

Supplement of

A conceptual prediction model for seasonal drought processes using atmospheric and oceanic standardized anomalies: application to regional drought processes in China

Zhenchen Liu et al.

Correspondence to: Hai He (hehai_hhu@hhu.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

S1: the detailed information of retrieving 200 hPa/500 hPa HGT and SST datasets from CFSv2 and CFS

For the drought process prediction before 1/4/2011, we retrieved reforecast 200 hPa/500 hPa HGT and SST datasets from the website (http://nomads.ncdc.noaa.gov/modeldata/cfs reforecast 6-hourly 9mon pgbf/) and the website

- 5 (http://nomads.ncdc.noaa.gov/modeldata/cmd_ts_9mon/), respectively. For the drought process prediction after 1/4/2011, we retrieved relevant datasets from the website (http://nomads.ncdc.noaa.gov/modeldata/cfsv2_forecast_6-hourly_9mon_pgbf/) and the website (http://nomads.ncdc.noaa.gov/modeldata/cfsv2_forecast_6-hourly_9mon_ocnf/), respectively. Because we focus on the prospective 90 day seasonal drought process prediction during four severe drought processes in this study, prospective 90 day forecast data subsets for 200 hPa/500 hPa HGT and SST are retrieved from CFSv2 and CFS. All the
- 10 relevant reforecast and forecast datasets are in the 6-hourly form, and then they are transformed into daily forecasts with a simple time-weighted mean based on UTC 00 and UTC 12 forecast files. For example, for the drought process prediction initialized on 11/4/2011, we need to download prospective 90 day forecasted SST files from the website (http://nomads.ncdc.noaa.gov/modeldata/cfsv2_forecast_6-hourly_9mon_ocnf/2011/201104/20110411/2014041100/). The 180 (90×2) files are named as "ocnf2011MMDDSS.01.2014041100.grb2", while "MMDD" ranges from "0411" (April 11)
- 15 to "0709" (July 9), while "SS" are "00" or "12". In addition, for the four drought processes presented in the study, initial prediction time are as follows:

Drought Processes	Initial Time	Initial Time	Initial Time	
	30/6/2009	28/9/2009	11/1/2010	
	10/7/2009	18/10/2009	21/1/2010	
	20/7/2009	2/11/2009	31/1/2010	
2009/2010	30/7/2009	12/11/2009	10/2/2010	
drought in	9/8/2009	22/11/2009	20/2/2010	
Southwest	19/8/2009	2/12/2009	2/3/2010	
China	29/8/2009	12/12/2009	12/3/2010	
	8/9/2009	22/12/2009	22/3/2010	
	18/9/2009	1/1/2010	-	
	1/1/2011	2/3/2011	1/5/2011	
the 2011	11/1/2011	12/3/2011	11/5/2011	
summer	21/1/2011	22/3/2011	21/5/2011	
drought in East	31/1/2011	1/4/2011	1/6/2011	
China	10/2/2011	11/4/2011	11/6/2011	
	20/2/2011	21/4/2011	21/6/2011	
the 2011	11/4/2011	1/7/2011	21/9/2011	
the 2011 summer drought in	21/4/2011	11/7/2011	1/10/2011	
	1/5/2011	21/7/2011	11/10/2011	
Southwest	11/5/2011	1/8/2011	21/10/2011	
China	21/5/2011	11/8/2011	1/11/2011	

	1/6/2011	21/8/2011	11/11/2011
	11/6/2011	1/9/2011	21/11/2011
	21/6/2011	11/9/2011	-
the 2014	1/6/2014	11/7/2014	21/8/2014
summer	11/6/2014	21/7/2014	1/9/2014
arought in North	21/6/2014	1/8/2014	11/9/2014
China	1/7/2014	11/8/2014	21/9/2014

20 Jun. 10 S	Sep. 20 I	Nov. 20 I	Mar. 20 J	un. 10 s	Sep. 20	Nov.	
81 days	71 days	120 days	93 days	81 days	71 days	120 days	Comparison of IP(0) (or IP(1)) and P (set as 40%)
Wet	Wet-Dry	Dry	Dry-Wet	Wet	Wet-Dry	Dry	Comparison of fr [0] (of fr [-1]) and r (set as 40 %)
		14/3/1997				28/11/1997	$\underline{D1} = 50/ < 400/ - P$ $\underline{D2} = 70/ < 400/ - P$
	i i	DI				D2	$\frac{1}{120} = 376 < 4076 = 1$, $\frac{1}{120} = 776 < 4076 = 1$
4/8/1998			11/4/1999		1	1	D3 D4
					1	I.	$\frac{D3}{81} = 46\% > 40\% = P, \frac{D4}{93} = 24\% < 40\% = P$
D3	17/10/108	1	D4		1	1	
	1//10/198	,	14/5/1984		1		$\frac{D5}{D1} = 49\% > 40\% = P$, $\frac{D6}{02} = 60\% > 40\% = P$
	D5		Ď6			1	71 1370 1070 2, 93
11/8/1988		9/1/1989			1	I	D7 27.04 54004 D D8 42.04 > 4004 D
		The last	1		1	1	$\frac{1}{81} = 3 / \sqrt[6]{0} < 40 \sqrt[6]{0} = P, \frac{1}{120} = 43 \sqrt[6]{0} > 40 \sqrt[6]{0} = P$
D /	1	100	18/4/1999		1/11/1999	l.	D0 D10
1							$\frac{D9}{03} = 69\% > 40\% = P, \frac{D10}{71} = 75\% > 40\% = P$
I 	-		D9		D10	i	75 /1
		24/12/1999	i	27/6/2000	1	I I	$\underline{D11} = 73\% > 40\% = P$, $\underline{D12} = 9\% < 40\% = P$
	i			D12	1	1	
		14/1/2001	1	1/8/2001	1	1	D12 D14
		—			1		$\frac{D13}{120} = 55\% > 40\% = P, \frac{D14}{91} = 53\% > 40\% = P$
		Ď13		Ď14		 	120 01
			5/5/2002			4/12/2002	D15 - 400 > 400 = D16 - 120 < 400 = D
1			D15			D 16	$\frac{1}{93} = 49\% 40\% = r$, $\frac{1}{120} = 13\% 40\% = r$
1	27/9/2005	2/2/2006			1		
1						1	$\frac{D17}{120} = 63\% > 40\% = P$
 		Ď17			1	1	120

Figure S1. Comparison results of P, "IP[0]" and "IP[-1]" for drought processes during 1979–2008 in North China. The start dates of these drought processes have been shifted 90 days in advance. IP represents Intersection Proportion, while P refers to critical Proportion. The terms "IP[0]" and "IP[-1]" express IP associated with the start and end segments, respectively.

30 Figure S2. Same as Fig. 7, but for Standardized Anomalies (SA) of 200 hPa geo-potential height fields (HGT).

		Calibration period (1983–)							
Туре	Code	2008	2009	2010	2011	2012	2013		
	0	0.003	0.003	0.003	0.003	0.003	0.001		
	1	-0.005	-0.004	-0.004	-0.003	-0.003	-0.002		
	2	0.002	0.003	0.003	0.002	0.002	0.003		
	3	0.002	0.003	0.002	0.002	0.002	0.002		
	4	-0.005	-0.005	-0.005	-0.005	-0.005	-0.004		
	5	-	-	0.000	0.001	0.001	-		
	6	-0.001	0.000	-0.001	-0.001	-0.001	-		
SST	7	-0.001	-0.001	-0.002	-0.002	-0.001	-		
	8	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003		
	9	0.003	0.004	0.006	0.004	0.003	0.002		
	10	0.001	0.001	0.001	0.001	0.001	0.000		
	11	-	-	-0.002	-0.001	-	-		
	12	-0.002	-0.001	-0.001	-0.001	0.000	-0.001		
	13	0.003	0.003	0.003	0.003	0.003	-		
	14	0.003	0.003	0.003	0.003	0.003	0.003		
	0	-	-	-	-	-	-0.001		
	1	0.003	0.002	0.003	0.003	0.003	0.002		
	2	0.015	0.013	0.015	0.015	0.015	0.015		
	3	-0.003	-	-0.002	-0.003	-0.003	-0.003		
	4	-0.001	-	-	-	-	-		
	5	0.009	0.008	0.008	0.008	0.008	0.008		
200 hPa	6	-0.003	-0.004	-0.003	-0.003	-0.004	-0.003		
HGT	7	0.015	0.013	0.014	0.014	0.014	0.014		
	8	-0.008	-0.007	-0.007	-0.007	-0.006	-0.006		
	9	0.005	0.004	0.004	0.004	0.005	0.005		
	10	0.009	0.009	0.008	0.008	0.008	0.009		
	11	-	-0.002	-	-	-	-		
	12	0.003	0.003	0.003	0.003	0.002	0.001		
	13	-0.004	-0.003	-0.004	-0.004	-0.004	-0.004		
	0	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002		
	1	-0.009	-0.008	-0.008	-0.008	-0.008	-0.008		
	2	-	-	-	-	-	0.003		
500 hPa	3	0.007	0.007	0.007	0.007	0.007	0.005		
HGT	4	0.014	0.013	0.012	0.012	0.012	0.009		
	5	-0.004	-0.003	-0.003	-0.003	-0.003	-0.002		
	6	0.016	0.015	0.016	0.016	0.016	0.013		
	7	-0.018	-0.017	-0.018	-0.017	-0.017	-0.014		

Table S1. List of the selected predictors and relevant coefficients during different calibration periods in North China. Types and codes correspond to Table 5.

8	-0.018	-0.018	-0.018	-0.017	-0.018	-0.018
9	0.009	0.009	0.009	0.008	0.008	0.008
10	-0.010	-0.010	-0.010	-0.009	-0.010	-0.010
11	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
12	-0.016	-0.014	-0.015	-0.014	-0.015	-0.013
13	-0.011	-0.012	-0.011	-0.011	-0.010	-0.010