
Hydrol. Earth Syst. Sci., 22, 5243–5257, 2018
https://doi.org/10.5194/hess-22-5243-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Value of uncertain streamflow observations for
hydrological modelling
Simon Etter1, Barbara Strobl1, Jan Seibert1,2, and H. J. Ilja van Meerveld1

1Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
2Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences,
P.O. Box 7050, 75007 Uppsala, Sweden.

Correspondence: Simon Etter (simon.etter@geo.uzh.ch)

Received: 28 June 2018 – Discussion started: 11 July 2018
Revised: 20 September 2018 – Accepted: 24 September 2018 – Published: 15 October 2018

Abstract. Previous studies have shown that hydrological
models can be parameterised using a limited number of
streamflow measurements. Citizen science projects can col-
lect such data for otherwise ungauged catchments but an
important question is whether these observations are infor-
mative given that these streamflow estimates will be uncer-
tain. We assess the value of inaccurate streamflow estimates
for calibration of a simple bucket-type runoff model for six
Swiss catchments. We pretended that only a few observations
were available and that these were affected by different lev-
els of inaccuracy. The level of inaccuracy was based on a
log-normal error distribution that was fitted to streamflow es-
timates of 136 citizens for medium-sized streams. Two addi-
tional levels of inaccuracy, for which the standard deviation
of the error distribution was divided by 2 and 4, were used as
well. Based on these error distributions, random errors were
added to the measured hourly streamflow data. New time se-
ries with different temporal resolutions were created from
these synthetic streamflow time series. These included sce-
narios with one observation each week or month, as well
as scenarios that are more realistic for crowdsourced data
that generally have an irregular distribution of data points
throughout the year, or focus on a particular season. The
model was then calibrated for the six catchments using the
synthetic time series for a dry, an average and a wet year. The
performance of the calibrated models was evaluated based on
the measured hourly streamflow time series. The results in-
dicate that streamflow estimates from untrained citizens are
not informative for model calibration. However, if the errors
can be reduced, the estimates are informative and useful for
model calibration. As expected, the model performance in-

creased when the number of observations used for calibra-
tion increased. The model performance was also better when
the observations were more evenly distributed throughout the
year. This study indicates that uncertain streamflow estimates
can be useful for model calibration but that the estimates by
citizen scientists need to be improved by training or more
advanced data filtering before they are useful for model cali-
bration.

1 Introduction

The application of hydrological models usually requires sev-
eral years of precipitation, temperature and streamflow data
for calibration, but these data are only available for a lim-
ited number of catchments. Therefore, several studies have
addressed the question: how many data points are needed to
calibrate a model for a catchment? Yapo et al. (1996) and
Vrugt et al. (2006), using stable parameters as a criterion for
satisfying model performance, concluded that most of the in-
formation to calibrate a model is contained in 2–3 years of
continuous streamflow data and that no more value is added
when using more than 8 years of data. Perrin et al. (2007),
using the Nash–Sutcliffe efficiency criterion (NSE), showed
that streamflow data for 350 randomly sampled days out of a
39-year period were sufficient to obtain robust model param-
eter values for two bucket-type models, TOPMO, which is
derived from TOPMODEL concepts (Michel et al., 2003),
and GR4J (Perrin et al., 2003). Brath et al. (2004), using
the volume error, relative peak error and time-to-peak er-
ror, concluded that at least 3 months of continuous data were
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required to obtain a reliable calibration. Other studies have
shown that discontinuous streamflow data can be informative
for constraining model parameters (Juston et al., 2009; Pool
et al., 2017; Seibert and Beven, 2009; Seibert and McDon-
nell, 2015). Juston et al. (2009) used a multi-objective cal-
ibration that included groundwater data and concluded that
the information content of a subset of 53 days of streamflow
data was the same as for the 1065 days of data from which the
subset was drawn. Seibert and Beven (2009), using the NSE
criterion, found that model performance reached a plateau
for 8–16 streamflow measurements collected throughout a 1-
year period. They furthermore showed that the use of stream-
flow data for one event and the corresponding recession re-
sulted in a similar calibration performance as the six highest
measured streamflow values during a 2-month period.

These studies had different foci and used different model
performance metrics, but nevertheless their results are en-
couraging for the calibration of hydrological models for un-
gauged basins based on a limited number of high-quality
measurements. However, the question remains: how infor-
mative are low(er)-quality data? An alternative approach to
high-quality streamflow measurements in ungauged catch-
ments is to use citizen science. Citizen science has been
proven to be a valuable tool to collect (Dickinson et al., 2010)
or analyse (Koch and Stisen, 2017) various kinds of envi-
ronmental data, including hydrological data (Buytaert et al.,
2014). Citizen science approaches use simple methods to en-
able a large number of citizens to collect data and allow local
communities to contribute data to support science and envi-
ronmental management. Citizen science approaches can be
particularly useful in light of the declining stream gauging
networks (Ruhi et al., 2018; Shiklomanov et al., 2002) and to
complement the existing monitoring networks. However, cit-
izen science projects that collect streamflow or stream level
data in flowing water bodies are still rare. Examples are the
CrowdHydrology project (Lowry and Fienen, 2013), Smart-
Phones4Water in Nepal (Davids et al., 2018) and a project in
Kenya (Weeser et al., 2018), which all ask citizens to read
stream levels at staff gauges and to send these via an app or
as a text message to a central database. Estimating stream-
flow is obviously more challenging than reading levels from
a staff gauge but citizens can apply the stick or float method,
where they measure the time it takes for a floating object
(e.g. a small stick) to travel a given distance to estimate the
flow velocity. Combined with estimates for the width and
the average depth of the stream, this allows them to obtain a
rough estimate of the streamflow. However, these streamflow
estimates may be so inaccurate that they are not useful for
model calibration. It is therefore necessary to not only eval-
uate the requirements of hydrological models in terms of the
amount and temporal resolution of data, but also in terms of
the achievable quality by the citizen scientists before starting
a citizen science project.

The effects of rating curve uncertainty on model calibra-
tion (e.g. McMillan et al., 2010; Horner et al., 2018) and

the value of sparse datasets (Davids et al., 2017) have been
quantified in recent studies. However, the potential value of
sparse datasets in combination with large uncertainties (such
as those from crowdsourced streamflow estimates) has not
been evaluated so far. Therefore, the aim of this study was
to determine the effects of observation inaccuracies on the
calibration of bucket-type hydrological models when only
a limited number of observations are available. The spe-
cific objectives of this paper are to determine (i) whether the
streamflow estimates from citizen scientists are informative
for model calibration or if these errors need to be reduced
(e.g. through training) to become useful and (ii) how the tim-
ing of the streamflow observations affects the calibration of
a hydrological model. The latter is important for citizen sci-
ence projects, as it provides guidance on whether it is useful
to encourage citizens to contribute streamflow observations
during a specific time of the year.

2 Methods

To assess the potential value of crowdsourced stream-
flow estimates for hydrological model calibration, the
HBV (Hydrologiska Byråns Vattenbalansavdelning) model
(Bergström, 1976) was calibrated against streamflow time se-
ries for six Swiss catchments, as well as for different subsets
of the data that represent citizen science data in terms of er-
rors and temporal resolution. Similar to the approach used in
several recent studies (Ewen et al., 2008; Finger et al., 2015;
Fitzner et al., 2013; Haberlandt and Sester, 2010; Seibert and
Beven, 2009), we pretended that only a small subset of the
data were available for model calibration. In addition, vari-
ous degrees of inaccuracy were assumed. The value of these
data for model calibration was then evaluated by comparing
the model performance for these subsets of data to the perfor-
mance of the model calibrated with the complete measured
streamflow time series.

2.1 HBV model

The HBV model was originally developed at the Hydrol-
ogiska Byråns Vattenbalansavdelning unit at the Swedish
Meteorological and Hydrological Institute (SMHI) by
Bergström (1976). The HBV model is a bucket-type model
that represents snow, soil, groundwater and stream routing
processes in separate routines. In this study, we used the ver-
sion HBV-light (Seibert and Vis, 2012).

2.2 Catchments

The HBV-light model was set up for six 24–186 km2 catch-
ments in Switzerland (Table 1 and Fig. 1). The catchments
were selected based on the following criteria: (i) there is lit-
tle anthropogenic influence, (ii) they are gauged at a single
location, (iii) they have reliable streamflow data during high
flow and low flow conditions (i.e. no complete freezing dur-
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Table 1. Characteristics of the six Swiss catchments used in this study. For the location of the study catchments, see Fig. 1. Long-term
averages are for the period 1974–2014, except for Verzasca for which the long-term average is for the 1990–2014 period. Regime types are
classified according to Aschwanden and Weingartner (1985).

Catchment Murg Guerbe Allenbach Riale Mentue Verzasca
di Calneggia

Gauging station Waengi Belp Adelboden Cavergno, Yvonand La Lavertezzo,
(FOEN station (2126) Mülimatt (2232) Pontit Mauguettaz Campiòi
number) (2159) (2356) (2369) (2605)

Area (km2) 79 117 29 24 105 186

Elevation Min 465 522 1297 885 445 490
(m a.s.l.) Max 1035 2176 2762 2921 927 2864

Regime type Pluvial- Pluvial- Nival-alpin Nival- Pluvial- Nivo-pluvial-
inférieur superieur méridional jurassien méridional

Min–max Dry year 0.29–1.61 0.44–1.93 0.40–2.48 0.13–3.22 0.22–2.37 0.16–2.92
Pardé Average year 0.58–2.16 0.61–1.65 0.39–2.44 0.09–2.84 0.23–2.66 0.23–3.17
coefficients Wet year 0.34–1.69 0.42–2.14 0.32–2.12 0.10–3.48 0.35–2.39 0.26–2.64

Long-term 0.68–1.34 0.77–1.39 0.35–2.70 0.14–2.70 0.46–1.57 0.23–2.22

Annual Dry year 0.72 0.37 0.86 1.301 0.41 0.98
runoff : Average year 0.55 0.48 1.731 1.381 0.52 0.66
rainfall Wet year 0.56 0.54 0.78 0.98 0.50 1.321

ratio Long-term 0.56 0.57 0.94 1.061 0.38 0.9

Long-term mean 1.84 2.75 1.23 1.43 1.64 10.76
annual streamflow
(m3 s−1)

Weather stations Aadorf- Plaffeien, Adelboden Robiei Mathod, Acquarossa,
Taenikon, Bern- Pully Cimetta,
Hörnli Zollikofen Magadino,

Piotta

1In Verzasca, Allenbach and Riale die Calneggia there are some streamflow : rainfall ratios > 1 because the weather stations are located outside the catchment and
precipitation is highly variable in alpine terrain.

ing winter and a cross section that allows accurate streamflow
measurement at low flows) and (iv) there are no glaciers. The
six selected catchments (Table 1) represent different stream-
flow regime types (Aschwanden and Weingartner, 1985).
The snow-dominated highest elevation catchments (Allen-
bach and Riale di Calneggia) have the largest seasonality
in streamflow, i.e. the biggest differences between the long-
term maximum and minimum Pardé coefficients, followed by
the rain- and snow-dominated Verzasca catchment. The rain-
dominated catchments (Murg, Guerbe and Mentue) have the
lowest seasonal variability in streamflow (Table 1). The mean
elevation of the catchments varies from 652 to 2003 m a.s.l.
(Table 1). The elevation range of each individual catchment
was divided into 100 m elevation bands for the simulations.

2.3 Measured data

Hourly runoff time series (based on 10 min measurements)
for the six study catchments were obtained from the Fed-
eral Office for the Environment (FOEN; see Table 1 for the

gauging station numbers). The average hourly areal precipi-
tation amounts were extracted for each study catchment from
the gridded CombiPrecip dataset from MeteoSwiss (Sideris
et al., 2014). This dataset combines gauge and radar precipi-
tation measurements at an hourly timescale and 1 km2 spatial
resolution and is available for the time period since 2005.

We used hourly temperature data from the automatic mon-
itoring network of MeteoSwiss (see Table 1 for the stations)
and applied a gradient of−6 ◦C per 1000 m to adjust the tem-
perature of each weather station to the mean elevation of the
catchment. Within the HBV model, the temperature was then
adjusted for the different elevation bands using a calibrated
lapse rate.

As recommended by Oudin et al. (2005), potential evap-
otranspiration was calculated using the temperature-based
potential evapotranspiration model of McGuinness and Bor-
dne (1972) using the day of the year, the latitude and the
temperature. This rather simplistic approach was considered
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Figure 1. Location of the six study catchments in Switzerland.
Shading indicates whether the catchment is located on the north
or south side of the Alps. See Table 1 for the characteristics of the
study catchments.

sufficient because this study focused on differences in model
performance relative to a benchmark calibration.

2.4 Selection of years for model calibration and
validation

The model was calibrated for an average, a dry and a wet year
to investigate the influence of wetness conditions and the
amount of streamflow on the calibration results. The years
were selected based on the total streamflow during summer
(July–September). The driest and the wettest years of the
period 2006–2014 were selected based on the smallest and
largest sum of streamflow during the summer. The average
streamflow years were selected based on the proximity to the
mean summer streamflow for all the years 1974–2014 (1990–
2014 for Verzasca). For each catchment the years that were
the 2nd-closest to the mean summer streamflow for all years,
as well as the years with the second lowest and second high-
est streamflow sum were chosen for model calibration (see
Table 2). We did this separately for each catchment because
for each catchment a different year was dry, average or wet.
For the validation, we chose the year closest to the mean sum-
mer streamflow and the years with the lowest and the highest
total summer streamflow (see Table 2). We used each of the
parameter sets obtained from calibration for the dry, average
or wet years to validate the model for each of the three val-
idation years, resulting in nine validation combinations for
each catchment (and each dataset, as described below).

Figure 2. Fit of the normal distribution to the frequency distribution
of the log-transformed relative streamflow estimates (ratio of the
estimated streamflow and the measured streamflow).

2.5 Transformation of datasets to resemble citizen
science data quality

2.5.1 Errors in crowdsourced streamflow observations

Strobl et al. (2018) asked 517 participants to estimate stream-
flow based on the stick method at 10 streams in Switzer-
land. Here we use the estimates for the medium-sized streams
Töss, Sihl and Schanzengraben in the Canton of Zurich
and the Magliasina in Ticino (n= 136), which had a sim-
ilar streamflow range at the time of the estimations (2.6–
28 m3 s−1) as the mean annual streamflow of the six streams
used for this study (1.2–10.8 m3 s−1). We calculated the
streamflow from the estimated width, depth and flow ve-
locities using a factor of 0.8 to adjust the surface flow ve-
locity to the average velocity (Harrelson et al., 1994). The
resulting streamflow estimates were normalised by dividing
them by the measured streamflow. We then combined the
normalised estimates of all four rivers and log-transformed
the relative estimates. A normal distribution with a mean of
0.12 and a standard deviation of 1.30 fits the distribution of
the log-transformed relative estimates well (standard error of
the mean: 0.11, standard error of the standard deviation: 0.08;
Fig. 2).

To create synthetic datasets with data quality character-
istics that represent the observed crowdsourced streamflow
estimates, we assumed that the errors in the streamflow esti-
mates are uncorrelated (as they are likely provided by differ-
ent people). For each time step, we randomly selected a rel-
ative error value from the log-normal distribution of the rel-
ative estimates (Fig. 2) and multiplied the measured stream-
flow with this relative error. To simulate the effect of training
and to obtain time series with different data quality, two ad-
ditional streamflow time series were created using a standard
deviation divided by 2 (standard deviation of 0.65) and by 4
(standard deviation of 0.33). This reduces the spread in the
data (but does not change the small systematic overestima-
tion of the streamflow), so large outliers are still possible,
but are less likely. To summarise, we tested the following
four cases.
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Table 2. The calibration years (second most extreme and second closest to average years) and validation years (most extreme and closest to
average years) for each catchment. The numbers in parentheses are the ranks over the period 1974–2014 (or 1990–2014 for Verzasca).

Year Murg Guerbe Allenbach Riale di Mentue Verzasca
character Calneggia

Calibration

Wet 2007 (3) 2007 (2) 2007 (4) 2009 (11) 2014 (7) 2011 (4)
Dry 2013 (8) 2011 (8) 2009 (11) 2012 (8) 2010 (4) 2013 (5)
Average 2008 (6) 2008 (17) 2013 (7) 2013 (2) 2006 (6) 2007 (7)

Validation

Wet 2014 (1) 2014 (1) 2014 (1) 2008 (9) 2007 (1) 2008 (1)
Dry 2009 (7) 2013 (5) 2012 (9) 2006 (5) 2009 (3) 2010 (4)
Average 2011 (4) 2006 (13) 2011 (6) 2011 (1) 2013 (2) 2006 (4)

– No error: the data measured by the FOEN, assumed to
be (almost) error-free, the benchmark in terms of qual-
ity.

– Small error: random errors according to the log-normal
distribution of the snapshot campaigns with the standard
deviation divided by 4.

– Medium error: random errors according to the log-
normal distribution of the surveys with the standard de-
viation divided by 2.

– Large error: typical errors of citizen scientists, i.e. ran-
dom errors according to the log-normal distribution of
errors from the surveys.

2.5.2 Filtering of extreme outliers

Usually some form of quality control is used before citi-
zen science data are analysed. Here, we used a very sim-
ple check to remove unrealistic outliers from the synthetic
datasets. This check was based on the likely minimum and
maximum streamflow for a given catchment area. We de-
fined an upper limit of possible streamflow values as a func-
tion of the catchment area using the dataset of maximum
streamflow from 1500 Swiss catchments provided by Scher-
rer AG, Hydrologie und Hochwasserschutz (2017). To ac-
count for the different precipitation intensities north and
south of the Alps, different curves were created for the catch-
ments on each side of the Alps. All streamflow observations,
i.e. modified streamflow measurements, above the maximum
observed streamflow for a particular catchment size includ-
ing a 20 % buffer (Fig. S1), were replaced by the value of the
maximum streamflow for a catchment of that size. This af-
fected less than 0.5 % of all data points. A similar procedure
was used for low flows based on a dataset of the FOEN with
the lowest recorded mean streamflows over 7 days but this
resulted in no replacements.

Table 3. Weights assigned to specific seasons, days and times of
the day for the random selection of data points for Crowd52 and
Crowd12. The weights for each hour were multiplied and nor-
malised. We then used them as probabilities for the individual hours.
For times without daylight the probability was set to zero.

Variable Weight

Season

December–February 2
March–May/September–November 6
June–August 10

Day

Saturdays–Sundays 3
Monday–Friday 1

Time

Times when people have breaks 06:00–08:00, 3
12:00–13:00,
17:00–21:00

Times with daylight in winter 08:00–16:00 1
(December–February)

Times with daylight in spring/fall 07:00–19:00 1
(March–May/September–November):

Times with daylight in summer 06:00–21:00 1
(June–August)

Other times (depending on season) 0

2.5.3 Temporal resolution of the observations

Data entries from citizen scientists are not as regular as data
from sensors with a fixed temporal resolution. Therefore, we
decided to test eight scenarios with a different temporal res-
olution and distribution of the data throughout the year to
simulate different patterns in citizen contributions.

– Hourly: one data point per hour (8760≤ n≤ 8784, de-
pending on the year).
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– Weekly: one data point per week, every Saturday, ran-
domly between 06:00 and 20:00 (52≤ n≤ 53).

– Monthly: one data point per month on the 15th of the
month, randomly between 06:00 and 20:00 (n= 12).

– IntenseSummer: one data point every other day from
July until September, randomly between 06:00 and
20:00 (∼ 15 observations per month, n= 46).

– WeekendSummer: one data point each Saturday and
each Sunday between May and October, randomly be-
tween 06:00 and 20:00 (52≤ n≤ 54).

– WeekendSpring: one data point on each Saturday and
each Sunday between March and August, randomly be-
tween 06:00 and 20:00 (52≤ n≤ 54).

– Crowd52: 52 random data points during daylight (in or-
der to be comparable to the Weekly, IntenseSummer,
WeekendSummer and WeekendSpring time series).

– Crowd12: 12 random data points during daylight (com-
parable to the Monthly data).

Except for the hourly data, these scenarios were based on
our own experiences within the CrowdWater project (https:
//www.crowdwater.ch, last access: 3 October 2018) and in-
formation from the CrowdHydrology project (Lowry and
Fienen, 2013). The hourly dataset was included to test the
effect of errors when the temporal resolution of the data
is optimal (i.e. by comparing simulations for the models
calibrated with the hourly FOEN data and those calibrated
with hourly data with errors). In the two scenarios Crowd52
and Crowd12, with random intervals between data points,
we assigned higher probabilities for periods when people
are more likely to be outdoors (i.e. higher probabilities for
summer than winter, higher probabilities for weekends than
weekdays, higher probabilities outside office hours; Table 3).
Times without daylight (dependent on the season) were al-
ways excluded. We used the same selection of days, includ-
ing the same times of the day for each of the four different
error groups, years and catchments to allow comparison of
the different model results.

2.6 Model calibration

For each of the 1728 cases (6 catchments, 3 calibration years,
4 error groups, 8 temporal resolutions), the HBV model was
calibrated by optimising the overall consistency performance
POA (Finger et al., 2011) using a genetic optimisation algo-
rithm (Seibert, 2000). The overall consistency performance
POA is the mean of four objective functions with an opti-
mum value of 1: (i) NSE, (ii) the NSE for the logarithm of
streamflow, (iii) the volume error and (iv) the mean abso-
lute relative error (MARE). The parameters were calibrated
within their typical ranges (see Table S1 in the Supplement.).

To consider parameter uncertainty, the calibration was per-
formed 100 times, which resulted in 100 parameter sets for
each case. For each case, the preceding year was used for the
warm-up period. For the Crowd52 and Crowd12 time series,
we used 100 different random selections of times, whereas
for the regularly spaced time series the same times were used
for each case.

2.7 Model validation and analysis of the model results

The 100 parameters from the calibration for each case were
used to run the model for the validation years (Table 2). For
each case (i.e. each catchment, year, error magnitude and
temporal resolution), we determined the median validation
POA for the 100 parameter sets for each validation year. We
analysed the validation results of all years combined and for
all nine combinations of dry, mean and wet years separately.

Because the focus of this study was on the value of limited
inaccurate streamflow observations for model calibration, i.e.
the difference in the performance of the models calibrated
with the synthetic data series compared to the performance
of the models calibrated with hourly FOEN data, all model
validation performances are expressed relative to the aver-
age POA of the model calibrated with the hourly FOEN data
(our upper benchmark, representing the fully informed case
when continuous high quality streamflow data are available).
A relative POA of 1 indicates that the model performance
is as good as the performance of the model calibrated with
the hourly FOEN data, whereas lower POA values indicate a
poorer performance.

In humid climates, the input data (precipitation and tem-
perature) often dictate that model simulations can not be too
far off as long as the water balance is respected (Seibert et al.,
2018). To assess the value of limited inaccurate streamflow
data for model calibration compared to a situation without
any streamflow data, a lower benchmark (Seibert et al., 2018)
was used. Here, the lower benchmark was defined as the me-
dian performance of the model ran with 1000 random param-
eters sets. By running the model with 1000 randomly chosen
parameter sets, we represent a situation where no streamflow
data for calibration are available and the model is driven only
by the temperature and precipitation data. We used 1000 dif-
ferent parameter sets to cover most of the model variabil-
ity due to the different parameter combinations. The Mann–
Whitney U test was used to evaluate whether the median POA
for a specific error group and temporal resolution of the data
was significantly different from the median POA for the lower
benchmark (i.e. the model runs with random parameters). We
furthermore checked for differences in model performance
for models calibrated with the same data errors but differ-
ent temporal resolutions using a Kruskal–Wallis test. By ap-
plying a Dunn–Bonferroni post hoc test (Bonferroni, 1936;
Dunn, 1959, 1961), we analysed which of the validation re-
sults were significantly different from each other.
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The random generation of the 100 crowdsourced-like
datasets (i.e. the Crowd52 and Crowd12 scenario) for each
of the catchments and year characteristics resulted in time
series with a different number of high flow estimates. In or-
der to find out whether the inclusion of more high flow val-
ues resulted in a better validation performance, we defined
the threshold for high flows as the streamflow value that was
exceeded 10 % of the time in the hourly FOEN streamflow
dataset. The Crowd52 and Crowd12 datasets were then di-
vided into a group that had more than the expected 10 % high
flow observations and a group that had fewer high flow obser-
vations. To determine if more high flow data improve model
performance, the Mann–Whitney U test was used to compare
the relative median POA of the two groups.

3 Results

3.1 Upper benchmark results

The model was able to reproduce the measured streamflow
reasonably well when the complete and unchanged hourly
FOEN datasets were used for calibration, although there
were also a few exceptions. The average validation POA was
0.61 (range: 0.19–0.83; Table 4). The validation performance
was poorest for the Guerbe (validation POA = 0.19) because
several high flow peaks were missed or underestimated by
the model for the wet validation year. Similarly, the valida-
tion for the Mentue for the dry validation year resulted in a
low POA (0.23) because a very distinct peak at the end of the
year was missed and summer low flows were overestimated.
The third lowest POA value was also for the Guerbe (dry val-
idation year) but already had a POA of 0.35. Six out of the
nine lowest POA values were for dry validation years. Vali-
dation for wet years for the models calibrated with data from
wet years resulted in the best validation results (i.e. highest
POA values; Table 4).

3.2 Effect of errors on the model validation results

Not surprisingly, increasing the errors in the streamflow data
used for model calibration led to a decrease in the model per-
formance (Fig. 4). For the small error category, the median
validation performance was better than the lower benchmark
for all temporal resolutions (Fig. 4 and Table S2). For the
medium error category, the median validation performance
was also better than the lower benchmark for all scenarios,
except for the Crowd12 dataset. For the model calibrated
with the dataset with large errors, only the Hourly dataset
was significantly better than the lower benchmark (Table 5).

3.3 Effect of the data resolution on the model
validation results

The Hourly measurement scenario resulted in the best val-
idation performance for each error group, followed by the

Weekly data, and then usually the Crowd52 data (Fig. 4).
Although the median validation performance of the models
calibrated with the Weekly datasets was better than for the
Crowd52 dataset for all error cases, the difference was only
statistically significant for the no error category (Fig. 5).

The validation performance of the models calibrated with
the Weekly and Crowd52 datasets was better than for the sce-
narios focused on spring and summer observations (Week-
endSpring, WeekendSummer and IntenseSummer). The me-
dian model performance for the Weekly dataset was signifi-
cantly better than the datasets focusing on spring and sum-
mer for the no, small and medium error groups. The me-
dian performance of the Crowd52 dataset was only signifi-
cantly better than all three measurement scenarios focusing
on spring or summer for the small error case (Fig. 5). The
model validation performance for the WeekendSummer and
IntenseSummer scenarios decreased faster with increasing
errors compared to the Weekly, Crowd52 or WeekendSpring
datasets (Fig. 4). The median validation POA for the mod-
els calibrated with the WeekendSpring observations was bet-
ter than for the models calibrated with the WeekendSummer
and IntenseSummer datasets but the differences were only
significant for the small, medium and large error groups. The
differences in the model performance results for the observa-
tion strategies that focussed on summer (IntenseSummer and
WeekendSummer) were not significant for any of the error
groups (Fig. 5).

The median model performance for the regularly spaced
Monthly datasets with 12 observations was similar to the me-
dian performance for the three datasets focusing on summer
with 46–54 measurements (WeekendSpring, WeekendSum-
mer and IntenseSummer), except for the case of large errors
for which the monthly dataset performed worse. The irregu-
larly spaced Crowd12 time series resulted in the worst model
performance for each error group, but the difference from the
performance for the regularly spaced Monthly data was only
significant for the dataset with large errors (Fig. 5).

3.4 Effect of errors and data resolution on the
parameter ranges

For most parameters the spread in the optimised parameter
values was smallest for the upper benchmark. The spread
in the parameter values increased with increasing errors in
the data used for calibration, particularly for MAXBAS (the
routing parameter) but also for some other parameters (e.g.
TCALT, TT and BETA). However, for some parameters (e.g.
CFMAX, FC, and SFCF) the range in the optimised param-
eter values was mainly affected by the temporal resolution
of the data and the number of data points used for calibra-
tion. It should be noted though that the changes in the range
of model parameters differed significantly for the different
catchments and the trends were not very clear.
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Table 4. Median and the full range of the overall consistency performance POA scores for the upper benchmark (hourly FOEN data). The
POA values for the dry, average and wet calibration years were used as the upper benchmarks for the evaluation based on the year character
(Figs. 6 and S2 in the Supplement); the values in the “overall median” column were used as the benchmarks in the overall median performance
evaluation shown in Fig. 4.

Calibration year Dry Average Wet Overall median

Validation wet year

Upper benchmark 0.63 0.65 0.66
(0.19–0.79) (0.36–0.8) (0.45–0.8)

Lower benchmark 0.34
(−0.02–0.47) Upper benchmark

Validation average year 0.61

Upper benchmark 0.59 0.61 0.53 (0.19–0.83)
(0.49–0.64) (0.45–0.78) (0.36–0.77)

Lower benchmark 0.36 Lower benchmark
(0.03–0.59) 0.34

Validation dry year (−0.02–0.59)

Upper benchmark 0.51 0.59 0.53
(0.35–0.71) (0.41–0.83) (0.23–0.74)

Lower benchmark 0.35
(0.09–0.52)

3.5 Influence of the calibration and validation year and
number of high flow data points on the model
performance

The influence of the validation year on the model perfor-
mance was larger than the effect of the calibration year
(Figs. 6 and S2). In general model performance was poor-
est for the dry validation years. The model performances of
all datasets with fewer observations or bigger errors than the
Hourly datasets without errors were not significantly better
than the lower benchmark for the dry validation years, except
for Crowd52 in the no error group when calibrated with data
from a wet year. However, even for the wet validation years
some observation scenarios of the no error and small er-
ror group did not lead to significantly better model valida-
tion results compared to the median validation performance
for the random parameters. Interestingly, the IntenseSummer
dataset in the no error group resulted in a very good perfor-
mance when the model was calibrated for a dry year and also
validated in a dry year compared to its performance in the
other calibration and validation year combinations. The me-
dian model performance was however not significantly bet-
ter than the lower benchmark due to the low performance for
the Guerbe and Allenbach (outliers beyond figure margins in
Fig. 6). The validation results for these two catchments were
the worst for all the no error–IntenseSummer datasets for all
calibration and validation year combinations.

For 13 out of the 18 catchment and year combinations,
the Crowd52 datasets with fewer than 10 % high streamflow

data points led to a better validation performance than the
Crowd52 datasets with more high streamflow data points.
For six of them, the difference in model performance was
significant. For none of the five cases where more high flow
data points led to a better model performance was the dif-
ference significant. Also when the results were analysed
by year character or catchment, there was no improvement
when more high flow values were included in the calibration
dataset.

4 Discussion

4.1 Usefulness of inaccurate streamflow data for
hydrological model calibration

In this study, we evaluated the information content of stream-
flow estimates by citizen scientists for calibration of a
bucket-type hydrological model for six Swiss catchments.
While the hydroclimatic conditions, the model or the calibra-
tion approach might be different in other studies, these results
should be applicable for a wide range of cases. However, for
physically based spatially distributed models that are usually
not calibrated automatically, the use of limited streamflow
data would probably benefit from a different calibration ap-
proach. Furthermore, our results might not be applicable in
arid catchments where rivers become dry for some periods of
the year because the linear reservoirs used in the HBV model
are not appropriate for such systems.
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Figure 3. Examples of streamflow time series used for calibration with small, medium and large errors and different temporal resolutions
(Weekly, Crowd52 and WeekendSpring) for the Mentue in 2010. Large error: adjusted FOEN data with errors resulting from the log-normal
distribution fitted to the streamflow estimates from citizen scientists (see Fig. 2). Medium error: same as large error, but the standard deviation
of the log-normal distribution was divided by 2. Small error: same as the large error, but the standard deviation of the log-normal distribution
was divided by 4. The grey line represents the measured streamflow, and the dots the derived time series of streamflow observations. Note
that especially in the large error category some dots lie outside the figure margins.

Streamflow estimates by citizens are sometimes very dif-
ferent from the measured values, and the individual estimates
can be disinformative for model calibration (Beven, 2016;
Beven and Westerberg, 2011). The results show that if the
streamflow estimates by citizen scientists were available at
a high temporal resolution (hourly), these data would still
be informative for the calibration of a bucket-type hydrologi-
cal model despite their high uncertainties. However, observa-
tions with such a high resolution are very unlikely to be ob-
tained in practice. All scenarios with error distributions that
represent the estimates from citizen scientists with fewer ob-
servations were no better than the lower benchmark (using
random parameters). With medium errors, however, and one
data point per week on average or regularly spaced monthly
data, the data were informative for model parameterisation.

Reducing the standard deviation of the error distribution by a
factor of 4 led to a significantly improved model performance
compared to the lower benchmark for all the observation sce-
narios.

A reduction in the errors of the streamflow estimates could
be achieved by training of citizen scientists (e.g. videos), im-
proved information about feasible ranges for stream depth,
width and velocity, or examples of streamflow values for
well-known streams. Filtering of extreme outliers can also
reduce the spread of the estimates. This could be done with
existing knowledge of feasible streamflow values for a catch-
ment of a given area or the amount of rainfall right before
the estimate is made to determine if streamflow is likely to
be higher or lower than for the previous estimate. More de-
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Figure 4. Box plots of the median model performance relative to the upper benchmark for all datasets. The grey rectangles around the boxes
indicate non-significant differences in median model performance compared to the lower benchmark with random parameter sets. The box
represents the 25th and 75th percentile, the thick horizontal line represents the median, the whiskers extend to 1.5 times the interquartile
range below the 25th percentile and above the 75th percentile and the dots represent the outliers. The numbers at the bottom indicate the
number of outliers beyond the figure margins; n is the number of streamflow observations used for model calibration. The result of the hourly
benchmark FOEN dataset has some spread because the results of the 100 parameters sets were divided by their median performance. A
relative POA of 1 indicates that the model performance is as good as the performance of the model calibrated with the hourly FOEN data
(upper benchmark).

tailed research is necessary to test the effectiveness of such
methods.

Le Coz et al. (2014) reported an uncertainty in stage–
discharge streamflow measurements of around 5 %–20 %.
McMillan et al. (2012) summarised streamflow uncertainties
from stage–discharge relationships in a more detailed review
and gave a range of ±50 %–100 % for low flows, ±10 %–
20 % for medium or high (in-bank) flows and±40 % for out-
of-bank flows. The errors for the most extreme outliers in
the citizen estimates are considerably higher, and could dif-
fer up to a factor of 10 000 from the measured value in the
most extreme but rare cases (Fig. 2). Even with reduced stan-
dard deviations of the error distribution by a factor of 2 or 4,
the observations in the most extreme cases can still differ by
a factor of 100 and 10. The percentage of data points that
differed from the measured value by more than 200 % was
33 % for the large error group, 19 % for the medium error
group and 4 % for the small error group. Only 3 % of the
data points were more than 90 % below the measured value
in the large error group and 0 % for both in the medium and
small error classes. If such observations are used for model
calibration without filtering, they are seen as extreme floods
or droughts, even if the actual conditions may be close to av-
erage flow. Beven and Westerberg (2011) suggest isolating
periods of disinformative data. It is therefore beneficial to

identify such extreme outliers, independent of a model, e.g.
with knowledge of feasible maximum and minimum stream-
flow quantities, as used in this study, with the help of the
maximum regionalised specific streamflow values for a given
catchment area.

4.2 Number of streamflow estimates required for
model calibration

In general, one would assume that the calibration of a model
becomes better when there are more data (Perrin et al., 2007),
although others have shown that the increase in model perfor-
mance plateaus after a certain number of measurements (Jus-
ton et al., 2009; Pool et al., 2017; Seibert and Beven, 2009;
Seibert and McDonnell, 2015). In this study, we limited the
length of the calibration period to 1 year because in practice it
may be possible to obtain a limited number of measurements
during a 1-year period for ungauged catchments before the
model results are needed for a certain application, as has been
assumed in previous studies (Pool et al., 2017; Seibert and
McDonnell, 2015). While a limited number of observations
(12) was informative for model calibration when the data un-
certainties were limited, the results of this study also suggest
that the performance of bucket-type models decreases faster
with increasing errors when fewer data points are available
(i.e. there was a faster decline in model performance with in-
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Figure 5. Results (p values) of the Kruskal–Wallis with Bonfer-
roni post hoc test to determine the significance of the difference in
the median model performance for the data with different temporal
resolutions within each data quality group (no error a, small error
b, medium error c, and large error d). Blue shades represent the p
values. White triangles indicate p values < 0.05 and white stars in-
dicate p values that, when adjusted for multiple comparisons, are
still < 0.05.

creasing errors for models calibrated with 12 data points than
for the models calibrated with 48–52 data points). This find-
ing was most pronounced when comparing the model perfor-
mance for the small and medium error groups (Fig. 4). These
findings can be explained by the compensating effect of the
number of observations and their accuracy because the ran-
dom errors for the inaccurate data average out when a large
number of observations are used, as long as the data do not
have a large bias.

4.3 Best timing of streamflow estimates for model
calibration

The performance of the parameter sets depended on the tim-
ing and the error distribution of the data used for model cal-
ibration. The model performance was generally better if the
observations were more evenly spread throughout the year.
For example, for the cases of no and small errors, the per-
formance of the model calibrated with the Monthly dataset
with 12 observations was better than for the IntenseSum-
mer and WeekendSummer scenarios with 46–54 observa-
tions. Similarly, the less clustered observation scenarios per-
formed better than the more clustered scenarios (i.e. Weekly
vs. Crowd52, Monthly vs. Crowd12, Crowd52 vs. Intens-
eSummer, etc.). This suggests that more regularly distributed
data over the year lead to a better model calibration. Juston

et al. (2009) compared different subsamples of hydrological
data for a 5.6 km2 Swedish catchment and found that includ-
ing inter-annual variability in the data used for the calibration
of the HBV model reduced the model uncertainties. More
evenly distributed observations throughout the year might
represent more of the within-year streamflow variability and
therefore result in improved model performance. This is good
news for using citizen science data for model calibration as it
suggests that the timing is not as important as the number of
observations because it is likely much easier to get observa-
tions throughout the year than during specific periods or flow
conditions.

When comparing the WeekendSpring, WeekendSummer
and IntenseSummer datasets, it seems that it was in most
cases more beneficial to include data from spring rather than
summer. This tendency was more pronounced with increas-
ing data errors. The reason for this might be that the Week-
endSpring scenario includes more snowmelt or rain-on-snow
event peaks, in addition to usually higher baseflow, and there-
fore contains more information on the inter-annual variability
in streamflow.

By comparing different variations of 12 data points to cal-
ibrate the HBV model, Pool et al. (2017) found that a dataset
that contains a combination of different maximum (monthly,
yearly etc.) and other flows in model calibration led to the
best model performance but also that the differences in per-
formance for the different datasets covering the range of
flows were small. In our study we did not specifically fo-
cus on the high or low flow data points, and therefore did not
have datasets that contained only high flow estimates, which
would be very difficult to obtain with citizen science data.
However, our findings similarly show that for model cali-
bration for catchments with seasonal variability in stream-
flow it is beneficial to obtain data for different magnitudes
of flow. Furthermore, we found that data points during rela-
tively dry periods are beneficial for validation or prediction
in another year and might even be beneficial for years with
the same characteristics, as was shown for the improved vali-
dation performance of the IntenseSummer dataset compared
to the other datasets when data from dry years were used for
calibration (Fig. 6).

4.4 Effects of different types of years on model
calibration and validation

The calibration year, i.e. the year in which the observations
were made, was not decisive for the model performance.
Therefore, a model calibrated with data from a dry year can
still be useful for simulations for an average or wet year.
This also means that data in citizen science projects can
be collected during any year and that these data are use-
ful for simulating streamflow for most years, except the dri-
est years. However, model performance did vary significantly
for the different validation years. The results during dry val-
idation years were almost never significantly better than the
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Figure 6. Median model validation performance for the datasets calibrated and validated both in a dry year and in a wet year. Each horizontal
line represents the median model performance for one catchment. The black bold line represents the median for the six catchments. The grey
rectangles around the boxes indicate non-significant differences in median model performance for the six catchments compared to the lower
benchmark with random parameters. The numbers at the bottom indicate the number of outliers beyond the figure margins. For the individual
POA values of the upper benchmark (no error–Hourly dataset) in the different calibration and validation years, see Table 4.

lower benchmark (Fig. S2). This might be due to the objec-
tive function that was used in this study. Especially the NSE
was lower for dry years because the flow variance (i.e. the de-
nominator in the equation) is smaller when there is a larger
variation in streamflow. Also, these results are based on six
median model performances, and therefore, outliers have a
big influence on the significance of results (Fig. S2).

Lidén and Harlin (2000) used the HBV-96 model by Lind-
ström et al. (1997) with changes suggested by Bergström
et al. (1997) for four catchments in Europe, Africa and
South America. They achieved better model results for wet-
ter catchments and argued that during dry years evapotran-
spiration plays a bigger role and therefore the model perfor-
mance is more sensitive to inaccuracies in the simulation of
the evapotranspiration processes. The fact that we used a very
simple method to calculate the potential evapotranspiration
(McGuinness and Bordne, 1972) might also explain why the
model performed less well during dry years.

The model parameterisation, obtained from calibration us-
ing the IntenseSummer dataset, resulted in a surprisingly
good performance for the validation for a more extreme dry
year for four out of the six catchments. For the two catch-
ments for which the performance for the IntenseSummer
dataset was poor (Guerbe and Allenbach), the weather sta-
tions are located outside the catchment boundaries. Espe-
cially during dry periods missed streamflow peaks due to
misrepresentation of precipitation can affect model perfor-

mance a lot. The fact that always one of these two catch-
ments had the worst model performance for all the no error–
IntenseSummer runs furthermore indicates that the July–
September period might not be suitable to represent char-
acteristic runoff events for these catchments. The bad per-
formance for these two catchments for the IntenseSummer–
no error run with calibration and validation in the dry year
resulted in the insignificant improvement in model perfor-
mance compared to the lower benchmark. Because the wet-
ness of a year was based on the summer streamflow, these
findings suggest that data obtained during times of low flow
result in improved validation performance during dry years
compared to data collected during other times (Fig. S2). This
suggests that if the interest is in understanding the streamflow
response during very dry years, it is important to obtain data
during the dry period. To test this hypothesis, more detailed
analyses are needed.

4.5 Recommendations for citizen science projects

Our results show that streamflow estimates from citizens are
not informative for hydrological model calibration, unless
the errors in the estimates can be reduced through training
or advanced filtering of the data to reduce the errors (i.e.
to reduce the number of extreme outliers). In order to make
streamflow estimates useful, the standard deviation of the er-
ror distribution of the estimates needs to be reduced by a fac-
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tor of 2. Gibson and Bergman (1954) suggest that errors in
distance estimates can be reduced from 33 % to 14 % with
very little training. These findings are encouraging, although
their tests covered distances larger than 365 m (400 yards)
and the widths of the medium-sized rivers for which the
streamflow was estimated were less than 40 m (Strobl et al.,
2018). Options for training might be tutorial videos, as well
as lists with values for the width, average depth and flow ve-
locity of well-known streams (Strobl et al., 2018). In order
to determine the effect of training on streamflow estimates,
further research has to be done because especially the depth
estimates were inaccurate (Strobl et al., 2018).

The findings of this study suggest the following recom-
mendations for citizen science projects that want to use
streamflow estimates:

– Collect as many data points as possible. In this study
hourly data always led to the best model performance.
It is therefore beneficial to collect as many data points
as possible. Because it is unlikely that hourly data are
obtained, we suggest to aim for (on average) one obser-
vation per week. Provided that the standard deviation
of the streamflow estimates can be reduced by a factor
of 2, 52 observations (as in the Crowd52 data series)
are informative for model calibration. Therefore, it is
essential to invest in advertisement of a project and to
find suitable locations where many people can poten-
tially contribute, as well as to communicate to the citi-
zen scientists that it is beneficial to submit observations
regularly.

– Encourage observations throughout the year. To further
improve the model performance, or to allow for greater
errors, it is beneficial to have observations at all types
of flow conditions during the year, rather than during a
certain season.

Observations during high streamflow conditions were in
most cases not more informative than flows during other
times of the year. Efforts to ask citizens to submit obser-
vations during specific flow conditions (e.g. by sending re-
minders to the citizen observers) do not seem to be very ef-
fective in light of the above findings. It is rather more bene-
ficial to remind them to submit observations regularly.

Instead of focussing on training to reduce the errors in the
streamflow estimates, an alternative approach for citizen sci-
ence projects is to switch to a parameter that is easier to es-
timate, such as stream levels (Lowry and Fienen, 2013). Re-
cent studies successfully used daily stream-level data (Seib-
ert and Vis, 2016) and stream-level class data (van Meerveld
et al. 2017) to calibrate hydrological models, and other stud-
ies have demonstrated the potential value of crowdsourced
stream level data for providing information on, e.g. baseflow
(Lowry and Fienen, 2013), or for improving flood forecasts
(Mazzoleni et al., 2017). However, further research is needed

to determine if real crowdsourced stream-level (class) data
are informative for the calibration of hydrological models.

5 Conclusions

The results of this study extend previous studies on the value
of limited hydrological data for hydrological model calibra-
tion or the best timing of streamflow measurements for model
calibration (Juston et al., 2009; Pool et al., 2017; Seibert and
McDonnell, 2015) that did not consider observation errors.
This is an important aspect, especially when considering cit-
izen science approaches to obtain streamflow data. Our re-
sults show that inaccurate streamflow data can be useful for
model calibration, as long as the errors are not too large.
When the distribution of errors in the streamflow data rep-
resented the distribution of the errors in the streamflow es-
timates from citizen scientists, this information was not in-
formative for model calibration (i.e. the median performance
of the models calibrated with these data was not significantly
better than the median performance of the models with ran-
dom parameter values). However, if the standard deviation of
the estimates is reduced by a factor of 2, then the (less) inac-
curate data would be informative for model calibration. We
furthermore demonstrated that realistic frequencies for cit-
izen science projects (one observation on average per week
or month) can be informative for model calibration. The find-
ings of studies such as the one presented here provide impor-
tant guidance on the design of citizen science projects as well
as other observation approaches.
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