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Abstract. Reliable drought prediction is fundamental for wa-
ter resource managers to develop and implement drought
mitigation measures. Considering that drought development
is closely related to the spatial–temporal evolution of large-
scale circulation patterns, we developed a conceptual pre-
diction model of seasonal drought processes based on at-
mospheric and oceanic standardized anomalies (SAs). Em-
pirical orthogonal function (EOF) analysis is first applied to
drought-related SAs at 200 and 500 hPa geopotential height
(HGT) and sea surface temperature (SST). Subsequently,
SA-based predictors are built based on the spatial pattern of
the first EOF modes. This drought prediction model is es-
sentially the synchronous statistical relationship between 90-
day-accumulated atmospheric–oceanic SA-based predictors
and SPI3 (3-month standardized precipitation index), cali-
brated using a simple stepwise regression method. Predic-
tor computation is based on forecast atmospheric–oceanic
products retrieved from the NCEP Climate Forecast System
Version 2 (CFSv2), indicating the lead time of the model
depends on that of CFSv2. The model can make seamless
drought predictions for operational use after a year-to-year
calibration. Model application to four recent severe regional
drought processes in China indicates its good performance in
predicting seasonal drought development, despite its weak-
ness in predicting drought severity. Overall, the model can
be a worthy reference for seasonal water resource manage-
ment in China.

1 Introduction

Drought is an economically and ecologically disruptive nat-
ural hazard that profoundly impacts water resources, agricul-
ture, ecosystems, and basic human welfare (Dai, 2011). In
recent years, extreme drought events have had disastrous im-
pacts worldwide. The 2011 eastern African drought led to
famine and severe food crises in several countries, affecting
over 9 million people (Funk, 2011). As part of the 2011–2014
California Drought, the drought in 2014 alone cost Califor-
nia USD 2.2 billion in damages and 17 000 agricultural jobs
(Howitt et al., 2014). China has also suffered from extreme
drought events, such as the 2009–2010 severe drought in
southwestern China (Yang et al., 2012), 2011 spring drought
in the Yangtze River basin (Lu et al., 2014), and 2014 sum-
mer drought in northern China (Wang and He, 2015). Be-
cause drought is a costly and disruptive natural hazard, re-
liable drought prediction is fundamental for water resource
managers to develop and implement feasible drought miti-
gation measures. In the present study, drought prediction is
restricted to relatively long-term drought, which is associated
with season-scale precipitation deficits.

Drought is generally predicted using two types of meth-
ods: model-based dynamical forecasting and statistical pre-
diction. Dynamical forecasting primarily relies on computed
drought indicators, such as the standardized precipitation in-
dex (SPI; McKee and Kleist, 1993), based on forecast precip-
itation retrieved from seasonal climate forecast systems (Du-
tra et al., 2013, 2014; Mo and Lyon, 2015; Yoon et al., 2012).
Although dynamically predicted precipitation is useful infor-
mation for drought situations, especially for short-term fore-
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casting 1 month ahead, it also contains high levels of un-
certainty and limited skill with respect to long lead times
(Wood et al., 2015; Yoon et al., 2012; Yuan et al., 2013). In
contrast, statistical drought prediction is an additional source
of prospective drought information (Behrangi et al., 2015;
Hao et al., 2014). Different from the physical, complex pro-
cesses in coupled atmosphere–ocean models used for dynam-
ical prediction, statistical drought prediction models are rel-
atively simple but also perform well. They consist of input
variables, methodology, and prediction targets (Mishra and
Singh, 2011).

Reasons for good and effective performance of statisti-
cal models include methodology improvements and drought-
related climate indices used as input variables. To date, much
attention has been paid to methodology improvements. Tak-
ing advantage of probabilistic and temporal-evolution fea-
tures of input variables, statistical drought prediction mod-
els are primarily forced with probability or machine-learning
methods, such as the ensemble streamflow prediction (ESP)
method (AghaKouchak, 2014), Markov chain- and Bayesian
network-based models (Aviles et al., 2015, 2016; Shin et al.,
2016), neural network, and support vector models (Belayneh
et al., 2014). In addition to method improvement, climate
indices represent large-scale atmospheric or oceanic drivers
of precipitation, partly responsible for effective model per-
formance. These climate indices include typical atmospheric
and oceanic circulation patterns, such as the North Atlantic
Oscillation (NAO; Hurrell, 1995) and El Niño–Southern Os-
cillation (ENSO; Ropelewski and Halpert, 1987), which have
been widely used for drought prediction in different seasons
and regions (Behrangi et al., 2015; Bonaccorso et al., 2015;
Chen et al., 2013; Mehr et al., 2014; Moreira et al., 2016).

Climate indices, such as the NAO index and NINO 3.4 in-
dex, are simple, explicit, and widely used. Therefore, they
are the primary indices used for drought prediction. Addi-
tionally, based on the relationship between drought indices
and potential atmospheric or oceanic circulation patterns,
some researchers have also discovered large-scale circulation
patterns closely related to regional droughts or have struc-
tured new drought predictors (Funk et al., 2014; Kingston et
al., 2015). For instance, after discovering the two dominant
modes of the eastern African boreal spring rainfall variabil-
ity that are tied to SST fluctuations, Funk et al. (2014) further
determined that the first- and second-mode SST correlation
structures were related to two SST indices that could be used
to predict eastern African spring droughts.

Similarly, potential atmospheric and oceanic circulation
patterns, which are closely related to regional droughts, are
also used to construct drought predictors in the present study.
Considering that the development of drought processes is
closely related to the spatial–temporal evolution of large-
scale circulation patterns, we constructed predictors based on
anomalous spatial patterns. Because precipitation-inducing
circulation patterns usually occur in the troposphere, pre-
dictors can be built based on sea surface temperature (SST)

and 200 and 500 hPa geopotential height (HGT), reflecting
information from different levels of the troposphere. Subse-
quently, all these predictors from different drought processes
and the 3-month SPI, updated daily (hereafter, SPI3), were
used to calibrate a synchronous stepwise-regression relation-
ship. The model can be forced with dynamically forecast SST
and 200 and 500 hPa HGT conditions, indicating that the lead
time depends on that of the climate forecast models. Based
on predicted prospective 90-day SPI3 curves, we developed
angle-based rules for the drought outlook, which can make
the drought outlook easily accessible to water resource man-
agers.

Overall, the objective of this study is to build a concep-
tual prediction model of seasonal drought processes. The es-
sential and important steps are to (1) structure predictors on
the basis of drought-related atmospheric and oceanic circula-
tion patterns, (2) build the synchronous statistical predictor-
SPI3 relationship forced with reanalysis and operationally
forecast datasets, (3) simulate and predict four severe sea-
sonal drought processes in China to investigate model per-
formance, and (4) propose an objective angle-based method
for drought outlook.

Considering the proposed conceptual model consists of
several important parts, a brief but general introduction with
sequential procedures is presented (Fig. 1), prior to spe-
cific descriptions in Sects. 3–8. In Sect. 3, historical ex-
treme and severe drought processes are identified with SPI3.
These drought processes usually go through one or several
dry and wet spells, in which precipitation deficit character-
istics and circulation patterns vary. Therefore, process-split
rules, according to dry and wet spells, are designed to assign
drought process segments to different dry and wet spells in
Sect. 4. Gridded values in the fields of 200 and 500 hPa HGT
and SST are transformed into gridded values of standardized
anomalies (SAs) in Sect. 5. Maps of atmospheric–oceanic
SAs during drought process segments within the same dry
and wet spells are important inputs to the construction of the
predictors. After empirical orthogonal function (EOF) anal-
yses are conducted on these SA-based maps, the first lead-
ing EOF modes are used to generate predictors (Sect. 5).
Further, synchronous statistical relationships between SA-
based predictors and SPI3 are calibrated with the stepwise
regression method in Sect. 6. The National Centers for En-
vironmental Prediction/National Center for Atmospheric Re-
search (NCEP/NCAR) reanalysis datasets and the NCEP Cli-
mate Forecast System Version 2 (CFSv2) operational fore-
cast datasets are used to force the synchronous statistical re-
lationship. Simulated and predicted 90-day prospective SPI3
time series are presented in Sect. 7. With the aid of angle-
based rules for seasonal drought outlook, simulated and pre-
dicted SPI3 time series are transformed to five types of
drought outlooks (Sect. 8), which are easily accessible to wa-
ter resource managers.

In particular, although drought process predictions in
northern, eastern, and southwestern China are all the targets
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Figure 1. A brief introduction of the sequential procedures described in the sections of this study for drought prediction model construction.

in the present study, only the historical drought processes in
northern China are used to introduce the model construc-
tion and calibration in Sect. 3–6. Similar procedures were
also applied to drought processes in eastern and southwest-
ern China. However, for the sake of conciseness, these pro-
cedures, together with intermediate results, are not shown in
this study.

2 Data

The precipitation data used were the second-version
Dataset of Observed Daily Precipitation Amounts at
each 0.5◦× 0.5◦ grid point in China for 1961–2014
(http://data.cma.cn/data/detail/dataCode/SURF_CLI_CHN_
PRE_DAY_GRID_0.5.html), which was kindly provided
by the Climate Data Centre (CDC) of the National Me-
teorological Information Centre, China Meteorological
Administration (CMA). It was initially used to calculate
area-averaged precipitation over northern China, east-
ern China, and southwestern China (Fig. 2), which are
the three Chinese drought regions investigated in this
study. They cover areas of approximately 0.69, 0.91, and
1.12 million km2, respectively. Atmospheric anomalies were
diagnosed with respect to the NCEP/NCAR reanalysis
datasets, which has a resolution of 2.5◦× 2.5◦ at 17 pressure
levels, extending from January 1948 to the present (Kalnay
et al., 1996). The National Oceanic and Atmospheric
Administration (NOAA) high-resolution SST dataset, with
a spatial resolution of 0.25◦× 0.25◦ and extending from
September 1981 to present (Reynolds et al., 2007), was used
for SST anomaly analysis.

The NCEP Climate Forecast System Version 2 (CFSv2;
Saha et al., 2014) was used to verify operational performance
of the proposed conceptual model. Since CFSv2 began on
1 April 2011, some drought processes that occurred before

Figure 2. The geographical distribution of China’s nine drought re-
gions (black solid curves). The three regions labeled with red boxes
are the focus in the present study.

this date were forced with the CFS reforecast output. All the
relevant reforecast and forecast datasets are accessible on the
website (https://nomads.ncdc.noaa.gov/modeldata/). In par-
ticular, we focus on the prospective 90-day seasonal drought
process prediction during four severe drought processes in
this study. To achieve this, prospective 90-day forecast data
subsets for 200 and 500 hPa HGT and SST are retrieved from
CFSv2 and CFS products, which are used for the predictor
calculation. Details can be found in Sect. S1 in the Supple-
ment.
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Figure 3. Illustration indicating the steps for calculating daily-updated SPI3. The letter “E” represents value existence, while the letter “N”
represents no relevant data.

3 Identification of drought processes

3.1 Three-month SPI updated daily

SPI3 was used as the drought index for seasonal drought
recognition and prediction in this study. The calculation pe-
riod is 1979–2014. The daily area-averaged precipitation
datasets were first computed over the three study regions.
Traditionally, SPI3 values vary on a monthly timescale, i.e.,
each month a new value is determined from the precipitation
totals of the previous 3 months (McKee and Kleist, 1993).
In this study, we chose to update SPI3 daily, which was
also recommended by the World Meteorological Organiza-
tion (2012), i.e., every day a new value is determined from
the precipitation totals of the previous 90 days. Specified il-
lustration and details for calculating daily-updated SPI3 are
shown in Fig. 3.

3.2 Drought process identification and grade
classification

Similar to the rules for SPI grade division recommended by
the World Meteorological Organization (2012), the rules in
our study are shown in Table 1. Drought processes are iden-
tified when the daily SPI3 values are below −0.50 for more
than 30 consecutive days.

Each daily SPI3 value for a recognized drought process
was assigned to the corresponding SPI3 grade. Starting from
the extremely dry grade to the slightly dry grade, the ratio
between the duration of a particular SPI3 grade and the to-
tal days of the entire drought process is calculated. When the

Table 1. Rules for SPI3 grade classification.

Daily SPI3 value Grade

0.50 and more wet
−0.49 to 0.49 near normal
−0.99 to −0.50 slightly dry
−1.49 to −1.00 moderately dry
−1.99 to −1.50 severely dry
−2.00 and less extremely dry

proportion increases beyond 35 %, the corresponding grade
is assigned to the entire drought process. For example, as
shown in Fig. 4, the proportion of the severely dry days is be-
yond 35 %. Accordingly, the 2001 summer drought in north-
ern China corresponded to the severe grade.

Therefore, we identified severe and extreme drought pro-
cesses for 1979–2008 in northern China. As shown in Ta-
ble 2, persistent drought periods from 1997 to 2002 in north-
ern China were found, in agreement with other associated
studies (Rong et al., 2008; Wei et al., 2004). Relevant results
of identified drought processes in eastern and southwestern
China are not shown in the paper.

4 Drought process division according to dry and wet
spells

Identified drought processes usually go through one or sev-
eral dry and wet spells. Different dry and wet spells usually
correspond to various precipitation deficit characteristics and
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Figure 4. An example of grade classification for one complete drought process: the 2001 summer drought in northern China.

Table 2. Identified severe and extreme drought processes from 1979
to 2008 in northern China.

Extreme Drought 12 Jun 1997–28 Nov 1997
2 Nov 1998–11 Apr 1999

Severe Drought 15 Jan 1984–14 May 1984
9 Nov 1988–9 Jan 1989

17 Jul 1999–1 Nov 1999
23 Mar 2000–27 Jun 2000
14 Apr 2001–1 Aug 2001
3 Aug 2002–4 Dec 2002

26 Dec 2005–2 Feb 2006

atmospheric–oceanic circulation patterns. Therefore, we di-
vided drought processes into different segments according to
dry and wet spells, in order to further analyze atmospheric–
oceanic anomalies during drought segments within the same
dry and wet spells. Additionally, SPI3 on the start date of
an identified drought process indicates that SPI3 is initially
less than −0.5 and a severe drought process indeed follows,
which actually reflects drought-inducing precipitation infor-
mation for the previous 90 days. Therefore, the start date of
the drought process is advanced to the past 90th day, preced-
ing the drought process division. This measure can contribute
to introducing early drought-inducing information to predic-
tor construction.

Using northern China as an example, the specified pro-
cedures for the division process are as follows. Similar to
general seasonal classification, we divided the annual period
into four dry and wet spells (Table 3) according to the tempo-
ral evolution of the daily precipitation rate in northern China
(Fig. 5). It is evident that the wet spell (one-fourth of the
annual duration) accounts for over 50 % of total precipita-
tion, while the dry spell (one-third of the annual duration)
accounts for about 6 %.

Table 3. Dates of dry and wet spells and their associated proportions
of annual total precipitation in northern China. Both Wet–Dry and
Dry–Wet represent corresponding transition spells.

Spell Period Precipitation
Proportion (%)

Wet 21 June–10 September 56.4
Wet–dry 11 September–20 November 14.9
Dry 21 November–20 March 6.3
Dry–wet 21 March–20 June 22.4

Figure 5. Temporal evolution of daily precipitation rate in northern
China, averaged from 1961 to 2010.

Based on these dry and wet spells, process-split rules
(Fig. 6) are constructed using the intersection proportion (IP)
and critical proportion (P, set as 40 %). Herein, IP is the pro-
portion of initial segments accounting for relevant dry and
wet spells, and the initial segments (e.g., D1, D3, and D4 in
Fig. 6) refer to parts of one drought process split with dry
and wet spells. As shown in Fig. 6, one complete process is
first transformed into several initial segments according to
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Figure 6. Process-split rules for one drought process according to dry and wet spells. IP represents intersection proportion, while P refers to
critical proportion. The terms “IP[0]” and “IP[−1]” express the IP at the start and end segments, respectively.

Table 4. Drought process segments assigned to dry and wet spells during 1979–2008 in northern China.

Drought Grades Dry spell Dry–Wet spell Wet spell Wet–Dry spell

Extreme 21 Nov 1998–11 Apr 1999 14 Mar 1997–20 Jun 1997 21 Jun 1997–10 Sep 1997 11 Sep 1997–28 Nov 1997
– – 4 Aug 1998–10 Sep 1998 11 Sep 1998–20 Nov 1998

Severe 21 Nov 1983–20 Mar 1984 21 Mar 1984–14 May 1984 21 Jun 1999–10 Sep 1999 17 Oct 1983–20 Nov 1983
21 Nov 1988–9 Jan 1989 18 Apr 1999–20 Jun 1999 21 Jun 2001–1 Aug 2001 11 Aug 1988–20 Nov 1988
24 Dec 1999–20 Mar 2000 21 Mar 2000–27 Jun 2000 21 Jun 2002–10 Sep 2002 11 Sep 1999–1 Nov 1999
14 Jan 2001–20 Mar 2001 21 Mar 2001–20 Jun 2001 – 11 Sep 2002–4 Dec 2002
21 Nov 2005–2 Feb 2006 5 May 2002–20 Jun 2002 – 27 Sep 2005–20 Nov 2005

dry and wet spells. Second, “IP[0]” and “IP[−1]” are cal-
culated, which express IP at the start and end segments, re-
spectively. Third, based on a comparison of IP and P results,
these initial segments can be assigned to different dry and
wet spells.

Following the process-split rules shown in Fig. 6, we di-
vided these drought processes according to dry and wet spells
in northern China (Table 3). Detailed procedures of relevant
IP calculations and comparisons can be found in Fig. S1 in
the Supplement, while final assignments of initial drought
segments are shown in Table 4. In addition, to highlight the
importance of extreme droughts, severe and extreme drought
segments are considered in turn.

5 Predictor construction

5.1 Atmospheric and oceanic standardized anomalies

To describe atmospheric and oceanic anomalies objectively,
we chose the SA method. It was first used to effectively iden-
tify high-impact weather events (Grumm and Hart, 2001;
Hart and Grumm, 2001). Subsequently, the SA method has
also provided significant values for the analysis of extreme
precipitation events (Duan et al., 2014; Jiang et al., 2016). In
the present study, the SA of a meteorological variable was
defined in Hart and Grumm (2001), described as

SA=
X−µ

σ
, (1)

where X represents daily grid-point atmospheric–oceanic
circulation pattern variables, which are 200 and 500 hPa
HGT and SST in this study. The terms µ and σ are the daily
grid-point mean value and daily grid-point standard devia-
tion, respectively. The climatological periods are 1979–2008
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Figure 7. The first leading empirical orthogonal function (EOF) modes of standardized anomalies (SAs) for 500 hPa geopotential height
fields (HGT) during all severe and extreme drought process segments during different dry and wet spells in northern China, which is the
region described with blue curves. The black boxes outline the selected areas used to structure predictors for northern China, while capital
letters refer to the selected area codes.

for 200 and 500 hPa HGT and 1982–2008 for SST, respec-
tively. For example, with respect to one certain grid point,
both the mean 1 January 500 hPa HGT value and associated
standard deviation are computed on the 1 January 500 hPa
HGT datasets observed during 1979–2008 at each grid point.

5.2 The first EOF leading modes of SA

Empirical orthogonal function analysis (Wilks, 2011) is in-
troduced to decompose spatial–temporal datasets of drought-
related atmospheric–oceanic SA into spatially stationary
coefficients (leading modes) and time-varying coefficients
(principal component). Considering that the first leading
EOF modes reflect the largest fraction of drought-related
atmospheric–oceanic spatial variability, we focus on them
in this study. In addition, in order to highlight the impor-
tance of extreme droughts, EOF analysis is conducted on
atmospheric–oceanic SAs during severe and extreme drought
segments. With the same dry and wet spells and drought
grade, SA-based maps during all drought process segments
are used for EOF analysis. For example, SA-based maps of
500 hPa HGT during all three severe segments during wet
spells in northern China (Table 4) are analyzed with the EOF
method, and the first EOF lead mode is shown in Fig. 7h.
Identical EOF analysis is conducted on atmospheric–oceanic

SA of 200 and 500 hPa HGT and SST during all four dry and
wet spells in northern China. Relevant results for northern
China are shown in Figs. 7, 8, and S2. In addition, the rel-
evant results of EOF analysis for eastern and southwestern
China are different, but for the sake of conciseness, they are
not shown in the paper.

5.3 Pattern-based predictor construction

Positive and negative pattern areas in the first EOF lead-
ing modes are used to build predictors, which resemble the
pattern-based definition of atmospheric teleconnection in-
dices (Wallace and Gutzler, 1981). As shown in Fig. 7a, a
large area of positive pattern (region B) occurs over south-
eastern China, while a negative pattern area (region A) ap-
pears to the north of Eurasia. Generally, the predictor is area-
averaged over all gridded SA-based variables in selected ar-
eas, such as A and B, considering the reversed signs indicated
with different colors. Results from the pattern-based predic-
tor construction are shown in Table 5.

As shown in Fig. 7, the spatial pattern of different phases
in the 500 hPa HGT fields were adequately considered, in-
cluding low–high latitude differences (e.g., PHGT500,0 in Ta-
ble 5) and ocean–continent differences (e.g., PHGT500,3 in Ta-
ble 5). In addition, the spatial pattern of different phases sur-
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Table 5. Predictor-structured results based on the first leading empirical orthogonal function (EOF) modes for SAs of 200 hPa HGT, 500 hPa
HGT, and SST fields during different dry and wet spells in northern China. Capital letters refer to the code for selected areas in Figs. 7, 8,
and S2. In the term “PXXX,Y”, P, XXX, and Y refer to predictors, atmospheric or oceanic elements, and the code of new predictors,
respectively.

Dry Dry–Wet Wet–Dry Wet

PSST,0 =A−B PSST,5 =L+K− I PSST,9 =Q PSST,12 =T
PSST,1 =D−B PSST,6 = J− I PSST,10 =R PSST,13 =U−V
PSST,2 =A−C PSST,7 =M−P PSST,11 =S PSST,14 =W−X
PSST,3 =F−E PSST,8 =N−O PHGT500,5 = J−K PHGT500,9 =R−S
PSST,4 =H−G PHGT500,2 =E−F PHGT500,6 =M−L PHGT500,10 =T−S
PHGT500,0 =B−A PHGT500,3 =G−F PHGT500,7 =O−N PHGT500,11 =U−V
PHGT500,1 =C−D PHGT500,4 =H− I PHGT500,8 =Q−P PHGT500,12 =X−W
PHGT200,0 =A−B PHGT200,2 =F−E PHGT200,6 =K−L PHGT500,13 =U−W
PHGT200,1 =C−D PHGT200,3 =F−G PHGT200,7 =K−M PHGT200,10 =R−S
– PHGT200,4 =H− I PHGT200,8 =O−N PHGT200,11 =X−T

PHGT200,5 =H− J PHGT200,9 =Q−P PHGT200,12 =V−U
– – PHGT200,13 =W−U

Figure 8. Same as Fig. 7, but for standardized anomalies (SAs) of SST fields associated with droughts in northern China.

rounding the prediction-targeted region (e.g., regions R, S,
and T in Fig. 7g) was intentionally used to construct predic-
tors, such as PHGT500,9 and PHGT500,10 in Table 5. Because
the first EOF modes of 200 hPa HGT (Fig. S2) were similar
to those of 500 hPa HGT, the specified illustrations were not
shown here but were considered in the analysis. Additionally,
the positive and negative pattern areas in the Pacific SST SA
fields were also used, especially in the subtropical gyre zone

(Fig. 8a–d) and El Niño region (Fig. 8e and f). Furthermore,
some regions, such as the El Niño Regions R, Q, and S, were
separately used for the construction of the predictors. In ad-
dition to the predictors constructed for northern China (Ta-
ble 5), different predictor-structured results for eastern and
southwestern China were also obtained but not shown in the
paper.
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Table 6. Statistical parameters of stepwise-regression equations used for prediction during different calibration periods in northern China.

Calibration period Simulation or prediction Numbers of selected/ Multiple correlation
(1 Jan 1983–) period initial predictors coefficient

31 Dec 2008 1 Jan–31 Dec 2009 38/43 0.76
31 Dec 2009 1 Jan–31 Dec 2010 37/43 0.76
31 Dec 2010 1 Jan–31 Dec 2011 39/43 0.75
31 Dec 2011 1 Jan–31 Dec 2012 39/43 0.76
31 Dec 2012 1 Jan–31 Dec 2013 38/43 0.76
31 Dec 2013 1 Jan–31 Dec 2014 39/43 0.75

Figure 9. Temporal evolution of observed and calibrated SPI3 during the calibration period between 1 January 1983 and 31 December 2008
in northern China.

6 Model calibration

6.1 Synchronous statistical relationship

Stepwise regression (Afifi and Azen, 1972) is a method for
fitting multiple linear regression models, in which a pre-
dictive variable is considered for addition to or subtrac-
tion from a set of explanatory variables according to sta-
tistically significant extent or loss. In this study, it is used
to build the synchronous statistical relationship between all
90-day-accumulated SA-based predictors and the prediction
target SPI3. SA-based predictors are calculated with the
NCEP/NCAR reanalysis dataset (Kalnay et al., 1996). Es-
sentially, the conceptual model, aimed at seasonal drought
process prediction, is a synchronous stepwise relationship.

6.2 Rolling calibration year by year

To meet the practical requirements of operational service de-
partments, model calibration is also running year by year (Ta-
ble 6). For example, the seasonal drought prediction model,
calibrated from 1 January 1983 to 31 December 2011, is used
for initial daily prediction time in the entire 2012 year. For
every initial drought prediction in the year 2013, the corre-
sponding drought model is calibrated from 1 January 1983 to

31 December 2012. In addition, detailed information about
selected predictors and relevant coefficients can be found in
Table S1 in the Supplement.

The calibration period increases year by year, therefore,
the number of samples used for calibration also increases
year by year. Multiple correlation coefficients in six drought
prediction models are no less than 0.75. Statistical param-
eters and their total numbers show slight changes across
the six calibration experiments (Table 6). Furthermore, cal-
ibrated SPI3 curves are almost consistent with the observa-
tion data (Fig. 9), especially with respect to turning points
and trends. Different parameter sets and results of model cal-
ibration for eastern and southwestern China are not shown in
the paper.

7 Drought process simulation and prediction

7.1 Model forcing

Because the conceptual model is essentially a synchronous
statistical relationship, the model itself has no lead time.
Therefore, model simulation and prediction have to be fur-
ther forced with reanalysis and forecast datasets. During the
periods of model simulation, the synchronous statistical rela-
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Figure 10. Illustration about how to calculate the prospective 90-day daily SPI3 time series. ”Reforecast” is denoted by ”refcst”.

tionship is forced with the NCEP/NCAR reanalysis dataset.
For model prediction, it is operationally forced with CFSv2
forecast datasets, together with the NCEP/NCAR reanalysis
dataset. Therefore, the lead time for the conceptual model
depends on that of the climate forecast models.

In particular, because we focus on the prospective 90-day
drought process prediction (predicted daily SPI3 time series
with 90 points), it is necessary to illustrate how to calculate
every forecast point (daily SPI3). As shown in Fig. 10, pre-
dicted daily SPI3 at the prospective N th day is originally
based on a combination of observed and dynamically fore-
cast SA-based data. The computation of these SA-based data
follow Sect. 5.1, and the observed data are also retrieved from
the NCEP/NCAR reanalysis data. In addition, when the lead
time is longer, more dynamically forecast data are included
and corresponding daily SPI3 value contains larger uncer-
tainty.

7.2 Drought processes simulated with the
NCEP/NCAR reanalysis datasets

To assess model performance of severe seasonal droughts,
we take four recent drought processes in southwestern China,
eastern China, and northern China as examples. First, south-
western China experienced two severe droughts (the black
boxes in Fig. 11c). Although the simulated SPI3 does not
reach its peak during the 2009–2010 drought, it indicates
the state transformation from drought occurrence to persis-
tence and eventually to relief. In terms of the 2011 summer
drought in the southwestern China, the simulated SPI3 indi-
cates that the state remains wet and gradually becomes wet-
ter, indicating no valuable information consistent with obser-
vations. Nevertheless, during the phase of drought recession,
the simulated development is quite similar to the observed
development. This comparison indicates that the conceptual
model performs well in development but is weak in sever-
ity. This distinct feature also appears in the simulation of the

Figure 11. Temporal evolution of observed and simulated SPI3
processes during the period from 1 January 2009 to 31 Decem-
ber 2014. The black boxes in (a)–(c) indicate the 2014 summer and
autumn drought in northern China, 2011 spring drought in eastern
China, 2009–2010 drought in southwestern China, and 2011 sum-
mer drought in southwestern China. Red curves refer to simulated
SPI3, while curves filled with light blue represent observed SPI3.

2011 drought in eastern China (the black box in Fig. 11b) and
2014 drought in northern China (the black box in Fig. 11a).
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7.3 Drought processes predicted with the CFSv2
forecast datasets

Compared with drought simulation, operationally predicted
results may bring some uncertainties into the prospective
drought processes. As shown in Fig. 12b, predicted curves
perform worse than the simulated curves near the peak of
the 2011 eastern China drought, as the prospective observa-
tion tendency is rising rather than decreasing. However, in
the other three droughts, the predicted curves are good at in-
dicating drought development to some different degrees, re-
sembling the simulated results quite well. For example, the
presented operationally reforecast curves indicate drought
occurrence, persistence, and relief during the 2009–2010
drought in southwestern China (Fig. 12a).

8 Drought outlook

8.1 Angle-based rules

Compared with the predicted prospective SPI3 time series,
the drought outlook is a convenient and valuable attach-
ment product for water resource managers. To create the
drought outlook, angle-based rules are developed to trans-
form the predicted prospective 90-day SPI3 curves into dif-
ferent drought tendencies. Three essential technical points
are as follows.

First, some variables must be defined to describe drought
development. Similar to the slope of curves, angles of pre-
dicted 90-day SPI3 curves are used to describe the prospec-
tive drought situation. Generally, positive angles of SPI3
curves indicate wetter tendencies, while negative angles rep-
resent drier tendencies.

The second is two general classifications of drought out-
look on the basis of the current drought situation. For no cur-
rent drought (see sketch map I in Fig. 13), the prospective
situation tends to be no drought or drought occurrence. In
this case, a critical angle α1 can be used to help distinguish
between these two types of drought outlook. A calculated
SPI3 curve angle α that is less than α1 results in the prospec-
tive development of drought occurrence; otherwise, the non-
drought situation persists. Similarly, for a current condition
of being in drought (see sketch map II in Fig. 13), a compar-
ison of critical angles α2 (equal to zero) and α3 defines the
other three types of drought outlook, which are drought per-
sistence (α less than α2), drought recession (α more than α2,
but less than α3), and drought relief (α more than α3).

Third, it is necessary to explain the practical calculation
for curve angles and how to conduct an angle-based drought
outlook. Except the constant critical angle α2 (equal to zero),
both α1 and α3 represent angles between the horizontal line
and arrow from the original point (initial prediction time) to
the points on the time axis (see red dashed arrowed lines in
Fig. 13a–e). Similarly, α represents angles between the hor-

izontal line and arrow from the original point to the points
on the predicted SPI3 curve (see green solid arrowed lines
in Fig. 13a–e). However, considering the predicted period of
SPI3 time series is prospectively 90 days, curve angle αi and
critical angles α1i , α2i and α3i (i = 1,2, . . .,90) can be cal-
culated. Finally, according to the angle-based rules shown in
Table 7, a drought outlook can be performed.

8.2 Simulated and predicted results

Following the method in Sect. 8.1, drought outlook is con-
ducted based on angle comparison of the simulated prospec-
tive 90-day SPI3 curve (Table 8). Simulations at every
initial time are real-time corrected with the current situa-
tion. In terms of the 2009–2010 drought in southwestern
China and the 2011 summer drought in eastern China, the
simulated drought outlook performs well with respect to
drought occurrence, persistence, and recession before 2 De-
cember 2009 and 1 May 2011. In addition, the simulation of
the 2011 drought in southwestern China performs well in Au-
gust 2011. The 2014 summer drought in northern China lasts
for a relatively short time, resulting in an observed drought
outlook that maintains a state of drought relief during the
first month of the drought process. Even so, the simulation
can also capture it. Additionally, these four drought outlooks
remain weak in simulating the development of drought relief
after 31 January 2010, 11 May 2011, 11 September 2011,
and 21 July 2014, respectively. Weak performance in simu-
lating severity leads to the development of drought recession
rather than drought relief.

For predicted drought outlooks, operationally predicted re-
sults (Table 9) in southwestern China and eastern China are
relatively similar to the simulated ones (Table 8). In compar-
ison, predicted drought outlook during the first month of the
2014 drought in northern China performs worse than simu-
lated results.

9 Discussion

Considering that the development of drought processes is
closely related to the spatial–temporal evolution of atmo-
spheric and oceanic anomalies, a conceptual prediction
model of seasonal drought processes is proposed in our
study. Despite its weakness in predicting drought severity,
the model performs well in simulating and predicting drought
development. Because the proposed model is a new attempt,
several associated discussion issues are as follows.

First, process prediction and outlook of seasonal drought
are the focus of our study. To date, a considerable number of
studies have focused on predicting discrete drought classes
(Aviles et al., 2016; Bonaccorso et al., 2015; Chen et al.,
2013; Moreira et al., 2016) and the probability of drought oc-
currence within certain classes (AghaKouchak, 2014, 2015;
Hao et al., 2014). Compared with these studies, prediction
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Figure 12. Simulation and prediction results of four recent severe drought processes in China. Every unfilled curve represents simulated or
predicted prospective 90-day SPI3, with an interval of initial prediction time of about 10 days. The curves filled with blue refer to observed
SPI3. Dark red and bright red curves refer to SPI3 predicted with CFSv2 and CFS products, respectively. Light green curves represent SPI3
simulated with the NCEP/NCAR reanalysis datasets. Every simulated or predicted curve consists of daily SPI3 time series with 90 points.
”Reforecast” is denoted by ”refcst”.

Figure 13. Rules of drought outlook based on angle comparison of prospective 90-day SPI3 curves. Sketch maps I and II show general
drought outlook based on the current drought situation. Panels (a)–(b) and (c)–(e) express different situations of drought outlook associated
with the rules regarding critical angles in Table 7.
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Table 7. Specific rules for drought outlook based on angle comparison. R1 represents the ratio of days when αi is less than the critical angle
α1i(α3i) to the total 90 days. R2 represents the proportion of specific days in the period to the predicted prospective 46–90 days. In R2
calculation, these specific days meet the criteria that αi is greater than critical angle α3i .

Current SPI3 Current condition R1 R2 Drought outlook

Greater than −0.5 no drought less than 10 % – no drought
greater than 10 % – drought occurrence

Less than −0.5 in drought greater than 90 % less than 90 % drought persistence
greater than 90 % greater than 90 % drought recession
less than 90 % – drought relief

Table 8. Simulation assessment of recent severe drought processes in China forced with the NCEP/NCAR reanalysis datasets. The numbers
0–4 in the below table represent different drought states: no drought (0), drought occurrence (1), drought persistence (2), drought reces-
sion (3), and drought relief (4). As well as this, the abbreviation “Simul.” and “Obs.” represent the simulated and observed drought outlooks,
respectively. The abbreviation “Assess.” in the column refers to whether the simulation and observation agree or not.

Drought Processes Initial Time Simul. Obs. Assess. Initial Time Simul. Obs. Assess. Initial Time Simul. Obs. Assess.

30 Jun 2009 1 2 – 28 Sep 2009 3 2 – 11 Jan 2010 2 3 –
10 Jul 2009 2 2 yes 18 Oct 2009 3 2 – 21 Jan 2010 2 3 –
20 Jul 2009 2 3 – 2 Nov 2009 3 3 yes 31 Jan 2010 3 4 –

The 2009–2010 30 Jul 2009 2 3 – 12 Nov 2009 3 3 yes 10 Feb 2010 3 4 –
drought in 9 Aug 2009 2 2 yes 22 Nov 2009 3 3 yes 20 Feb 2010 3 4 –
southwestern China 19 Aug 2009 2 2 yes 2 Dec 2009 3 3 yes 2 Mar 2010 3 4 –

29 Aug 2009 2 2 yes 12 Dec 2009 2 3 – 12 Mar 2010 3 4 –
8 Sep 2009 2 2 yes 22 Dec 2009 2 3 – 22 Mar 2010 3 4 –

18 Sep 2009 2 2 yes 1 Jan 2010 2 3 – – – –

1 Jan 2011 1 1 yes 2 Mar 2011 1 1 yes 1 May 2011 3 3 yes
The 2011 summer 11 Jan 2011 1 1 yes 12 Mar 2011 3 2 – 11 May 2011 3 4 –
drought in 21 Jan 2011 1 1 yes 22 Mar 2011 3 2 – 21 May 2011 3 4 –
eastern China 31 Jan 2011 1 1 yes 1 Apr 2011 3 3 yes 1 Jun 2011 3 4 –

10 Feb 2011 0 1 – 11 Apr 2011 3 3 yes 11 Jun 2011 3 4 –
20 Feb 2011 1 1 yes 21 Apr 2011 3 3 yes 21 Jun 2011 3 4 –

11 Apr 2011 1 1 yes 1 Jul 2011 3 2 – 21 Sep 2011 3 4 –
21 Apr 2011 2 2 yes 11 Jul 2011 3 2 – 1 Oct 2011 3 4 –

The 2011 summer 1 May 2011 2 2 yes 21 Jul 2011 3 2 – 11 Oct 2011 3 4 –
drought in 11 May 2011 2 2 yes 1 Aug 2011 3 3 yes 21 Oct 2011 3 4 –
southwestern China 21 May 2011 4 2 – 11 Aug 2011 3 3 yes 1 Nov 2011 3 4 –

1 Jun 2011 3 2 – 21 Aug 2011 3 3 yes 11 Nov 2011 3 4 –
11 Jun 2011 3 2 – 1 Sep 2011 3 3 yes 21 Nov 2011 2 4 –
21 Jun 2011 3 2 – 11 Sep 2011 3 4 – – – – –

The 2014 summer 1 Jun 2014 4 4 yes 11 Jul 2014 3 3 yes 21 Aug 2014 3 4 –
drought in 11 Jun 2014 4 4 yes 21 Jul 2014 3 4 – 1 Sep 2014 3 4 –
northern China 21 Jun 2014 4 4 yes 1 Aug 2014 3 4 – 11 Sep 2014 3 4 –

1 Jul 2014 1 1 yes 11 Aug 2014 3 4 – 21 Sep 2014 4 4 yes

of regional drought processes is another valuable attempt,
which is beneficial from the moving window of SPI3 ex-
tended from 1 month to 1 day. It performs relatively well
in predicting the development of seasonal drought processes
(Fig. 12). In addition, it can indicate drought occurrence, per-
sistence, and relief relatively well (Tables 8 and 9), which is
meaningful for seasonal water resource management.

Second, the proposed model is essentially one stepwise-
regression equation. Despite its simplicity, it incorporates
drought-related spatial and temporal information as inte-
grally as possible. Because precipitation-related synoptic
systems appear in the troposphere, SST, 500 hPa HGT, and
200 hPa HGT are chosen as representatives of the low, mid-

dle, and upper levels of the troposphere, respectively. Fur-
thermore, all drought process segments assigned to differ-
ent dry and wet spells are used for EOF analysis within the
same dry and wet spells (shown in Sect. 5.2). Therefore, ade-
quate drought-related spatial–temporal information has been
included in these drought predictors.

Third, the reasons for acceptable performance of opera-
tionally predicted results need to be illustrated. Compared
with those forced with the NCEP/NCAR reanalysis datasets
(green curves in Fig. 12), the predicted developments of
drought processes forced with CFSv2 or CFS datasets (red
curves in Fig. 12) are relatively similar, especially with re-
spect to the former segment of every predicted prospective

www.hydrol-earth-syst-sci.net/22/529/2018/ Hydrol. Earth Syst. Sci., 22, 529–546, 2018



542 Z. Liu et al.: A prediction model for seasonal drought processes

Table 9. Same as Table 8 but for predicted results forced with the operational output from CFSv2. The abbreviation “Predi.” represents the
predicted drought outlook. The abbreviation “Assess.” in the column refers to whether the prediction and observation agree or not.

Drought Processes Initial Time Predi. Obs. Assess. Initial Time Predi. Obs. Assess. Initial Time Predi. Obs. Assess.

30 Jun 2009 1 2 – 28 Sep 2009 3 2 – 11 Jan 2010 3 3 yes
10 Jul 2009 2 2 yes 18 Oct 2009 2 2 yes 21 Jan 2010 3 3 yes
20 Jul 2009 3 3 yes 2 Nov 2009 3 3 yes 31 Jan 2010 3 4 –

The 2009–2010 30 Jul 2009 3 3 yes 12 Nov 2009 3 3 yes 10 Feb 2010 4 4 yes
drought in 9 Aug 2009 2 2 yes 22 Nov 2009 3 3 yes 20 Feb 2010 3 4 –
southwestern China 19 Aug 2009 2 2 yes 2 Dec 2009 3 3 yes 2 Mar 2010 3 4 –

29 Aug 2009 2 2 yes 12 Dec 2009 3 3 yes 12 Mar 2010 3 4 –
8 Sep 2009 3 2 – 22 Dec 2009 3 3 yes 22 Mar 2010 3 4 –

18 Sep 2009 2 2 yes 1 Jan 2010 3 3 yes – – – –

1 Jan 2011 1 1 yes 2 Mar 2011 1 1 yes 1 May 2011 2 3 –
The 2011 summer 11 Jan 2011 1 1 yes 12 Mar 2011 2 2 yes 11 May 2011 2 4 –
drought in 21 Jan 2011 1 1 yes 22 Mar 2011 2 2 yes 21 May 2011 2 4 –
eastern China 31 Jan 2011 1 1 yes 1 Apr 2011 2 3 – 1 Jun 2011 2 4 –

10 Feb 2011 1 1 yes 11 Apr 2011 2 3 – 11 Jun 2011 3 4 –
20 Feb 2011 1 1 yes 21 Apr 2011 2 3 – 21 Jun 2011 3 4 –

11 Apr 2011 0 1 – 1 Jul 2011 4 2 – 21 Sep 2011 3 4 –
21 Apr 2011 3 2 – 11 Jul 2011 3 2 – 1 Oct 2011 3 4 –

The 2011 summer 1 May 2011 3 2 – 21 Jul 2011 3 2 – 11 Oct 2011 3 4 –
drought in 11 May 2011 3 2 – 1 Aug 2011 3 3 yes 21 Oct 2011 3 4 –
southwestern China 21 May 2011 4 2 – 11 Aug 2011 3 3 yes 1 Nov 2011 3 4 –

1 Jun 2011 4 2 - 21 Aug 2011 3 3 yes 11 Nov 2011 4 4 yes
11 Jun 2011 4 2 – 1 Sep 2011 3 3 yes 21 Nov 2011 2 4 –
21 Jun 2011 3 2 – 11 Sep 2011 3 4 – – – – –

The 2014 summer 1 Jun 2014 0 4 – 11 Jul 2014 1 3 – 21 Aug 2014 3 4 –
drought in 11 Jun 2014 1 4 – 21 Jul 2014 2 4 – 1 Sep 2014 4 4 yes
northern China 21 Jun 2014 1 4 – 1 Aug 2014 3 4 – 11 Sep 2014 3 4 –

1 Jul 2014 1 1 yes 11 Aug 2014 2 4 – 21 Sep 2014 4 4 yes

90-day SPI3 curve. Essentially, the 90-day-accumulated SA-
based predictors strengthen the good performance of oper-
ational use. This indicates that observed information from
atmospheric and oceanic anomalies are involved to differ-
ent degrees (Fig. 10). With the incorporation of observed
data, its operational application provides relatively accurate
and valuable information. However, it is also worthwhile
to investigate how changing the length of the predicted pe-
riod can make predicted drought processes relatively accu-
rate and acceptable, such as the prospective 1–30-day or the
prospective 1–60-day periods. The relevant comparison re-
sults with different predicted periods are shown in Fig. 14. It
appears that the 2009–2010 drought in southwestern China
and 2014 drought in northern China can be predicted and
simulated well even for the prospective 1–75-day period. In
contrast, the prospective 1–45-day period may be a feasible
and acceptable lead time for simulation and prediction of the
2011 droughts in southwestern China and eastern China, af-
ter which the simulated and predicted developments clearly
change.

Fourth, the weak performance in predicting the severity
of drought, including drought peak and drought relief, is an
important issue. Similar to the concluding remarks regard-
ing a probabilistic drought prediction model, the weak per-
formance in predicting the severity of the drought peak is
due to the typical problem of an inherent averaging effect

depressing the extremes (Behrangi et al., 2015). With the
help of real-time correction from operational application, the
prediction of drought peaks can be improved. In addition,
the prediction of drought relief should also be considered.
As listed in both Tables 8 and 9, the simulated and pre-
dicted results for drought relief are unsatisfying. This weak
performance may be associated with precipitation-causing
weather patterns during drought relief. They are unsteady
and change dramatically compared with those features dur-
ing drought persistence. Because the period of drought relief
is a relatively short phase of the drought process, the rele-
vant information may not be involved in the first EOF modes
(Sect. 5.2). Generally, three measures for potential improve-
ment are as follows. (1) More secondary EOF modes, includ-
ing precipitation-causing circulation patterns during drought
relief, can be incorporated when building initial predictors.
(2) The rapid change index (Otkin et al., 2015) could be
introduced to describe temporal changes during drought re-
lief on subseasonal timescales. (3) The empirical factor can
be introduced to improve drought-relief prediction. The pre-
dicted SPI3 during the phase of drought relief could be mul-
tiplied by empirical factors to strengthen drought relief de-
velopment.

Fifth, it is necessary to explain the method of predictor
construction. The predictor-structured method in our study is
similar to the definition of teleconnection indices (Wallace
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Figure 14. Same as Fig. 12 but for different predicted periods, which are namely the prospective (a)–(d) 1–30-day, (e)–(h) 1–45-day, (i)–
(l) 1–60-day, and (m)–(p) 1–75-day periods. “Reforecast” is denoted by “refcst” and “forecast” by “fcst”.

and Gutzler, 1981). It is more goal-directed, because these
structured predictors are directly related to synchronous
atmospheric–oceanic anomalous circulation patterns during
different drought segments within the same dry and wet
spells. However, to design geographical ranges of anomalous
areas and combine them is subjective, which leads to con-
siderable uncertainties. Accordingly, an objective anomaly-
recognized method with explicit critical values needs to be
developed. This will contribute to auto-run feasibility of this
conceptual prediction model without artificial interaction.

The sixth issue to illustrate is synchronous SST anomalies
used in EOF analysis and model construction. Traditionally,
SST anomalies a few months ahead influence the subsequent
regional droughts. However, it is also feasible and common
that synchronous SST anomalies are used in the investigation
of regional drought events in southwestern China (Feng et al.,
2014), the Yangtze River basin (Lu et al., 2014), and northern
China (Wang and He, 2015), which may shape synchronous
drought-related circulation patterns. In addition, this is con-
venient for operational application, while forecast SST and

200 and 500 hPa HGT can be retrieved together from CFSv2
products simultaneously.

Finally, the timescale of the drought index needs to be ex-
plained. SPI3 is the index used for drought identification and
prediction in the study, which provides a seasonal estima-
tion of precipitation and tends to be a good indication of soil
moisture conditions as the growing season begins in some
primary agricultural regions worldwide (WMO, 2012). How-
ever, to meet operational requirements of seasonal hydrolog-
ical forecasting, the indices such as 6-month up to 24-month
SPI can be also used for hydrological drought analyses and
applications (WMO, 2012). With the increasing timescale of
SPI, its lead time with given accuracy requirements might
be longer, together with the smoother temporal evolution.
Accordingly, atmospheric and oceanic anomalies used for
model calibration need to be changed from 90-day accumu-
lated to 6- or 24-month accumulated.
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10 Conclusions

Drought prediction is fundamental for seasonal water man-
agement. In this study, we constructed a conceptual pre-
diction model of seasonal drought processes based on syn-
chronous standardized anomalies of 200 and 500 hPa geopo-
tential height and sea surface temperature; we considered
that drought development is closely related to the spatial–
temporal evolution of large-scale atmospheric–oceanic cir-
culation patterns. We used northern China as an example
to introduce the method and used four recent severe re-
gional drought processes in China for model application.
This model can be used for seamless drought prediction and
drought outlook, forced with seasonal climate forecast mod-
els. The main process is as follows. (1) A 3-month SPI up-
dated daily (SPI3) was used to capture severe and extreme
drought processes. (2) Empirical orthogonal function anal-
ysis was applied to SA of 200 and 500 hPa HGT and SST
during drought process segments within the same dry and
wet spells. Subsequently, spatial patterns of the first EOF
modes were used to structure SA-based predictors. (3) The
synchronous stepwise-regression relationship between SPI3
and all 90-day-accumulated SA-based predictors were cal-
ibrated using the NCEP/NCAR reanalysis datasets. (4) To
achieve a prospective 90-day drought outlook, we further
developed an objective method based on angles of the pre-
dicted prospective 90-day SPI3 curves. (5) Finally, simula-
tion and prediction of seasonal drought processes, together
with drought outlook, were forced with the NCEP/NCAR
reanalysis datasets and the NCEP Climate Forecast System
Version 2 (CFSv2) operationally forecast datasets, respec-
tively. Model application during four recent severe drought
processes in China revealed that the model is good at de-
velopment prediction but weak in severity prediction. These
results indicate that the proposed conceptual drought predic-
tion model is another potentially valuable addition to current
research on drought prediction.
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