(c) (

Supplement of

A conceptual prediction model for seasonal drought processes using atmospheric and oceanic standardized anomalies: application to regional drought processes in China

Zhenchen Liu et al.

Correspondence to: Hai He (hehai_hhu@hhu.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

S1: the detailed information of retrieving $200 \mathrm{hPa} / 500 \mathrm{hPa}$ HGT and SST datasets from CFSv2 and CFS

For the drought process prediction before $1 / 4 / 2011$, we retrieved reforecast $200 \mathrm{hPa} / 500 \mathrm{hPa} \mathrm{HGT}$ and SST datasets from the website (http://nomads.ncdc.noaa.gov/modeldata/cfs_reforecast_6-hourly_9mon_pgbf/) and the website (http://nomads.ncdc.noaa.gov/modeldata/cmd_ts_9mon/), respectively. For the drought process prediction after 1/4/2011, we retrieved relevant datasets from the website (http://nomads.ncdc.noaa.gov/modeldata/cfsv2_forecast 6-hourly 9 mon _pgbf/) and the website (http://nomads.ncdc.noaa.gov/modeldata/cfsv2_forecast_6-hourly_9mon_ocnf/), respectively. Because we focus on the prospective 90 day seasonal drought process prediction during four severe drought processes in this study, prospective 90 day forecast data subsets for $200 \mathrm{hPa} / 500 \mathrm{hPa} \mathrm{HGT}$ and SST are retrieved from CFSv2 and CFS. All the relevant reforecast and forecast datasets are in the 6-hourly form, and then they are transformed into daily forecasts with a simple time-weighted mean based on UTC 00 and UTC 12 forecast files. For example, for the drought process prediction initialized on 11/4/2011, we need to download prospective 90 day forecasted SST files from the website (http://nomads.ncdc.noaa.gov/modeldata/cfsv2_forecast_6-hourly_9mon_ocnf/2011/201104/20110411/2014041100/). The $180(90 \times 2)$ files are named as "ocnf2011MMDDSS.01.2014041100.grb2", while "MMDD" ranges from "0411" (April 11) to " 0709 " (July 9), while "SS" are " 00 " or " 12 ". In addition, for the four drought processes presented in the study, initial prediction time are as follows:

Drought Processes	Initial Time	Initial Time	Initial Time
	$30 / 6 / 2009$	$28 / 9 / 2009$	$11 / 1 / 2010$
	$10 / 7 / 2009$	$18 / 10 / 2009$	$21 / 1 / 2010$
the	$20 / 7 / 2009$	$2 / 11 / 2009$	$31 / 1 / 2010$
$2009 / 2010$	$30 / 7 / 2009$	$12 / 11 / 2009$	$10 / 2 / 2010$
drought in	$9 / 8 / 2009$	$22 / 11 / 2009$	$20 / 2 / 2010$
Southwest	$19 / 8 / 2009$	$2 / 12 / 2009$	$2 / 3 / 2010$
China	$29 / 8 / 2009$	$12 / 12 / 2009$	$12 / 3 / 2010$
	$8 / 9 / 2009$	$22 / 12 / 2009$	$22 / 3 / 2010$
	$18 / 9 / 2009$	$1 / 1 / 2010$	-
	$1 / 1 / 2011$	$2 / 3 / 2011$	$1 / 5 / 2011$
the 2011	$11 / 1 / 2011$	$12 / 3 / 2011$	$11 / 5 / 2011$
summer	$21 / 1 / 2011$	$22 / 3 / 2011$	$21 / 5 / 2011$
drought in	$31 / 1 / 2011$	$1 / 4 / 2011$	$1 / 6 / 2011$
East	$10 / 2 / 2011$	$11 / 4 / 2011$	$11 / 6 / 2011$
China	$20 / 2 / 2011$	$21 / 4 / 2011$	$21 / 6 / 2011$
$21 / 9 / 2011$	$21 / 9 / 2011$		
	$11 / 4 / 2011$	$1 / 7 / 2011$	
summer	$21 / 4 / 2011$	$11 / 7 / 2011$	$1 / 10 / 2011$
drought in	$1 / 5 / 2011$	$21 / 7 / 2011$	$11 / 10 / 2011$
Southwest	$11 / 5 / 2011$	$1 / 8 / 2011$	$21 / 10 / 2011$
China	$21 / 5 / 2011$	$11 / 8 / 2011$	$1 / 11 / 2011$

	$1 / 6 / 2011$	$21 / 8 / 2011$	$11 / 11 / 2011$
	$11 / 6 / 2011$	$1 / 9 / 2011$	$21 / 11 / 2011$
	$21 / 6 / 2011$	$11 / 9 / 2011$	-
the 2014	$1 / 6 / 2014$	$11 / 7 / 2014$	$21 / 8 / 2014$
summer	$11 / 6 / 2014$	$21 / 7 / 2014$	$1 / 9 / 2014$
drought in	$21 / 6 / 2014$	$1 / 8 / 2014$	$11 / 9 / 2014$
North	$1 / 7 / 2014$	$11 / 8 / 2014$	$21 / 9 / 2014$
China			

Figure S1. Comparison results of P, "IP[0]" and "IP[-1]" for drought processes during 1979-2008 in North China. The start dates of these drought processes have been shifted 90 days in advance. IP represents Intersection Proportion, while P refers to critical Proportion. The terms "IP[0]" and "IP[-1]" express IP associated with the start and end segments, respectively.

Figure S2. Same as Fig. 7, but for Standardized Anomalies (SA) of 200 hPa geo-potential height fields (HGT).

Table S1. List of the selected predictors and relevant coefficients during different calibration periods in North China. Types and codes correspond to Table 5.

Type	Code	Calibration period (1983-)					
		2008	2009	2010	2011	2012	2013
SST	0	0.003	0.003	0.003	0.003	0.003	0.001
	1	-0.005	-0.004	-0.004	-0.003	-0.003	-0.002
	2	0.002	0.003	0.003	0.002	0.002	0.003
	3	0.002	0.003	0.002	0.002	0.002	0.002
	4	-0.005	-0.005	-0.005	-0.005	-0.005	-0.004
	5	-	-	0.000	0.001	0.001	-
	6	-0.001	0.000	-0.001	-0.001	-0.001	-
	7	-0.001	-0.001	-0.002	-0.002	-0.001	-
	8	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
	9	0.003	0.004	0.006	0.004	0.003	0.002
	10	0.001	0.001	0.001	0.001	0.001	0.000
	11	-	-	-0.002	-0.001	-	-
	12	-0.002	-0.001	-0.001	-0.001	0.000	-0.001
	13	0.003	0.003	0.003	0.003	0.003	-
	14	0.003	0.003	0.003	0.003	0.003	0.003
$\begin{gathered} 200 \mathrm{hPa} \\ \mathrm{HGT} \end{gathered}$	0	-	-	-	-	-	-0.001
	1	0.003	0.002	0.003	0.003	0.003	0.002
	2	0.015	0.013	0.015	0.015	0.015	0.015
	3	-0.003	-	-0.002	-0.003	-0.003	-0.003
	4	-0.001	-	-	-	-	-
	5	0.009	0.008	0.008	0.008	0.008	0.008
	6	-0.003	-0.004	-0.003	-0.003	-0.004	-0.003
	7	0.015	0.013	0.014	0.014	0.014	0.014
	8	-0.008	-0.007	-0.007	-0.007	-0.006	-0.006
	9	0.005	0.004	0.004	0.004	0.005	0.005
	10	0.009	0.009	0.008	0.008	0.008	0.009
	11	-	-0.002	-	-	-	-
	12	0.003	0.003	0.003	0.003	0.002	0.001
	13	-0.004	-0.003	-0.004	-0.004	-0.004	-0.004
$\begin{gathered} 500 \mathrm{hPa} \\ \mathrm{HGT} \end{gathered}$	0	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
	1	-0.009	-0.008	-0.008	-0.008	-0.008	-0.008
	2	-	-	-	-	-	0.003
	3	0.007	0.007	0.007	0.007	0.007	0.005
	4	0.014	0.013	0.012	0.012	0.012	0.009
	5	-0.004	-0.003	-0.003	-0.003	-0.003	-0.002
	6	0.016	0.015	0.016	0.016	0.016	0.013
	7	-0.018	-0.017	-0.018	-0.017	-0.017	-0.014

8	-0.018	-0.018	-0.018	-0.017	-0.018	-0.018
9	0.009	0.009	0.009	0.008	0.008	0.008
10	-0.010	-0.010	-0.010	-0.009	-0.010	-0.010
11	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
12	-0.016	-0.014	-0.015	-0.014	-0.015	-0.013
13	-0.011	-0.012	-0.011	-0.011	-0.010	-0.010

