
Hydrol. Earth Syst. Sci., 22, 5175–5189, 2018
https://doi.org/10.5194/hess-22-5175-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Design water demand of irrigation for a large region using a
high-dimensional Gaussian copula
Xinjun Tu1,2, Yiliang Du1, Vijay P. Singh3,4, Xiaohong Chen1,2, Kairong Lin1, and Haiou Wu1

1Center of Water Resources and Environment, Sun Yat-sen University, Guangzhou, 510275, China
2Center of Water Security Engineering and Technology in Southern China of Guangdong, Guangzhou, 510275, China
3Department of Biological and Agricultural Engineering, Texas A&M University, 2117 College Station, Texas 77843, USA
4Zachry Department of Civil Engineering, Texas A&M University, 2117 College Station, Texas 77843, USA

Correspondence: Xinjun Tu (eestxj@mail.sysu.edu.cn)

Received: 18 April 2018 – Discussion started: 23 May 2018
Revised: 13 August 2018 – Accepted: 11 September 2018 – Published: 5 October 2018

Abstract. Spatial and frequency distributions of precipitation
should be considered in determining design water demand of
irrigation for a large region. In Guangdong Province, South
China, as a study case, an eight-dimensional joint distribu-
tion of precipitation for agricultural sub-regions was devel-
oped. A design procedure for water demand of irrigation for a
given frequency of precipitation of the entire region was pro-
posed. Water demands of irrigation in the entire region and its
sub-regions using three design methods, i.e., equalized fre-
quency (EF), typical year (TY) and most-likely weight func-
tion (MLW), were compared. Results demonstrated that the
Gaussian copula efficiently fitted the high-dimensional joint
distribution of eight sub-regional precipitation values. The
Kendall frequency was better than the conventional joint fre-
quency to analyze the linkage between the frequency of pre-
cipitation of the entire region and individual sub-regions. For
given frequencies of precipitation of the entire region, design
water demands of irrigation of the entire region among the
MLW, EF and TY methods slightly differed, but those of in-
dividual sub-regions of the MLW and TY methods fluctuated
around the demand lines of the EF method. The alterations of
design water demand in sub-regions were more complicated
than those in the entire region. The design procedure us-
ing the MLW method in association with a high-dimensional
copula, which simulated individual univariate distributions,
captured their dependences for multi-variables, and built a
linkage between regional frequency and sub-regional fre-
quency of precipitation, is recommended for design water
demand of irrigation for a large region.

1 Introduction

Water demand of irrigation in a region is associated with ex-
ploitation and utilization of land and water resources, such
as farm area, cultivation pattern, category of crops, canal
technology, etc., and is also impacted by natural factors,
for example precipitation volume and soil properties (Tar-
juelo et al., 2005; Griffin, 2006; Leenhardt et al., 2004, 2011;
Wriedt et al., 2009; Davidson and Hellegers, 2011). Among
the many factors, precipitation, which is regarded as stochas-
tic, is an uncertain factor influencing irrigation (Wisser et al.,
2008; Thomas, 2008; Cai et al., 2011; Meza et al., 2012). In
general, the more the precipitation, the less the water demand
of irrigation, and vice versa. In practical regional water re-
sources planning, water demands of irrigation are estimated
in association with various frequencies of regional precipita-
tion (Gohari et al., 2013).

For design water demand in a large region, it is impor-
tant that the heterogeneity of those factors in geographical
space is considered (Lankford, 2010; Leenhardt et al., 2011).
Hence, water demand should generally be analyzed in sepa-
rate sub-regions in which the factors are homogenous, and
can eventually be summed up. However, for a given pre-
cipitation frequency of the entire region in the design water
demand of irrigation, the difficulty is how to obtain a rea-
sonable combination of precipitation frequencies of multiple
sub-regions, even though other factors influencing irrigation
have previously been demonstrated in water resources plan-
ning.
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A method, named typical year (TY), has been used for de-
sign water demand of irrigation in China (Cai et al., 2001). A
combination of observed sub-regional precipitation in a cer-
tain year in which the precipitation frequency for the entire
region weighted by individual sub-regions was the nearest to
the given frequency, was selected and was zoomed in or out.
Due to the limited observed samples, the representation of
the typical year has been questionable. In actuality, the fre-
quency of regional precipitation in a large region corresponds
to various combinations of sub-regional frequencies.

Moreover, design water demand of irrigation in a large re-
gion not only presents the stochastic characteristic of precip-
itation in the entire region and its sub-regions, but also ad-
dresses the relationship between sub-regional precipitation
and heterogeneity. The multi-variable statistical simulation
and joint design theory can be considered to improve the se-
lection of an appropriate combination. Due to the multivari-
ate dependence and the flexibility of unbounded marginal
distributions, copula functions have been widely applied in
the simulation and design of hydrological multi-variables,
e.g., extreme properties of heavy precipitation (Zhang et al.,
2011, 2013; Abdul Rauf and Zeephongsekul, 2014), floods
(Zhang and Singh, 2006; Chowdhary et al., 2011; Zhang et
al., 2015a) and droughts (Ganguli and Reddy, 2014; Zhang
et al., 2015b; Tu et al., 2016). In recent years, they have been
used to analyze floods or droughts encountered in multiple
hydrological regions in China (Yan et al., 2010a; Xie et al.,
2012; Tu et al., 2017b). These studies on multivariate hy-
drology mostly focused on bivariate and trivariate issues, but
less on higher dimensional hydrological statistical analyses
(Chen et al., 2015). A high-dimensional meta-Gaussian cop-
ula beyond three variables has been applied in other fields,
e.g., economic analysis (Aussenegg and Cech, 2012; Creal
and Tsay, 2015).

As a multidimensional copula and its marginal distribu-
tions are determined according to observed samples, the joint
frequency and probability density for any combination of
precipitation frequencies of sub-regions can be calculated. In
a practical design combination, a large quantity of combi-
nations can be randomly generated using the Monte Carlo
method on the basis of the determined copula. It is clear
that a given joint frequency corresponds to quite a number
of combinations. In order to select one from various combi-
nations, a simple method, based on the equalized frequency
(EF) method, which refers to all marginal frequencies being
identical, is used for design flood peak and volume (Liu et
al., 2015).

Another improved method is that the combination can be
exclusively determined by using the most-likely weight func-
tion (MLW) in association with the products of joint and
marginal probability densities (Salvadori et al., 2011). The
most-likely weight design method has been applied for the
design combination of hydrological multivariables, such as
flood and drought properties (Gräler et al., 2013; Zhang et
al., 2015c), flood and tide or heavy precipitation and tide in

coastal rivers (Corbella and Stretch, 2012; Lian et al., 2013;
Zheng et al., 2013; Tu et al., 2017a), and the precipitation or
streamflow of multiple regions (Yan et al., 2010b).

Furthermore, in practical water resources planning, the
main concern is that water demand of irrigation of the entire
region and that of sub-regions are designed for a given fre-
quency of precipitation for the entire region, not for a given
joint frequency of precipitation of sub-regions. The relation-
ship between regional frequency and joint frequency of pre-
cipitation is also required to be investigated in determining
design water demand of irrigation in a large region.

This paper considered water demand of irrigation of pad-
dies in Guangdong Province, South China, as a case study of
a large region. Annual precipitation data of eight agricultural
sub-regions and their net quotas of irrigation in association
with precipitation frequency were used. A high-dimensional
meta-Gaussian copula and several conventional univariate
distributions were applied to fit the joint and marginal distri-
butions of sub-regional precipitation, respectively. Combina-
tions of cumulative frequency for sub-regional precipitation
were generated by using the Monte Carlo simulation method
on the basis of the determined copula. The link between
the joint frequency of sub-regional precipitation and the fre-
quency of precipitation of the entire region was established.
The methods, i.e., typical year, equalized frequency, and the
most-likely weight function, were used for design combina-
tions of sub-regional precipitation for given frequencies of
precipitation of the entire region. Water demand of irrigation
of the entire region and individual sub-regions among design
methods was compared in order to improve design water de-
mand of irrigation in a large region.

2 Methodology

2.1 Water demand of irrigation of paddy

In a paddy field, water demand of irrigation per unit area, i.e.,
the net quota of irrigation, is determined by various factors,
such as crop and soil types, cultivation pattern and precipita-
tion process, etc. In regional planning of water resources, as
other factors are demonstrated in advance, the net quota of ir-
rigation mainly changes with annual precipitation due to the
stochastic property of precipitation. In practice, the net quota
of irrigation per unit area q (u) in association with the fre-
quency of precipitation is determined via field experiments.
Then, for a given frequency of annual precipitation, u, water
demand of irrigation,W (u), which refers to water withdrawn
from river or other water sources engineering, can be calcu-
lated as

W (u)=
Aq(u)

η
, (1)

where A and q (u) refer to the paddy area and the net quota
of irrigation, respectively, and η is the utilization coefficient
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Table 1. Theoretical cumulative distribution and probability density function of three parameter univariate distribution.

Name Cumulative distribution function Probability density function Parameter

GEV exp
{
−
[
1+ ξ (x−µ)/σ

]−1/ξ
}

1
σ

[
1+ ξ (x−µ)/σ

]−(ξ+1)/ξ exp
{
−
[
1+ ξ (x−µ)/σ

]−1/ξ
}

µ ∈ R,σ > 0,ξ ∈ R

GLO 1/
{

1+
[
1− ξ (x−µ)/σ

]1/ξ} 1
σ

[
1+ ξ (x−µ)/σ

]−(ξ+1)/ξ
/
{

1+
[
1+ ξ (x−µ)/σ

]1/ξ}2
µ ∈ R,σ > 0,ξ ∈ R

P-III βα

0(α)

∫ x
a0
(x− a0)exp

[
−β(x− a0)

]
/dx βα

0(α)
(x− a0)

α−1exp
[
−β(x− a0)

]
a0 ∈ R,α > 0,β > 0

GNO 8(y)y =−ln
[
1− ξ(x−µ)/σ

]
/ξ φ (y)/ [σ − ξ(x−µ)]y =−ln

[
1− ξ(x−µ)/σ

]
/ξ µ ∈ R,σ > 0,ξ ∈ R

of irrigation, which refers to the ratio of net water supply in
the field to water withdrawn from river or other water sources
engineering.

In a large region, for example Guangdong Province,
China, the differences of annual precipitation and the net
quota of irrigation among individual agricultural regions are
required to be considered. Then, for a given regional fre-
quency of annual precipitation, u0, for a large region with
sub-regions, water demand of irrigation, W(u0), can be de-
duced as follows:

W (u0)=

d∑
i=1

Aiqi(ui)

η
, (2)

where Ai refers to the irrigation area of the ith sub-region
and qi(ui) is the net quota of irrigation per unit area at the
frequency of precipitation of the ith sub-region, ui .

Therefore, the key point to design water demand of irriga-
tion for a given precipitation frequency of the entire region,
u0, is how to determine a combination of sub-regional pre-
cipitation frequencies, {u1, · · ·,ud}.

2.2 Annual precipitation distribution

If a large region consists of d sub-regions, letXi be the series
of annual precipitation in which i = 1, · · ·,d and j = 1, · · ·,n
refer to sub-region d and n years, respectively. The theoret-
ical cumulative distribution of annual precipitation in a sub-
region, FXi (x), can be fitted by several conventional three
parameter univariate distributions, which have been widely
used in hydrology, such as generalized extreme value (GEV),
generalized logistic (GLO), Pearson III (P-III) and general-
ized normal (GNO). Their cumulative distribution and prob-
ability density functions are presented in Table 1.

The Kolmogorov–Smirnov (K–S) statistic, D, for the
goodness-of-fit test of annual precipitation distribution of
a sub-region was computed as (Dobric and Schmid, 2007;
Massey, 2012; Tu et al., 2016)

D = max
1≤j≤n

{
F
[
x (j)

]
−
j − 1
n

,
j − 1
n
−F

[
x (j)

]}
, (3)

The parameters of all recommended univariate distributions
were estimated by the L-moment method. The critical val-
ues at the significance level of 0.05 for the goodness-of-fit

test of all distributions were obtained by the Monte Carlo
method with 5000 or more simulations. If the K–S statistic,
D, which was computed from the samples, was less than the
corresponding critical value, the tested distribution was ac-
cepted. The optimal distribution was selected from the ac-
cepted distributions by comparing their root-mean-square er-
ror (RMSE) and Akaike information criterion (AIC) values.
In addition, empirical and theoretical distributions were com-
pared to evaluate the goodness of fit of the observed samples
of precipitation. In hydrological practice, the empirical distri-
bution functions are defined and transformed by Gringorten
(1963).

Subsequently, based on the areal weight method, the an-
nual precipitation in the entire region, X0 (j), was calculated
as

X0 (j)=

d∑
i=1

αiXi(j), (4)

Where αi refers to the areal ratio of the ith sub-region to
the entire region. Then, the theoretical distribution of annual
precipitation for the entire region, FX0 (x), can also be fitted
by using the above recommended univariate distributions and
the K-S test method.

2.3 Conventional design methods

2.3.1 Typical year method (TY)

In practical design, water demand of irrigation for a large re-
gion, a combination of observed sub-regional precipitation in
a certain year, in which the precipitation of the entire region
weighted by individual sub-regions is the nearest to that of a
given frequency for the entire region, has been the only se-
lection (Cai et al., 2001). The selected year was called the
typical year corresponding to the given frequency of precip-
itation. Let ũ0 be a given cumulative distribution frequency
(CDF) of precipitation of the entire region. Then, the corre-
sponding precipitation can be calculated by using the inverse
function of the frequency distribution as follows:

X̃0 = F
−1
X0
(̃u0). (5)

Further, the relative alteration, R(j)j = 1, · · ·,n, of the ob-
served precipitation in each year compared to the precipita-
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tion of the given frequency, was defined as

R(j)=

∣∣∣∣∣X0 (j)− X̃0

X̃0

∣∣∣∣∣ . (6)

Then,

J = argminR(j), (7)

where J is the selected rank of a certain year, which corre-
sponds to the typical year for the given frequency ũ0.

In addition, due to the limited length of annual precipita-
tion observations, the relative alteration R(J ) of the typical
selected year might be large. Namely, annual precipitation of
the entire region weighted by sub-regional precipitation in a
typical selected year, in terms of magnitude, may differ from
that of the given frequency. Therefore, a scaling method was
applied to zoom in or out for the sub-regional precipitation
in the typical selected year as follows:

β =
X0 (J )

X̃0
, (8)

X̃i (J )=
Xi (J )

β
, (9)

where β is a scale coefficient and Xi (J ) and X̃i (J ) refer to
the ith sub-regional precipitation before and after zooming
in or out, respectively.

For a given precipitation frequency of the entire region,
ũ0, individual sub-regional frequencies, ũi (J ) i = 1, · · ·,d ,
can eventually be deduced by their frequency distributions
as follows:

ũi (J )= FXi [Xi (J )] . (10)

2.3.2 Equalized frequency method (EF)

In order to get a combination of sub-regional frequencies
for a given precipitation frequency of the entire region, the
equalized frequency method (Liu et al., 2015) is also used
for downscaling precipitation for a large region. As the name
implies, the EF assumes that the frequencies of sub-regional
precipitation are identical. That is, for a given precipitation
frequency ũ0, let ũ1 =, · · ·,= ũd , and then ũi can be found as
follows:

F−1
X0
(̃u0)=

d∑
i=1

AiF
−1
Xi
(̃ui), (11)

where F−1
X0
(̃u0) and F−1

Xi
(̃ui) refer to the precipitation in the

entire region and sub-regions calculated by using the inverse
function of individual frequency distributions, respectively.
In practical design, the sub-regional frequency ũi is deter-
mined by applying the method of successive search approxi-
mation within an available range.

2.4 Joint design based on copula function

2.4.1 Multidimensional joint distribution

For a large region, the difference of precipitation between
any two sub-regions is associated with geographical location.
Though annual precipitation in any sub-region is regarded as
stochastic, there exists dependence between two sub-regions,
in particular for adjacent sub-regions due to similar geo-
graphic and climate conditions. Herein, a multidimensional
copula function was used for modeling the joint distribu-
tion of sub-regional precipitation. Assume that annual pre-
cipitation of each sub-region, Xi, i = 1, · · ·,d , is a continu-
ous random variable with a d-dimensional joint distribution
H(Xi, · · ·,Xd) and individual marginal distribution func-
tions FXi (x), i = 1, · · ·,d . Then, on the basis of the Sklar the-
orem (Nelsen, 2006), the joint distribution, H(X1, · · ·,Xd),
can be defined as

H (X1, · · ·,Xd)= C
[
FX1 (x) , · · ·,FXd (x)

]
= C (u1, · · ·,ud) , (12)

where C (u1, · · ·,ud) is the d-dimensional copula function
which is the joint distribution function of standard uniform
random variables, and ui = FXi (x), i = 1, · · ·,d , refer to in-
dividual CDFs of sub-regional precipitation.

The copula function, which accommodates different
marginal distributions of individual variables and captures
their dependence, has been widely applied in multivariate
hydrology. More details on the theoretical properties of var-
ious copula families can be found in Nelsen (2006). Ow-
ing to its flexibility, accessibility and simple copula pa-
rameters in association with a correlation coefficient ma-
trix, a d-dimensional meta-Gaussian copula was selected for
modeling the joint distribution of multiple sub-regional pre-
cipitations. Its theoretical cumulative distribution function,
C (u1, · · ·,ud), and density function, c (u1, · · ·,ud), were de-
duced as follows (Genest et al., 2007):

C (u1, · · ·,ud)=

b1∫
−∞

· · ·

bd∫
−∞

g (ω1, · · ·,ωd)dω1,

· · ·,dωd , (13)

c (u1, · · ·,ud)= |6|
−1/2exp

(
−
ζ T6−1ζ

2
+
ζ T ζ

2

)
, (14)

where

g (ω1, · · ·,ωd)= (2π)−d/2|6|−1/2

exp
(
−
ωT6−1ω

2

)
, (15)

where b1 =8
−1 (u1) , · · ·,bd =8

−1 (ud), in which 8−1 (·)

refers to the inverse function of the standard normal distribu-
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tion. ω = [ω1, · · ·,ωd ]T and ζ = [b1, · · ·,bd ]T are the matri-
ces of variables in the integrand. The correlation coefficient
matrix 6 was expressed as

6 =

 1 · · · ρ1d
...

. . .
...

ρd1 · · · 1

ρij = { 1, i = j
ρji, i 6= j

, (16)

where, ρij ∈ [−1,1] refers to the correlation coefficient be-
tween any two sub-regional precipitations.

For the goodness-of-fit test of multi-dimensional meta-
Gaussian copula, the Cramér–von Mises test statistic on
the basis of the Rosenblatt transform was used (Rosenblatt,
1952; Genest et al., 2009). For the joint distribution of sub-
regional precipitation with a d dimension, the goodness-of-fit
test statistics, SBn , were formulated as

SBn =
n

3d
−

1
2d−1

∑n

j=1

d∏
i=1

[
1−E2

i (j)
]
+

1
n

∑n

k=1

∑n

j=1

d∏
i=1

{
1−max

[
Ei (j) ,Ei (k)

]}
, (17)

where Ei, i= 1, · · ·,d, refers to the pseudo-observations
of individual sub-regional precipitation. Let Ei = u1, and
Ei, i = 2, · · ·,d be assigned as (Rosenblatt, 1952; Dobric and
Schmid, 2007)

Ei = C (ui |u1, · · ·,ui−1)=
∂ i−1C (u1, · · ·,ui)

∂u1· · ·∂ui−1
/

∂ i−1C (u1, · · ·,ui−1)

∂u1· · ·∂ui−1
, (18)

A parametric bootstrap procedure for SBn , deduced from the
literature, is addressed in Appendix D (Genest et al., 2009).
In multivariate practice, the joint empirical distribution func-
tions are defined (Dobric and Schmid, 2007; Genest et al.,
2009; Tu et al., 2016) and transformed by Gringorten (1963).

In addition, the Kendall function, which is a univariate
expression of multivariate information (Genest and Rivest,
1993; Barbe et al., 1996; Salvadori et al., 2011, 2013), has
been shown to be an appropriate tool for calculating the
copula-based joint frequency of multivariate events (Nappo
and Spizzichino, 2009; Salvadori et al., 2011) and is widely
applied in discussing the joint probability or return period
of hydrological multivariables (Salvadori and Michele, 2004;
Michele et al., 2013). The Kendall CDF, FKc , which was
transformed from the joint CDF of eight sub-regional pre-
cipitation and was used in comparing it with the frequency
of entire regional precipitation, was estimated as

FKc (q)= P
[
C
[
u1 (j) , · · ·,ud (j)

]
≤ q

]
=

1
n

∑n

j=1
I (C ≤ q), (19)

where q ∈ (0,1) is the probability level and n refers to the
length of observed or simulated samples. The function I (·) is

an indicator function, which is equal to 1 when the enclosed
expression is true, and 0 otherwise.

2.4.2 Most-likely weight function (MLW)

In multivariate design practice, using sample data of annual
precipitation of all sub-regions, the univariate distribution
of the entire region, joint and marginal distributions of sub-
regions, and parameters of all distributions can be determined
by the recommended univariate models and Gaussian cop-
ula. The Monte Carlo method can be used to simulate new
combinations of CDFs of precipitation using the determined
distributions and parameters. Then, the CDFs of precipita-
tion of the entire region corresponding to each combination
of sub-regional CDFs can be achieved. However, there are a
large number of combinations which lead to the CDFs of the
entire region, which can be almost identical within a prede-
fined small difference. That is, a given CDF of precipitation
of the entire region can correspond to many combinations
of sub-regional CDFs with enough further simulations. The
design realization using the most-likely weight function was
proposed by Salvadori et al. (2011) as follows:

[̃u1, · · ·, ũd ]= argmaxf (x1, · · ·,xd) , (20)

f (x1, · · ·,xd)= c (u1, · · ·,ud)f (x1) · · ·f (xd) , (21)

where [̃u1, · · ·, ũd ] is eventually selected as the design combi-
nation of CDFs of sub-regional precipitation for a given CDF
of the entire region, ũ0. f (x1, · · ·,xd) refers to the product of
joint probability densities, c (u1, · · ·,ud), and their individual
marginal probability densities, f (xi) i = 1, · · ·,d . Therefore,
the procedure for design combination of sub-regional precip-
itation for a given CDF of the entire region was as follows.

1. The joint and marginal distributions and parameters of
sub-regional precipitation were determined by the good-
ness of fit of the recommended d-dimensional meta-
Gaussian copula and univariate distributions for the ob-
served samples.

2. Using the Monte Carlo method according to the de-
termined d-dimensional joint distribution, large quan-
tities of combinations of CDFs of sub-regional precipi-
tation,

[
u1 (j) , · · ·,ud (j)

]
j = 1, · · ·,m, with the num-

ber of simulations, m, were generated, and the cor-
responding combinations of sub-regional precipitation,[
X1 (j) , · · ·,Xd (j)

]
j = 1, · · ·,m, and precipitation and

CDFs of the entire region, X0 (j)j = 1, · · ·,m and
u0 (j)j = 1, · · ·,m, were calculated.

3. For a given CDF of precipitation of the entire region,
ũ0, the allowable relative error, was defined as∣∣∣∣u0 (j)− ũ0

ũ0

∣∣∣∣≤ Re, (22)
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Table 2. Area, paddy field and precipitation of the sub-regions and entire region. The A0 region refers to the entire region of Guangdong
Province.

Region Area (103 km2) Paddy field (103 hm2) Annual precipitation (103 mm)

Maximum Mean Median Minimum

A1 27.99 164.14 2.439 1.667 1.663 0.997
A2 33.37 187.63 2.379 1.704 1.672 1.102
A3 23.36 116.71 2.014 1.569 1.551 1.104
A4 9.36 106.59 2.457 1.676 1.659 0.965
A5 21.71 183.17 4.071 2.789 2.877 1.482
A6 14.29 126.43 2.573 1.725 1.665 0.724
A7 16.95 167.98 2.734 1.911 1.911 1.196
A8 11.53 108.08 2.275 1.514 1.487 0.747
A0 158.57 1160.73 2.421 1.835 1.845 1.152

China

A2
A1

A5

A3

A7

A8

A6

A4

Precipitation station

Agricultural  subregionsA1– A8

Guangdong province

Figure 1. Location of the study region, agricultural sub-regions and
precipitation stations.

where Re refers to the threshold value of allow-
able relative error. Then, in the simulated u0 (j),
those which satisfied Eq. (22) were selected.
That is, u0 (k)k = 1, · · ·, l with the length of l

were found to satisfy u0 (k)∼= ũ0 and the selected
combinations, [u1 (k) , · · ·,ud (k)]k = 1, · · ·, l and
[X1 (k) , · · ·,Xd (k)]k = 1, · · ·, l, corresponded to the
given ũ0.

4. For all selected combinations, the products of the prob-
ability densities, f [x1 (k) , · · ·,xd (k)]k = 1, · · ·, l,
on the basis of the joint probability densities,
c [u1 (k) , · · ·,ud (k)]k = 1, · · ·, l and marginal
f [x1 (k)] , · · ·f [xd (k)]k = 1, · · ·, l, respectively,
were calculated, and [̃u1, · · ·, ũd ] with the maxima of
the product from [u1 (k) , · · ·,ud (k)]k = 1, · · ·, l was the
design combination for the given CDF of precipitation
of the entire region, ũ0.

In addition, in order to better present the relationship of the
Kendall CDF of sub-regional precipitation and the CDF of

precipitation of the entire region, a confidence interval (CI)
was defined by the distance which deviated from the diago-
nal (Serinaldi, 2013; Volpi and Fiori, 2014) and transformed
herein by the normal distribution. The CI with a probability
of 1−α was involved.

3 Study region and data

The Guangdong Province as a study case is located in South
China with a land area of 158.57× 103 km2 (illustrated in
Fig. 1). The entire region mostly belongs to the monsoon cli-
mate zone, varying from the tropic to southern sub-tropic.
Annual precipitation is abundant, but uneven in terms of
spatial and temporal distribution. Since China’s reform and
opening up in the late 1970s, the water demand of the
province has been increasing with the rapid development of
the regional socio-economy. In 2015, the total water con-
sumption of the province accounted for 44.31 billion m3, in
which approximately one-half was for irrigation.

According to the report of the Irrigation Quota of Guang-
dong Province, the entire region marked by A0, in terms of
agriculture on the basis of climate, soil type, cropping sys-
tem and other management measures, was zoned into eight
sub-regions marked by A1–A8 in Fig. 1. Areal data of sub-
regions and their paddy fields were used (see Table 2). An-
nual precipitation data of eight sub-regions for the period of
1953–2013, in terms of multi-site average, were transformed
from 25 hydro-meteorological stations.

The net quotas of irrigation of individual sub-regions in as-
sociation with precipitation frequency resulted from the pre-
vious field experiments of irrigation in the late twentieth cen-
tury. According to the distribution and statistical properties
on the basis of field experiments in a research report entitled
Annual irrigation Quota in Guangdong Province (1999), the
net quotas of irrigation per unit area in the paddy fields of
individual sub-regions in association with the precipitation
frequency are illustrated in Fig. 2. They ranged from 7221 to
8520 m3 hm−2 in terms of annual average with coefficients
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A1: mean = 7.221, CV = 0.205
A2: mean = 7.619, CV = 0.215
A3: mean = 7.328, CV = 0.219
A4: mean = 8.274, CV = 0.202

 

 

A5: mean = 7.251, CV = 0.246
A6: mean = 7.416, CV = 0.293
A7: mean = 7.769, CV = 0.226
A8: mean = 8.520, CV = 0.213

Figure 2. Net quota of irrigation for paddy fields in individual sub-
regions.

of variation of 0.205–0.293, and precipitation was regarded
to follow the Pearson III distribution whose three parameters
were transformed using the given mean values and coeffi-
cients of variation marked in Fig. 2.

The utilization coefficient of irrigation of Guangdong
Province has been at a low level, which approximately ac-
counted for 0.46 in terms of average value in 2000 according
to the Water Resources Comprehensive Planning of Guang-
dong Province. In order to respond to tough national water
management measures of China, the utilization coefficient
is expected to be no less than 0.51 by 2020 in the Tough
Water Management Assessing Performance of Guangdong
Province. Therefore, the utilization coefficients of eight agri-
cultural sub-regions were uniformly predefined as a fixed
value of 0.51 in this paper.

4 Results and discussion

4.1 Univariate properties and distribution of
precipitation

Annual precipitation in the entire region and individual sub-
regions remarkably changed and was typically random. Pre-
cipitation in terms of average varied mostly from 1500 to
2000 mm, except for the A5 sub-region with a larger value of
2789 mm (see Table 2). The regional maximum of precipita-
tion accounted for 4071 mm that occurred in 1973 in the A5
sub-region, and the regional minimum of precipitation less
than 800 mm occurred in 1963 in the A6 sub-region. In gen-
eral, the average precipitation of the entire region accounted

A1 A2 A3 A4 A5 A6 A7 A8 A0
0
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Figure 3. Box plot of precipitation of sub-regions and the entire
region. The upper and lower boundaries of the box were set to the
values of their percentiles as one-quarter and three-quarters,Q1 and
Q3, respectively. The red solid line refers to the median. The upper
and lower boundaries extended along the dashed line were further
set to the values as Q1+15(Q1−Q3) and Q3−15(Q1−Q3), re-
spectively. The values beyond extended boundaries were generally
regarded as abnormal, marked by the red plus sign.

for 1835 mm, with a maximum of 2421 mm and a minimum
of 1152 mm. The general statistical characteristics of annual
precipitation are illustrated in Fig. 3. All values in the range
of extended boundaries were generally regarded as normal,
and otherwise abnormal. The box plot shows that most sam-
ples of precipitation fell within the extended boundaries, ex-
cept for several samples from the A1 and A6 sub-regions.

The statistics of the goodness-of-fit test of four alternative
univariate distributions were smaller than those of the sig-
nificance level of 0.05 (see Table 3), which implied that the
GEV, GLO, P-III and GNO distributions fitted annual precip-
itation of the sub-regions and the entire region. The RMSE
and AIC values among the distributions slightly differed and
those of the GNO distribution were the smallest for most
regions. Then, as illustrated in Fig. 4, all lines of the the-
oretical CDF almost overlapped the points of the empirical
CDF. They demonstrated that the GNO satisfactorily fitted
the frequency distributions of annual precipitation for the en-
tire region and sub-regions. As shown in Table 4, the shape
parameters of the GNO in the A1 and A2 sub-regions were
clear minus, that in the A5 sub-region was clear positive and
others were close to zero, which implied significantly left-
skewed, right-skewed and normal distributions, respectively.
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Figure 4. Empirical and theoretical CDFs of precipitation of sub-regions and the entire region using the GNO distribution. On the x axis, the
Hessian scale transferred by using the standard normal distribution was used.

Table 3. Goodness-of-fit test of univariate distributions of precipitation of sub-regions and the entire region. The standard (value) refers to
the statistic of the significance level of 0.05.

Region GEV GLO P-III GNO

Statistic Standard RMSE AIC Statistic Standard RMSE AIC Statistic Standard RMSE AIC Statistic Standard RMSE AIC

A1 0.065 0.095 0.028 −426 0.053 0.099 0.022 −457 0.065 0.096 0.027 −430 0.064 0.096 0.027 −431
A2 0.055 0.095 0.019 −472 0.075 0.099 0.026 −434 0.058 0.095 0.020 −468 0.058 0.095 0.020 −467
A3 0.051 0.095 0.019 −473 0.064 0.098 0.026 −438 0.049 0.096 0.020 −468 0.049 0.094 0.020 −468
A4 0.060 0.094 0.021 −464 0.057 0.099 0.022 −455 0.059 0.096 0.021 −465 0.059 0.094 0.021 −465
A5 0.087 0.095 0.030 −419 0.091 0.098 0.030 −420 0.087 0.095 0.028 −426 0.087 0.095 0.028 −426
A6 0.076 0.094 0.031 −413 0.090 0.098 0.032 −410 0.079 0.095 0.031 −414 0.079 0.094 0.031 −415
A7 0.063 0.095 0.025 −440 0.081 0.097 0.039 −388 0.068 0.095 0.028 −426 0.068 0.095 0.028 −426
A8 0.066 0.095 0.028 −429 0.088 0.098 0.040 −384 0.069 0.095 0.029 −421 0.070 0.096 0.030 −420
A0 0.076 0.094 0.022 −454 0.067 0.098 0.023 −452 0.072 0.095 0.022 −458 0.072 0.095 0.022 −458

4.2 Eight-dimensional joint distribution of
sub-regional precipitation

A matrix of correlation coefficients between sub-regional
precipitations is illustrated in Fig. 5. Due to the geographical
distance and direction, the coefficients varied from different
pairs of sub-regions, but most of them were quite large ex-
cept between A8 and other sub-regions, such as both A8–A6
and A8–A4, which were less than 0.1. In actuality, the corre-
lation coefficient implied dependence between sub-regional

precipitation values. The larger the coefficient was, the larger
the dependence was.

The Q-Q plot of empirical and theoretical joint CDFs
showed that the sample points fell near the diagonal of 1 :
1, though more fell in the lower tail (see Fig. 6). For the
goodness-of-fit test of the eight-dimensional meta-Gaussian
copula, the p-value accounted for 0.262 beyond the sig-
nificance level of 0.05. This demonstrated that the high-
dimensional Gaussian copula better fitted the joint distribu-
tion of precipitation of eight sub-regions. However, eight-
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Table 4. Parameters of the GNO distribution of precipitation of sub-regions and the entire region.

Parameter A1 A2 A3 A4 A5 A6 A7 A8 A0

Location 1.645 1.684 1.575 1.663 2.831 1.711 1.915 1.497 1.841
Scale 0.302 0.289 0.234 0.369 0.534 0.337 0.406 0.339 0.275
Shape −0.141 −0.136 0.052 −0.073 0.156 −0.082 0.018 −0.100 0.045

 

A1 A2 A3 A4 A5 A6 A7 A8 

A1 
 

0.833 0.647 0.757 0.595 0.765 0.420 0.131 

A2 0.998 
 

0.720 0.614 0.671 0.592 0.588 0.226 

A3 0.678 0.975 
 

0.573 0.761 0.609 0.711 0.316 

A4 0.936 0.989 0.800 
 

0.456 0.645 0.404 0.038 

A5 0.994 0.674 0.991 0.945 
 

0.712 0.609 0.264 

A6 0.649 0.626 0.913 0.989 0.865 
 

0.328 0.078 

A7 0.818 0.994 0.836 0.925 0.798 0.949 
 

0.501 

A8 0.977 0.830 0.929 0.914 0.980 0.977 0.999 
 

 1 

 
A1 A2 A3 A4 A5 A6 A7 A8 

A1 1 0.839 0.651 0.745 0.604 0.765 0.435 0.148 

A2 0.839 1 0.722 0.611 0.677 0.599 0.599 0.238 

A3 0.651 0.722 1 0.572 0.753 0.610 0.709 0.309 

A4 0.745 0.611 0.572 1 0.466 0.646 0.407 0.032 

A5 0.604 0.677 0.753 0.466 1 0.708 0.603 0.264 

A6 0.765 0.599 0.610 0.646 0.708 1 0.338 0.079 

A7 0.435 0.599 0.709 0.407 0.603 0.338 1 0.489 

A8 0.148 0.238 0.309 0.032 0.264 0.079 0.489 1 

 2 Figure 5. Matrix of correlative coefficients of precipitation between
two sub-regions.
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Figure 6. Q–Q plot of empirical and theoretical CDFs of sub-
regional precipitation using the eight-dimensional Gaussian copula.

dimensional joint CDFs of sub-regional precipitation on the
basis of observed data were limited and the maximum was
less than 0.75.

When the conventional joint CDF of sub-regional precip-
itation was transformed into the Kendall CDF, the CDF was
indeed enlarged (see Fig. 7a). For example, using observed
data, the minimum of 0.00005 and the maximum of 0.71957
for the conventional joint CDF corresponded to 0.00916 and
0.99084 for the Kendall CDF, respectively. Using the Hes-
sian axes in which the scales of dual axes were transferred
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Figure 7. Comparison of conventional joint CDF and Kendall CDF
in subfigures (a) with the general axes and (b) with the Hessian
axes.

following the standard normal distribution (see Fig. 7b), the
conventional joint CDF and the Kendall CDF showed a lin-
ear relationship, which demonstrated that it was appropriate
to use the Kendall instead of the conventional joint CDF.

4.3 Relationship between sub-regional joint and entire
region CDFs of precipitation

According to the determined eight-dimensional Gaussian
copula, a million combinations of CDFs of sub-regional pre-
cipitation were generated by using Monte Carlo simulation.
Correspondingly, the conventional joint and Kendall CDFs of
sub-regions and the CDFs of the entire region were achieved
(illustrated in Fig. 8). Comparing the conventional joint and
the entire region CDFs (see Fig. 8a), the combination points
tended to happen in the northwest and had an up-convex
lower boundary. When the CDF of the entire region was
given a certain value, the corresponding joint CDFs varied
within the limited upper bound on which the joint CDFs were
less than the given value of the entire region.

Using the Kendall CDF instead of the conventional joint
CDF (see Fig. 8b), the combination points scattered near the
diagonal of 1 : 1 with a concave upper lower boundary. It also
showed that most observed samples fell within the envelope
of CI with a probability of 0.95. In addition, between the
Kendall CDF and the CDF of the entire region, there were
large correlation coefficients of 0.9221 and 0.9153 for the
observed and simulated samples, respectively. These showed
that the Kendall CDF instead of the conventional CDF was
convenient to analyze the relationship of the CDF between
the entire region and the sub-regional joint CDF.

www.hydrol-earth-syst-sci.net/22/5175/2018/ Hydrol. Earth Syst. Sci., 22, 5175–5189, 2018



5184 X. Tu et al.: Design water demand of irrigation

(a) (b)

Figure 8. CDF of precipitation of the entire region responding to (a) the conventional joint CDF and (b) the Kendall CDF of eight sub-regions.

4.4 Design combinations of the CDF of sub-regional
precipitation

The given CDFs of precipitation of the entire region can be
predefined to change in the range from 0.05 to 0.95 with a
step of 0.05, which refers to the alteration of regional pre-
cipitation from extreme dry to extreme wet. Considering the
uncertainty of Monte Carlo simulation, those simulated com-
binations (see grey points in Fig. 9), in which the allowable
relative error of their calculated CDFs of the entire region
compared to a given CDF was less than 0.05 %, were selected
to be an alternate for further design combination.

Using the EF method (see the blue dashed line in Fig. 9),
design points consisted of a better smooth curve which
mostly fell within 0.5 of the CI. The Kendall CDF was very
close to the CDF of the entire region, but that of the former
was larger than that of the latter, with lower CDFs being less
than 0.55 in the study case, and vice versa in larger CDFs.
Using the TY method (see the red circles in Fig. 9), design
points were irregularly scattered on the two sides of the di-
agonal of 1 : 1, and even several points were beyond 0.95 of
the CI, for example for the given CDFs of 0.8 and 0.9. Using
the MLW method (see the blue triangles in Fig. 9), design
points fell within the range between 0.5 and 0.95 of the CI,
and design Kendall CDFs were larger than the given CDFs.

In general, if the CDF of sub-regional precipitation was
equalized, the differences between the design Kendall CDF
and the given CDF of the entire region were almost no more
than a CI of 0.5. On the basis of maximum joint probabil-
ity density, design Kendall CDFs were larger than the given
CDFs and preferred to the upper limited bound. By zooming
in or out according to the typical year, design points almost
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Figure 9. Design Kendall CDFs for given CDFs of precipitation of
the entire region which varied from 0.05 to 0.95 with a step of 0.05.

fell within 0.95 of the CI, but they were relatively scattered
in comparison to other methods.

In addition, between individual CDFs of eight sub-
regional precipitations and the CDF of the entire region, the
design points maintained a smooth curve and were undiffer-
entiated for all sub-regions when using the EF method (see
the blue dashed line in Fig. 10). The design individual CDFs
of sub-regions were very close to the CDF of the entire re-
gion, but the former were larger than the latter in the lower
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Figure 10. Design CDFs of sub-regions for given CDFs of precipitation of the entire region.

CDFs and vice versa in the larger CDFs. Using TY and MLW
methods, design points were scattered on the two sides of the
diagonal of 1 : 1. Design CDFs differed from sub-regions, but
their differences were undetermined. However, as seen from
the envelope of design points of individual sub-regions, the
ranges of the MLW design were comparatively narrow and
concentrated around the diagonal of 1 : 1 except for the A8
sub-region, but those of the TY design were much wider, in
particular for the A4, A7 and A8 sub-regions.

4.5 Design water demand of irrigation

For given CDFs of precipitation of the entire region, the wa-
ter demand of irrigation of the entire region for all selected
simulations and design points are illustrated in Fig. 11a. As
the given CDF changed from 0.05 to 0.95, the average value
of water demand decreased from 22.79 to 12.78 billion m3,
correspondingly representing the range from extremely dry
to extremely wet (see the black dashed line in Fig. 11a). The
difference between the maximum and minimum demands for
a given CDF (see the blue and red dashed lines in Fig. 11a)
varied in the range of 1.15–1.72 billion m3. Design demands
of the MLW and EF methods (see the blue and black solid
lines in Fig. 11a) were slightly smaller than the average val-
ues, but those of the TY method (see the red line in Fig. 11a)
fluctuated around the line of average value. Compared to
the average values (see Fig. 11b), the maximum and mini-
mum demands increased and decreased by 3.0 %–7.5 % and
2.5 %–3.8 %, respectively. Design demands of the MLW and
EF methods decreased within 1.4 % and 2.1 %, respectively,
and those of the TY method increased or decreased within

2.8 % or 2.1 %, respectively. These values demonstrated that
the differences of water demand among three design methods
for the entire region were quite small.

Design water demands of irrigation in individual sub-
regions are illustrated in Fig. 13. As the given CDF changed
from 0.05 to 0.95, sub-regional demands of the EF method
smoothly decreased from 2.16–3.73 to 1.16–2.29 billion m3,
correspondingly representing the range from extremely dry
to extremely wet (see the black lines in Fig. 12). Then, the
demands of the TY and MLW methods fluctuated around
the lines of the demand of the EF method, and the fluctua-
tions of the former were remarkably larger than those of the
latter (see the red and blue lines in Fig. 12). Compared to
the EF method (see Fig. 13), the increase or decrease in the
water demand of the MLW design accounted for less than
13 % in most sub-regions, except for the A8 sub-region with
a maximum of 26.1 %, but that of the TY method accounted
for 15.4 %–24.3 % for the A1, A2, A3 and A5 sub-regions
and 39.8 %–45.7 % for the A4, A6, A7 and A8 sub-regions.
These values demonstrated that the alterations of design wa-
ter demand in sub-regions were more complicated in com-
parison with those in the entire region.

5 Conclusions

Using Guangdong Province of South China as a case study
of a large region, a high-dimensional meta-Gaussian cop-
ula was applied for fitting the joint distribution of multiple
regional precipitation. A large number of combinations of
CDFs of precipitation of eight sub-regions were generated
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Figure 11. (a) Design water demand of irrigation of the entire region and (b) their relative alteration compared to the average demand.
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Figure 12. Design water demand of irrigation in sub-regions for given CDFs of precipitation of the entire region.

by using the Monte Carlo method. The relationship among
the CDFs of the entire region, the conventional joint CDF,
and the Kendall CDF of sub-regions was determined. Three
design methods, including the EF and TY design methods,
and a new design procedure of the MLW method in associ-
ation with the joint probability density, were used for design
combinations of sub-regional CDFs for given CDFs of pre-
cipitation of the entire region. Then, design water demands
of irrigation of the entire region and individual sub-regions
were compared. The main conclusions of this study are as
follows.

1. The frequency distributions of annual precipitation of
the entire region and of sub-regions were fitted well by
the GNO distribution. The shape parameters in the A1
and A2 sub-regions were a clear minus, those in the
A5 sub-region were a clear positive, and others were
close to zero, which implied significantly left-skewed,
right-skewed and normal distributions, respectively. The
eight-dimensional Gaussian copula satisfactorily fitted
the joint distribution of sub-regional precipitation.

2. There was a clear linear dependence between the con-
ventional joint and Kendall CDFs of sub-regional pre-
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Figure 13. Relative alteration of design water demand compared to the EF method for given CDFs of precipitation of the entire region.

cipitation when both of them were transferred by the
standard normal distribution. Comparing the Kendall
CDFs of sub-regions and the CDF of the entire region,
most observed samples fell within the envelope of CI of
a probability of 0.95 around the diagonal of 1 : 1, and
there were greater dependences between them with cor-
relation coefficients of 0.9221 and 0.9153 for the ob-
served and simulated samples, respectively. The use of
the Kendall CDF instead of the conventional joint CDF
can better link the joint frequency of sub-regions and the
univariate frequency of the entire region. However, any
one given CDF of the entire region corresponded to a
large number of joint CDFs varying from very small to
limited large CDFs. That is, there was an upper bound
in larger values of the joint CDFs of sub-regions corre-
sponding to given CDFs of the entire region.

3. For given CDFs of precipitation of the entire region, de-
sign Kendall CDFs and individual CDFs of eight sub-
regions of the EF method maintained a smooth curve
and were very close to their diagonal of 1 : 1. The de-
sign Kendall CDFs of the MLW method which were
larger than the given CDFs of the entire region fell be-
tween 0.5 and 0.95 probabilities for the CI far from the
diagonal, and those of the TY method were irregularly
scattered on the two sides of the diagonal. Then, design
CDFs of individual sub-regions of the MLW and TY
methods were also scattered on the two sides of the di-
agonal, but they differed for individual sub-regions. The
change ranges of the MLW design were comparatively

narrow and were concentrated around the diagonal, but
those of the TY design were much wider.

4. For given CDFs varying from 0.05 to 0.95 representing
the range from extremely dry to extremely wet, the sim-
ulated water demand of irrigation of the entire region in
terms of the average value accounted for from 22.79 to
12.78 billion m3. Design demands of the MLW and EF
methods were slightly smaller than the average values,
and those of the TY method fluctuated around the av-
erage values. Compared to the average demand, design
demands of the MLW, EF and TY methods decreased or
increased, respectively, within 1.4 %, 2.1 %, and 2.8 %,
which demonstrated that the differences of design de-
mand of the entire region among the three methods were
quite small.

5. For given CDFs varying from 0.05 to 0.95 represent-
ing the range from extremely dry to extremely wet, de-
sign water demands of individual sub-regions of the EF
method decreased smoothly from 2.16–3.73 to 1.16–
2.29 billion m3, and those of the MLW and TY methods
fluctuated around the demand lines of the EF method,
but the fluctuations of the TY method were remarkably
larger than those of the MLW method. Compared to the
EF method, the increase or decrease in the water de-
mand of the MLW design accounted for less than 13 %
in most sub-regions, except for the A8 sub-region with
a maximum of 26.1 %, but those of the TY method ac-
counted for 39.8 %–45.7 % for the A4, A6, A7 and A8
sub-regions. These values demonstrated that the alter-
ations of design water demand in sub-regions were more
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complicated in comparison with those in the entire re-
gion.

All in all, in practical planning of regional water resources,
using the EF method can realize water demand of irrigation
for the entire region and its sub-regions for a given frequency
of precipitation, but it is arbitrary that the series of sub-
regional precipitation are regarded to be undifferentiated for
a large region, for example the case region. The TY method
was constrained by the limited observed data of precipitation
and it cannot be chosen when several different combinations
of sub-regional precipitation made the frequency of precip-
itation of the entire region approximately identical. There-
fore, a design procedure using the MLW method in associ-
ation with a high-dimensional copula, which simulated in-
dividual univariate distributions, captured their dependences
for multi-variables and built a linkage between regional fre-
quency and sub-regional frequency of precipitation, is rec-
ommended for design water demand of irrigation for a large
region.
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