen et al. (1998), as shown in Table 1.
In this study, Kc is taken in the same was for all 4 years, as
shown in Table 1, and is used to obtain potential evapotran-
spiration, which is subsequently used to obtain annual water
yield at each pixel of the study area.

5 Results

5.1 Reference evapotranspiration, ET0(x)

Reference Evapotranspiration (ET0) is computed for the up-
per Ganga Basin using a high-resolution monthly climate
dataset. The modified Hargreaves method is applied for ob-
taining the values of reference evapotranspiration at each
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Table 1. Value of Kc corresponding to the classes of land use and land cover.

S. no. Land use and Percentage Percentage Percentage Percentage Kc
land cover cover cover cover cover

(1980) (1990) (2001) (2015)

1 Forest 17.84 16.32 15.78 15.19 1
2 Water 21.87 21.27 19.47 17.65 1
3 Wastelands 51.1 52.36 54.18 55.46 0.2
4 Built-up area 2.07 2.14 2.27 2.49 0.4
5 Agricultural 3.67 4.04 3.76 4.22 0.75
6 Snow and glacier 3.45 3.87 4.54 4.99 2

Figure 2. Reference evapotranspiration (mm) of the upper Ganga Basin for the years 1980, 1990, 2001 and 2015.

pixel for each month (Droogers and Allen, 2002). ET0 is a
function of RA, precipitation, Tavg and TD, which are com-
puted pixel-wise for each month of the years 1980, 1990,
2001 and 2015. Some of the months, i.e., July, July and Au-
gust 1990; June, July and August 2001; and June, July and
August 2015, showed negative values of reference evapotran-
spiration from applying the modified Hargreaves method. For
these months, Hargreaves method is applied for obtaining the
positive values. Subsequently, all mean monthly values are
added up to get the mean annual values of evapotranspiration
for the years 1980, 1990, 2001 and 2015, as represented in
Fig. 2.

5.2 Potential evapotranspiration, PET(x)

The annual values obtained for the ET0 are multiplied by the
vegetation evapotranspiration coefficient (Kc), which varies
with the characteristics of land use and land cover, as ex-
pressed in Eq. (3). The value of the Kc is taken from Allen
et al. (1998). The values of the vegetation evapotranspira-

tion coefficient are taken from Table 1. Thus, the potential
evapotranspiration is computed for upper Ganga Basin for
the years 1980, 1990, 2001 and 2015, as represented in Fig. 3.

5.3 Water yield, Y(x)

As described in the methodology, five different strategies,
viz. A–E, are used to estimate water yield for the upper
Ganga Basin.

Strategy A: water yield computed using the Lumped
Zhang model

Here, the basin average values of all the input parameters are
considered, and water yield is computed for the upper Ganga
Basin for the years 1980, 1990, 2001 and 2015, which are
obtained as 658.52, 925.68, 603.71 and 1194.25 mm, respec-
tively.
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Figure 3. Potential evapotranspiration (mm) of the upper Ganga Basin for the years 1980, 1990, 2001 and 2015.

Strategy B: water yield obtained by taking the single
weighted mean value of parameter “w” from Xu et
al. (2013) for large basins

In this strategy, water yield is computed by considering a
single value of the parameter w for the whole basin using
Eq. (9). The weighted mean value for parameter w for the
years 1980, 1990, 2001 and 2015 are obtained as 1.507,
1.541, 1.403 and 1.507, respectively. The spatial distribution
of the water yield for the upper Ganga Basin computed using
strategy B is represented in Fig. 4. The mean values of water
yield as obtained using this method for the years 1980, 1990,
2001 and 2015 are 755.65, 959.48, 742.39 and 1131.42 mm,
respectively.

Strategy C: water yield obtained by taking a single
weighted mean value of parameter “w” from Xu et
al. (2013) for the global model

In this strategy, water yield is computed by considering a
single value of parameter w for the entire upper Ganga
Basin using Eq. (10). The weighted mean value of param-
eter w for the years 1980, 1990, 2001 and 2015 are obtained
as −0.967, −0.955, −1.010 and −0.968, respectively. The
spatial distribution of the water yield for the upper Ganga
Basin as computed using strategy C is shown in Fig. 5. The
mean values of water yield for the years 1980, 1990, 2001
and 2015 are 1239.92, 1549.46, 1149.93 and 1754.59 mm,
respectively.

Strategy D: water yield obtained using the pixel-level
estimation of parameter “w” from Xu et al. (2013)

In this strategy, the values of parameter w are estimated at
the pixel level. The water yield computed for the years 1980,
1990, 2001 and 2015 for upper Ganga Basin is shown in
Fig. 6. The mean values of water yield as computed us-
ing strategy D for the years 1980, 1990, 2001 and 2015
are 1240.02, 1549.44, 1149.89 and 1754.62 mm, respec-
tively.

Strategy E: water yield obtained using the pixel-level
estimation of parameter “w” from Donohue et al. (2012)

Equation (4) represents the parameter w as a function of pa-
rameter “z”, AWC and precipitation. The parameter w in the
equation used in strategy E has been proposed by Donohue et
al. (2012), which is also cited in online documentation of In-
VEST model; however, the final equation used for estimating
water yield is obtained from the InVEST model. Considering
this fact, Donohue et al. (2012) has been cited in strategy E.
The water yield as computed using strategy E for the up-
per Ganga Basin for different years is shown in Fig. 7. The
mean values of water yield for the years 1980, 1990, 2001
and 2015 are 1241.09, 1552.38, 1153.95 and 1753.53 mm,
respectively.
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Table 2. Comparison of model-estimated PET and AET with a global dataset from different sources.

Parameter Year Source 1 Source 2 Strategy A InVEST model

(mm) (GLDAS) (CRU) (Lumped Strategy B Strategy C Strategy D Strategy E
Zhang (Large (Global (Xu et al. (Donohue
model) model) model) 2013) et al., 2012)

AET 1980 555.0355 696.84 486.07 679.52 679.68 680.01
1990 646.168 815.02 592.3 735.23 735.27 736.25
2001 588.084 680.76 408.86 548.28 548.39 550.38
2015 716.8316 900.11 625.41 743.48 743.52 744.34

PET 1980 1175.964 1376.64 1382.12 1382.12 1382.12 1382.12
1990 1156.497 1456.16 1461.86 1461.86 1461.86 1461.86
2001 1184.847 1457.08 1462.96 1462.96 1462.96 1462.96
2015 1156.686 1544.20 1550.42 1550.42 1550.42 1550.42

Figure 4. Water yield obtained by taking the single weighted mean value of parameter w from Xu et al. (2013) for large basins.

5.4 Validation of ET and water yield estimates

For validation of model outputs, the basin’s average annual
values of PET and AET estimated using various strategies
are compared with the corresponding basin average values
obtained from available global datasets (Table 2). Model-
simulated AET values are obtained from the Global Land
Data Assimilation System (GLDAS) ET dataset from Noah
model outputs. Basin average values of PET are obtained

from the Climate Research Unit’s (CRU’s) PET datasets
(CRU TS v. 4.01) available at resolution of 0.5◦. From the
comparison, both AET (GLDAS) and PET (CRU TS) values
are found to be in fair agreement with the globally estimated
values (Table 2). Spatial maps of global datasets of AET and
PET are shown in Figs. 8 and 9, respectively.

The validation of water yield obtained from various strate-
gies is performed at the Rishikesh gauging site of the upper
Ganga Basin (Fig. 10). The discharge data of the basin are
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Table 3. Observed vs. computed water yield for various proposed strategies for Rishikesh sub-basin.

Strategies 1980 1990 2001 2015

Observed discharge (mm) 1831.31 2422.43 2187.22 2835.81
Observed discharge (mm) (after reducing approx. 32 % melting snow contribution) 1245.29 1647.25 1487.31 1928.35
Water yield strategy A (mm) 652.47 914.35 598.25 1189.72
Water yield strategy B (mm) 745.38 917.77 697.75 1092.17
Water yield strategy C (mm) 1229.90 1506.82 1102.62 1718.17
Water yield strategy D (mm) 1229.99 1506.74 1102.61 1718.18
Water yield strategy E (mm) 1230.77 1508.88 1106.86 1720.16

Figure 5. Water yield obtained by taking the single weighted mean value of parameter “w” from Xu et al. (2013) for the global model.

obtained from Irrigation Department of the state of Uttarak-
hand. The discharge observed in the basin is generated from
precipitation as well as snowfall in the region, where 32 % of
the discharge has been removed, because it is contributed to
by glacier ice melt, as explained by Maurya et al. (2011) for
our study area. The aforementioned fraction of discharge had
been quantified using an isotope study that separates the con-
tribution of glacier melt in quantifying discharge (Maurya et
al., 2011). A comparison of the water yield computed and
observed for the study region for different years by various
proposed strategies is shown in Table 3.

As can be seen in Table 3, values of water yield estimated
using strategies A to E are systematically increasing but are
not steady in nature, as water yield estimated using strat-

egy A and B lies in the range 650–750 mm, whereas water
yield from strategies C–E lie in range of 1229–1231 mm for
the years 1980 (see Table 3). Similar results are also evi-
dent for other years, too. Also, water yield estimated using
strategies C–E are more or less the same for a given year, be-
cause these strategies involve pixel-based estimations of wa-
ter yield considering spatial variation in the Budyko parame-
ters. The parameters involved in the Budyko model, such as
w, are dependent on various factors, such as catchment char-
acteristics, vegetation cover, etc., as well as climate seasonal-
ity (Li et al., 2013). Ahn and Merwade (2017) have analyzed
the relationship between basin characteristics and parame-
ter w for 175 stations spread across the USA. Considering
their study, no precise conclusion can be drawn regarding
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Figure 6. Water yield obtained by computing pixel-wise value of parameter w from Xu et al. (2013).

relationship between basin characteristics and the value of
parameter w, especially in the case of basin-area character-
istics. Moreover, no definite relationship has been yet identi-
fied between basin characteristics and model parameters, and
this is a subject matter for further study.

6 Discussion

The study aimed to apply the InVEST water yield model
to compute the water yield for upper Ganga Basin hav-
ing highly variable topography consisting of hilly, plain and
snow-covered areas. The InVEST model is based on the
Budyko theory, which requires low amounts of data and low
levels of expertise, thus making it acceptable worldwide. The
mean monthly precipitation, temperature, monthly value of
difference of the mean daily maximum and mean daily min-
imum, and extraterrestrial radiation parameters for the upper
Ganga Basin of all 4 years, i.e., 1980, 1990, 2001 and 2015,
are converted into the raster format for various analyses. The
monthly reference evapotranspiration is thus computed us-
ing input parameters in GIS environment by applying the
modified Hargreaves equation for all the months, except for
a few months in which the modified Hargreaves equation
gives negative results for the reference evapotranspiration.
For those months, the Hargreaves method is applied to ob-

tain the positive value of reference evapotranspiration, as also
suggested by Goyal and Khan (2017). Reference evapotran-
spiration when multiplied with Kc gives the potential evapo-
transpiration. All monthly values are added up to obtain the
annual value of reference evapotranspiration.Kc is a function
of land use and land cover; thus, supervised classification is
done to prepare the raster map of land use and land cover
for the upper Ganga Basin. Subsequently, the annual value
of potential evapotranspiration is obtained for the study area
for the years 1980, 1990, 2001 and 2015.

The paper employs various methodologies for water yield
estimation, as discussed in the methodology section for the
upper Ganga Basin. Thus, water yield is computed both from
the InVEST model as well as the Lumped Zhang model. The
value of the parameter w is computed using four different
approaches, i.e., the mean single value obtained from Xu et
al. (2013) for large basins, mean single value obtained from
Xu et al. (2013) for the global model, pixel-level estimated
value of parameter w from Xu et al. (2013) and pixel-wise
value of parameter w from Donohue et al. (2012). Although
the upper Ganga Basin lies in large basin category as per the
definition from Xu et al. (2013), the yield computed using
global model is in good agreement with the observed data for
the region. In the study, the pixel-level estimation of parame-
ter w is made in order to incorporate the spatial variability of
the parameter involved in water yield estimation. Thus, two
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Figure 7. Water yield obtained by computing pixel-wise value of parameter “w” from Donohue et al. (2012).

Figure 8. Spatial distribution of AET obtained from GLDAS Noah output datasets.

pixel-wise values of parameter w are computed for the upper
Ganga Basin for years 1980, 1990, 2001 and 2015 by con-
sidering two approaches given by Xu et al. (2013) and the
approach given by Donohue et al. (2012). Also, the basin-

lumped water yield is computed using Lumped Zhang model,
which considers the single mean values for entire basin of all
the parameters involved in the computation of water yield.
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Figure 9. Spatial distribution of PET obtained from CRU datasets.

Figure 10. Graphical representation of sub-basin Rishikesh.

The water yield is computed in five different ways for the
upper Ganga Basin for the years 1980, 1990, 2001 and 2015.

At the Rishikesh gauging site, surface runoff data are ob-
tained by extracting the snowmelt from the discharge data, as
the melting snow contributes about 32 % of total runoff in the
Himalayan basins (Maurya et al., 2011). For validating the
water yield obtained from different strategies, the observed
yield is compared with the computed water yield based on
different proposed strategies for the years 1980, 1990, 2001
and 2015, as represented in Table 3. The results obtained
from Donohue et al. (2012) and Xu et al. (2013) are com-
puted at pixel level (Strategy C–E); thus, they exhibit better
performance than other approaches and are in good agree-
ment with the observed data. These results exhibit the superi-
ority of pixel-level computation to hydrological analyses for
a watershed. The parameters involved in the Budyko model
are dependent on various factors, such as basin character-
istics (size, topography, stream length, slope, etc.), climate

seasonality, etc. (Li et al., 2013). Again, the factors affecting
model parameters vary both spatially and temporally. More-
over, the relationship between these factors and model pa-
rameters are not yet well defined (Ahn and Merwade, 2017).
In such scenarios, adopting a hypothesis by assuming either
of these controlling factors (such as “w”) to be spatially or
temporally constant is inappropriate. Considering these facts,
the present study attempts to incorporate the spatial variabil-
ity of model parameter for estimation of water yield at the
pixel level. As the computations are made at pixel level (on
a grid of size 30 m× 30 m), the assumption of dependence
of model parameters on the size of the catchment may also
be disregarded. The computations made in the present work
are based on empirical equations; however, the application
of these equations has been well documented worldwide for
estimations of various water balance components at various
basin scales (Zhang et al., 2008; Ma et al., 2008; Ning et al.,
2017; Rouholahnejad Freund and Kirchner, 2017; Wang and
Zhou, 2016). Hence, it is recommended that for such a large
basin, it is required to compute all the parameters involved in
the computations of water yield at the pixel scale rather than
adopting mean values for entire watershed.

7 Summary and conclusions

The present study aimed to apply the InVEST annual water
yield model, a tool that is gaining interest in the ecosystem
services community, in the upper Ganga Basin. While such
simple models have low requirements for data and level of
expertise, practical applications of such a model with single
representative values of the model parameter for the entire
basin do not provide accurate estimates of water yield. Per-
forming pixel scale computation of water yield in the study
indicates a better performance, and the results obtained show
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better agreement with the observed water yield. As far as pa-
rameter w is concerned, the global model works better than
other representations of parameter w available in literature,
especially in the upper Ganga Basin. In the study, the water
yield is computed using five different strategies, and results
are validated with the observed data at the outlet of the upper
Ganga Basin. The present study attempts to quantify annual
water yield at the pixel level, making the computations in-
dependent of the size of catchment. Therefore, the proposed
methodology is expected to perform well for a catchment of
any given size. Changes in catchment water storage over time
are required to be quantified in order to validate the applica-
bility of Budyko’s model to long-term data for the studied
catchment. Earlier, some of the important parameters defin-
ing water yield used to be computed at a basin-level scale,
which caused errors in the results.

The study attempts to incorporate the spatial variability of
parameters involved in the model through the pixel-level es-
timation of parameters that are otherwise taken as lumped in
the previous studies. Study results show that the estimated
water yield, considering spatial variability in model param-
eters, is in better agreement with the observed water yield
compared to the water yield estimated when considering the
parameters to be lumped over the study region. Further, the
computations of various parameters are made at the pixel
level; therefore, the estimates of water balance components
using this approach are expected to be independent of the
assumption of dependence of parameters on catchment size.
As the relationship between Budyko’s model parameters and
their controlling factors has not been well defined (Ahn and
Merwade, 2017), the study emphasizes water yield estima-
tion using pixel-based computations. The study outcomes
can be summarized as follows: (i) between two approaches
used in the study, i.e., considering the entire basin and pixel-
level approach, the pixel-level approach is found to provide
better results; and (ii) in pixel-based computations, results
are further improved with the use of a parameter w based on
a global model rather than regional models of parameter w,
especially for large basins in the Himalayan region.
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