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Abstract. Hydrological models play an important role in wa-
ter resources management. These models generally rely on
discharge data for calibration. Discharge time series are nor-
mally derived from observed water levels by using a rating
curve. However, this method suffers from many uncertain-
ties due to insufficient observations, inadequate rating curve
fitting procedures, rating curve extrapolation, and temporal
changes in the river geometry. Unfortunately, this problem
is prominent in many African river basins. In this study, an
alternative calibration method is presented using water-level
time series instead of discharge, applied to a semi-distributed
rainfall-runoff model for the semi-arid and poorly gauged
Mara River basin in Kenya. The modelled discharges were
converted into water levels using the Strickler–Manning for-
mula. This method produces an additional model output;
this is a “geometric rating curve equation” that relates the
modelled discharge to the observed water level using the
Strickler–Manning formula and a calibrated slope-roughness
parameter. This procedure resulted in good and consistent
model results during calibration and validation. The hydro-
logical model was able to reproduce the water levels for the
entire basin as well as for the Nyangores sub-catchment in
the north. The newly derived geometric rating curves were
subsequently compared to the existing rating curves. At the
catchment outlet of the Mara, these differed significantly,
most likely due to uncertainties in the recorded discharge
time series. However, at the “Nyangores” sub-catchment,
the geometric and recorded discharge were almost identi-
cal. In conclusion, the results obtained for the Mara River
basin illustrate that with the proposed calibration method,
the water-level time series can be simulated well, and that

the discharge-water-level relation can also be derived, even
in catchments with uncertain or lacking rating curve infor-
mation.

1 Introduction to rating curve uncertainties

Hydrological models play an important role in water re-
sources management. In hydrological modelling, discharge
time series are of crucial importance. For example, discharge
is used when estimating flood peaks (Di Baldassarre et al.,
2012; Kuczera, 1996), calibrating models (Domeneghetti et
al., 2012; McMillan et al., 2010) or determining the model
structure (McMillan and Westerberg, 2015; Bulygina and
Gupta, 2011). Discharge is commonly measured indirectly
through the interpolation of velocity measurements over the
cross-section (WMO, 2008; Di Baldassarre and Montanari,
2009). However, to obtain frequent or continuous discharge
data, this method is time consuming and cost-inefficient.
Moreover, in African river catchments, the quantity and qual-
ity of the available discharge measurements are often unfor-
tunately inadequate for the reliable calibration of hydrologi-
cal models (Shahin, 2002; Hrachowitz et al., 2013).

There are several sources of uncertainty in discharge data
when using rating curves that cannot be neglected. First,
measurement errors in the individual discharge measure-
ments affect the estimated continuous discharge data, for ex-
ample in the velocity-area method, uncertainties in the cross-
section and velocity can arise due to poor sampling (Pelletier,
1988; Sikorska et al., 2013). Second, these measurements
are usually conducted during normal flows. However during
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floods, the rating curve needs to be extrapolated. Therefore,
the uncertainty increases for discharges under extreme con-
ditions (Di Baldassarre and Claps, 2011; Domeneghetti et
al., 2012). Thirdly, the fitting procedure does not always ac-
count well for irregularities in the profile, particularly when
banks are overtopped. Finally, the river is a dynamic, non-
stationary system which influences the rating curve, for ex-
ample changes in the cross-section due to sedimentation or
erosion, backwater effects or hysteresis (Petersen-Øverleir,
2006). The lack of incorporating such temporal changes
in the rating curve increases the uncertainty in discharge
data (Guerrero et al., 2012; Jalbert et al., 2011; Morlot et
al., 2014). As a result, the rating curve should be regu-
larly updated to take such changes into account. The tim-
ing of adjusting the rating curve relative to the changes in
the river affects the number of rating curves and the uncer-
tainty (Tomkins, 2014). Previous studies focused on assess-
ing the uncertainty of rating curves (Di Baldassarre and Mon-
tanari, 2009; Clarke, 1999) and their effect on model predic-
tions (Karamuz et al., 2016; Sellami et al., 2013; Thyer et al.,
2011).

In the absence of reliable rating curves, remotely sensed
river characteristics related to the discharge such as river
width and water level can provide valuable information on
the flow dynamics for model calibration and validation. For
instance, previous studies derived the discharge from re-
motely sensed river width (Revilla-Romero et al., 2015; Yan
et al., 2015; Sun et al., 2015) or river water levels mea-
sured with radar altimetry (Pereira-Cardenal et al., 2011;
Michailovsky et al., 2012; Ričko et al., 2012; Schwatke et al.,
2015; Tourian et al., 2017; Sun et al., 2012). In previous stud-
ies, hydrological models were calibrated on river width or
surface water extent (Sun et al., 2015; Revilla-Romero et al.,
2015). Also radar altimetry observations of river water levels
have been used to calibrate or validate hydrological models
by using empirical equations transforming discharge to the
water level without using cross-section information (Sun et
al., 2012; Getirana, 2010), for instance conceptual hydrolog-
ical models (Sun et al., 2012; Pereira-Cardenal et al., 2011)
or process-based models (Getirana, 2010; Paiva et al., 2013).

Besides remotely sensed river characteristics, locally mea-
sured river water-level time series are also valuable for model
calibration and validation (van Meerveld et al., 2017). In
general, water-level time series are more reliable than dis-
charge data or remotely sensed river characteristics, as these
are direct measurements and not processed data. In previous
studies, hydrological models have been calibrated on river
water-level time series using the Spearman rank correlation
coefficient (Jian et al., 2017; Seibert and Vis, 2016) or by
including an inverse rating curve with three new calibration
parameters to convert the modelled discharge to water level
(Jian et al., 2017). When using the Spearman rank correla-
tion function, the focus is on correlating the ranks instead
of the magnitudes, which as a result, introduces biases in
the model results. Alternatively, rainfall-runoff models can

Figure 1. Map of the Mara River basin and the hydro-
meteorological stations for which data are available.

be calibrated on water-level time series combined with a hy-
draulic equation introducing only one new calibration param-
eter. Data-driven models have also been calibrated success-
fully on water-level time series; for example artificial neu-
ral network or fuzzy logic approaches were applied (Liu and
Chung, 2014; Panda et al., 2010; Alvisi et al., 2006).

The goal of this study is to illustrate the potential of
water-level time series for hydrological model calibration
by incorporating a hydraulic equation describing the rat-
ing curve within the model. This calibration method is ap-
plied to the semi-arid and poorly gauged Mara River basin
in Kenya. For three gauging stations within this basin, the
quality of the recorded rating curves have been analysed and
compared to the model results. For this purpose, a semi-
distributed rainfall-runoff model has been developed on a
daily timescale applying the FLEX-Topo modelling concept
(Savenije, 2010).

2 Site description of the Mara River basin and data
availability

The Mara River originates in Kenya in the Mau Escarp-
ment and flows through the Maasai Mara National Reserve
in Kenya into Lake Victoria in Tanzania. The main tributaries
are the Nyangores and Amala rivers in the upper reach and
the Lemek, Talak and Sand in the middle reach (Fig. 1). The
first two tributaries are perennial, while the remaining trib-
utaries are ephemeral, which generally dry out during dry
periods. In total, the river is 395 km long (Dessu et al., 2014)
and its catchment covers an area of about 11 500 km2 (Mc-
Clain et al., 2013), of which 65 % is located in Kenya (Mati
et al., 2008).

Within the Mara River basin, there are two wet seasons
linked to the annual oscillations of the ITCZ (Intertropical
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Table 1. Hydro-meteorological data availability in the Mara River basin. The temporal coverage for water level and discharge can be different
due to poor administration.

Precipitation Temperature Water level, discharge

Number of stations 28 7 3
Station ID – – 1LA03 1LB02 5H2
Station location – – Nyangores at Bomet Amala at Kapkimolwa Mara at Mines
Time range 1959–2011 1957–2014 1963–2009 1955–2015 1969–2013
Duration [years] 0–43 3–57 46 60 44
Coverage 8 %–100 % 30 %–100 % Discharge: 85 % Discharge: 72 % Discharge: 53 %

Water level: 85 % Water level: 70 % Water level: 61 %

Figure 2. Discharge–water depth graphs for the three main river gauging stations in the Mara River basin; these are the Mara at Mines,
Nyangores at Bomet and Amala at Kapkimolwa. For each location, the following are visualised: (1) recorded discharge and water-level
time series between 1960 and 2010 (light blue), (2) discharge field measurements from the Nile Decision Support Tool (NDST) for the time
period 1963–1989 (Nyangores) and 1965–1992 (Amala); no data were available for Mines (red).

Convergence Zone). The first wet season is from March to
May and the second from October to December (McClain et
al., 2013). The precipitation varies spatially over the catch-
ment following the local topography. The largest annual rain-
fall can be found in the upstream area of the catchment,
which is between 1000 and 1750 mm yr−1. In the middle and
downstream areas, the annual rainfall is between 900 and
1000 mm yr−1 and between 300 and 850 mm yr−1, respec-
tively (Dessu et al., 2014).

The elevation of the river basin varies between
3000 m a.s.l. (metres above sea level) at the Mau Escarpment,
1480 m at the border to Tanzania and 1130 m at Lake Victo-
ria (McClain et al., 2013). In the Mara River basin, the main
land cover types are agriculture, grass, shrubs and forests.
The main forest in the catchment is the Mau forest, which is
located in the north. Croplands are mainly found in the north
and in the south, whereas the middle part is dominated by
grasslands.

2.1 Data availability

2.1.1 In situ monitoring data

In the Mara River basin, long-term daily water level and
discharge time series are available for 44–60 years be-

tween 1955 and 2015 at the downstream station near Mines
and in the two main tributaries, the Nyangores and Amala.
In addition, precipitation and air temperature is measured at
27 and 7 stations, respectively (Fig. 1 and Table 1). How-
ever, the temporal coverage of these data are poor, as there
are many gaps.

There are many uncertainties in the discharge and precipi-
tation data in the Mara River basin. Discharge data analyses
indicated that the time series were unreliable due to various
inconsistencies in the data, especially at Mines and Amala.
At Mines, a high scatter in the discharge-water-level graph
was observed (Fig. 2) and back-calculated cross-section av-
erage flow velocities were below 1 m s−1 (Fig. S1 in the
Supplement), whereas in 2012 the measured velocity was
2.13 m s−1 and the discharge 529.3 m3 s−1 (GLOWS-FIU,
2012). At Amala, the rating curves were adjusted multiple
times, affecting mostly the low flows. Only the rating curve
at Nyangores was stable and consistent with field measure-
ments. The precipitation data analysis showed a high spa-
tial variability between the limited number of rainfall stations
available. More information can be found in “S1 Data qual-
ity” in the Supplement.

During field trips, point discharge measurements were
done in September and October 2014 at Emarti Bridge, Ser-
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Table 2. Discharge measured in the field using an Acoustic Doppler
Profiler (SonTek RiverSurveyor M9) mounted on a portable raft
that is also equipped with a Power Communications Module and
a DGPS (Rey et al., 2015).

Station name Date Mean Standard
discharge deviation

Emarti Bridge 13 Sep 2014 19.2 m3 s−1 0.7 m3 s−1

4 Oct 2014 13.4 m3 s−1 0.6 m3 s−1

Serena Pump House 9 Oct 2014 16.6 m3 s−1 0.4 m3 s−1

New Mara Bridge 19 Sep 2014 19.6 m3 s−1 0.6 m3 s−1

6 Oct 2014 21.9 m3 s−1 0.4 m3 s−1

ena Pump House and New Mara Bridge (see Table 2 and
Fig. 3). At each location, the discharge was derived using
an Acoustic Doppler Profiler (SonTek RiverSurveyor M9)
mounted on a portable raft that is also equipped with a Power
Communications Module and a Differential Global Position-
ing System (DGPS) antenna (Rey et al., 2015).

2.1.2 Remotely sensed data

Besides ground observations, remotely sensed data were also
used for setting up the rainfall-runoff model. Catchment
classification was based on topography and land cover. For
the topography, a digital elevation map (SRTM) with a res-
olution of 90 m and vertical accuracy of 16 m was used
(US Geological Survey, 2014). The land cover was based on
Africover, a land cover database based on ground truth and
satellite images (FAO-UN, 2002). For the climate, remotely
sensed precipitation was used from the Famine Early Warn-
ing Systems Network (FEWS NET) on a daily timescale
from 2001 to 2010 and monthly actual evaporation from
USGS from 2001 to 2013. Moreover, normalised difference
vegetation index (NDVI) maps derived from Landsat images
were used to define parameter constraints.

3 Hydrological model setup for the Mara River basin

3.1 Catchment classification based on landscape and
land use

For this study, the modelling concept of FLEX-Topo has
been used (Savenije, 2010). It is a semi-distributed rainfall-
runoff modelling framework that distinguishes hydrologi-
cal response units (HRUs) based on landscape features. The
landscape classes were identified based on the topographical
indices HAND (Height Above Nearest Drain) and slope us-
ing a digital elevation map. Hillslopes are defined by a strong
slope and high HAND, wetlands by a low HAND, and ter-
races by a high HAND and mild slope. The threshold for
the slope (21.9 %) was based on a sensitivity analyses within
the Mara basin, which revealed that the area of hillslopes
changed asymptotically with the threshold. Therefore, the

Figure 3. Map of discharge measurement locations during field trips
in September and October 2014.

slope threshold was chosen at the point where changes in the
sloped area become insignificant. As the wetland area was
insignificant based on field observations, the HAND thresh-
old was set to zero. In the Mara River basin, there are mainly
terraces and hillslopes.

To further delimit these two main landscape units, the
land cover is taken into account as well. In the upper sub-
catchments, there are mainly croplands and forests, whereas
further south, the land use is dominated by grasslands. In the
lower sub-catchment, there are mostly croplands and grass-
lands. This resulted in four HRUs within the sub-basin of the
Mara River basin, namely forested hillslopes, shrubs on hill-
slopes, agriculture and grassland (Figs. 4 and 5 and Table 3).

3.2 Hydrological model structure

Each HRU is represented by a lumped conceptual model; the
model structure is based on the dominant flow processes ob-
served during field trips or deducted from interviews with
local people. For example, in forests and shrub lands, shal-
low subsurface flow (SSF) was seen to be the dominat-
ing flow mechanism; rainwater infiltrates into the soil and
flows through preferential flow paths to the river. In contrast,
grassland and cropland generate overland flow. The observed
soil compaction, due to cattle trampling and ploughing, re-
duces the preferential infiltration capacity resulting in over-
land flow during heavy rainfall. Consequently, the Hortonian
overland flow (HOF) occurs at high rainfall intensities ex-
ceeding the maximum infiltration capacity. The perception
of the dominant flow mechanisms (Fig. 5) was then used to
develop the model structure (Fig. 6). This approach of trans-
lating a perceptual model into a model concept (Beven, 2012)
was applied successfully in previous FLEX-Topo applica-
tions (Gao et al., 2014a; Gharari et al., 2014).
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Table 3. Classification results, namely the area percentage of each
hydrological response unit per sub-catchment in the Mara River
basin.

Sub-catchment Agriculture Shrubs on Grassland Forested
hillslopes hillslopes

Amala 67 % 0 % 0 % 33 %
Nyangores 61 % 0 % 0 % 39 %
Middle 19 % 16 % 65 % 0 %
Lemek 10 % 39 % 51 % 0 %
Talek 0 % 21 % 79 % 0 %
Sand 0 % 42 % 58 % 0 %
Lower 26 % 23 % 52 % 0 %

The model structure contains multiple storage components
schematised as reservoirs (Fig. 6). For each reservoir, the in-
flow, outflow and storage are defined by water balance equa-
tions, see Table 4. Process equations determine the fluxes be-
tween these reservoirs as a function of input drivers and their
storage. HRUs function in parallel and independently from
each other. However, they are connected to the groundwater
system and the drainage network. To find the total runoff at
the sub-catchment outlet Qm,sub, the outflow Qm,i of each
HRU is multiplied by its relative area and then added up
together with the groundwater discharge Qs. The relative
area is the area of a specific HRU divided by the entire sub-
catchment area. Subsequently, the modelled discharge at the
catchment outlet is obtained by using a simple river routing
technique, where a delay from sub-catchment outlet to catch-
ment outlet was added assuming an average river flow veloc-
ity of 0.5 m s−1. In the Sand sub-catchment, it is schema-
tised that runoff can percolate to the groundwater from the
riverbed and that moisture can evaporate from the ground-
water through deep rooting or riparian vegetation.

3.3 Model constraints

Parameters and process constraints were applied to eliminate
unrealistic parameter combinations and constrain the flow
volume. Parameter constraints were applied to the maximum
interception, reservoir coefficients, the storage capacity in the
root zone or on the surface, and the slope-roughness parame-
ter, Table 5. Process constraints were applied to the runoff co-
efficient, groundwater recharge, interception and infiltration,
Table 6. The effect of including these parameter and process
constraints is illustrated in Fig. S5. For instance, the maxi-
mum storage in the unsaturated zone Su,max equals the root
zone storage capacity and was estimated using the method
of Gao et al. (2014b) based on remotely sensed precipitation
and evaporation (Gao et al., 2014b; Wang-Erlandsson et al.,
2016). The dry season evaporation has been derived from the
actual evaporation using the NDVI.

Figure 4. Classification of the Mara River basin into four hydrolog-
ical response units for each sub-catchment based on land use and
landscape.

3.4 Model calibration method using water levels

The hydrological model was calibrated on a daily timescale
applying the MOSCEM-UA algorithm (Vrugt et al., 2003),
with parameter ranges and values as indicated in Tables S1
and S2 in the Supplement. For the calibration, the Nash–
Sutcliffe coefficient (Nash and Sutcliffe, 1970) was applied
to the water-level duration curve (Eq. 1 linear, and Eq. 2 log-
scale). This frequently used objective function is advanta-
geous, as it is sensitive not only to high flows, but also to low
flows when using logarithmic values (Krause et al., 2005;
McCuen Richard et al., 2006; Pushpalatha et al., 2012). By
calibrating on the duration curve, the focus is on the flow
statistics and not on the timing of individual flow peaks. This
information is also in the time series. This is justified, since
there were high uncertainties in the timings of floods events
due to the limited number of available rainfall stations to cap-
ture the spatial variability of the rainfall input well. There-
fore, duration curves were considered as a good signature
for calibrating this model; this was also concluded in previ-
ous studies (Westerberg et al., 2011; Yadav et al., 2007). This
signature was incorporated in the objective functions with the
following equations:

NSd = 1−
6
(
hmod,sorted−hobs,sorted

)2
6
(
hobs,sorted−hobs,avg

)2 , (1)

NSlog(d) = 1−
6
(
log

(
hmod,sorted

)
− log

(
hobs,sorted

))2
6
(
log

(
hobs,sorted

)
− log

(
hobs,avg

))2 . (2)
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Table 4. Equations applied in the hydrological model. The formulas for the unsaturated zone are written for the hydrological response units,
namely forested hillslopes and shrubs on hillslopes; for grass and agriculture, the inflow Pe changes to QF. The modelling time step is
1t = 1 day. Note that at a time daily step, the transfer of interception storage between consecutive days is assumed to be negligible.

Reservoir system Water balance equation Process functions

Interception 1Si
1t = P −Pe−Ei ≈ 0 Ei =min

(
Ep,min(P,Imax)

)
Surface 1So

1t = Pe−QF−QHOF−Eo QF =min
(
So
1t ,Fmax

)
QHOF =max (0,So−Smax)

1t

Eo =max
(

0,min
(
Ep−Ei,

So
1t

))
Unsaturated zone 1Su

1t = (1−C) ·Pe−E C = 1−
(

1− Su
Su,max

)β
E =min

((
Ep−Ei

)
min

(
Su
1t ,

(
Ep−Ei

)
·

Su
Su,max

·
1
Ce

))
Groundwater Rs =W ·C ·Pe
recharge

Fast runoff 1Sf
1t = Rfl−Qf Rfl = Tlag (C ·Pe−Rs)→ in a linear delay function Tlag

Qf =
Sf
Kf

Groundwater 1Ss
1t = Rs,tot−Qs−Es+Qinf Rs,tot =

i=4∑
i=1

Rs;HRUi

Qs =
Ss
Ks

Es = 0 and Qinf = 0 for all sub-basins except Sand

Qinf =min
(
Ss,max−Ss

1t ,Qf

)
for Sand sub-basin

Es =max
(

0,min
(
Ep−Ei−Eo−E,

Ss
1t

))
for Sand sub-basin

Total runoff Qm =Qs+
i=4∑
i=1

Qf;HRUi
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Figure 5. Schematisation of the landscape and land-use-based classification.

For the water-level-based calibration, the modelled discharge
needs to be converted to the modelled water level. This cal-
culation was done with the Strickler–Manning formula, in
which the discharge is a function of the water level (Eq. 3)
and where R is the hydraulic radius (Eq. 6), A the cross-

sectional area (Eq. 5), i the slope, k the roughness and c the
slope-roughness parameter (Eq. 4). The hydraulic radius and
cross-section are a function of the water depth d , which is
the water level subtracted h by the reference level h0 (Eq. 7).
The cross-sections were simplified as a trapezium with river
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Figure 6. Model structure of the HRUs for forested hillslopes (a) and agriculture (b). The structure for shrubs on hillslopes is similar to the
left one, replacing the indices F with S. The structure for grassland is similar to the right one, replacing the indices A with G. Parameters
are marked in red and storages and fluxes in black. In terms of the symbol explanation for fluxes, precipitation is denoted by (P ), evaporation
of the interception zone by (Ei), actual evaporation by (Ea), evaporation from groundwater only applied in the sub-catchment Sand by (Es),
effective precipitation by (Pe), infiltration into the unsaturated zone by (F ), discharge from unsaturated zone to the fast runoff zone by (Rf),
groundwater recharge by (Rs), discharge from the fast runoff by (Qf), infiltration into groundwater system only applied in the sub-catchment
Sand by (Qf,inf) and discharge from the slow runoff by (Qs). For storages, storage in the interception zone is denoted by (Si), open water
storage by (So), storage in the root zone by (Su), storage for the slow runoff by (Ss), storage for the fast runoff by (Sf). For the remaining
symbols, splitter is denoted by (W ) and (C), the soil moisture distribution coefficient by (β), the transpiration coefficient by (Ce = 0.5), and
the reservoir coefficient by (K); indices f and s indicate the fast and slow runoff. Units used are for fluxes [mm day−1], storages [mm],
reservoir coefficient [day] and remaining parameters [–].

width B and two different riverbank slopes i1 and i2; these
coefficients (Table 7) were estimated based on the avail-
able cross-section information (Figs. S6–S8). Since the slope
and roughness are unknown, the slope-roughness parame-
ter c was calibrated. The following equations were applied
for these calculations:

Q= k · i
1
2 ·A ·R

2
3 = c ·A ·R

2
3 , (3)

c = k · i
1
2 , (4)

A= B · d +
1
2
· d · (i1+ i2) · d, (5)

R =
A

B + d ·

((
1+ i21

) 1
2 +

(
1+ i22

) 1
2

) , (6)

d = h−h0. (7)

This model calibration method, illustrated graphically in
Fig. 7, was applied to three basins individually, namely to
the entire river basin using the station Mines and for the
sub-catchments Nyangores and Amala. At each location, the
model was calibrated and validated for time periods indicated
in Table 8; at Mines, two time periods were used for valida-
tion to maximise the use of the available ground measure-
ments.

3.5 Rating curve analysis

After calibration, the modelled water levels and discharges
were analysed. For the model calibration and validation, the
modelled and recorded water levels were compared at the
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Table 5. Overview of all parameter constraints applied in the hydrological model for the Mara River basin.

Parameter Symbol Formula Comment

Interception Imax Imax,forest > Imax,grass, Imax,shrubs, Based on perception
Imax,cropland
Imax,shrubs > Imax,grass, Imax,cropland

Reservoir coefficient Ks, Kf Ks >Kf Based on perception

Storage capacity in unsaturated Su,max SR,yi =
∫
Pe−Eddt Based on NDVI, equivalent to the root zone storage capacity

zone (Gao et al., 2014b)
with:
Ed
Ea
=

NDVID
NDVIA

SR,yi : required storage for year i
thus: Pe: effective rainfall over dry season
Ed = Ea ·

NDVID
NDVIA

Ed: annual mean dry season evaporation, calculated assuming
a linear relation between the evaporation and the NDVI
Ea: actual mean annual evaporation
NDVID: annual mean dry season NDVI
NDVIA: annual mean actual NDVI
Through a statistical analysis of SR using the Gumbel
distribution, the storage capacity Su,max with a return period
of 20 years is calculated.

Reservoir coefficient for Ks Qs =Qt=0 · exp
(
−

t
Ks

)
Based on hydrograph recession analysis

groundwater system Qs: groundwater discharge

Maximum surface water Smax – Based on DEM, assuming Smax is equal to the sink volumes
storage

Slope-roughness parameter c Q= c ·A ·R
2
3 = u ·A Based on Strickler formula, cross-section data and a single

u= c ·R
2
3 → ccalculated =

u

R
2
3

discharge and velocity measurement at Mines allowing a wide

ccalculated,−25 % error < c < ccalculated,+25 % error error margin of 25 %
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Figure 7. Flow chart of the proposed calibration method.

basin level, focusing on the time series and the duration
curves. Hereafter, water-level–discharge relations were anal-
ysed taking two rating curves into consideration:

– The “recorded rating curve” relates Qrec to hobs.

– The “geometric rating curve” relates QStrickler to hobs.

The geometric rating curve relates the modelled dis-
charge QStrickler to the observed water level hobs. This dis-
charge QStrickler was calculated with the Strickler–Manning
formula using the calibrated slope-roughness parameter c,
cross-section data, and the observed water level hobs. There-
fore, the equation behind the geometric rating curve is ba-
sically the Strickler–Manning formula (Eq. 3) instead of the

traditional rating curve equation (Eq. 8). The advantage of
the Strickler–Manning formula is that only one parameter
is unknown (riverbed slope and roughness c, Eq. 4), instead
of two (fitting parameters a and b). However, the Strickler–
Manning rating curve approach requires additional informa-
tion on the cross-section. This is represented by

Q= a · (h−h0)
b. (8)
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Table 6. Overview of all process constraints applied in the hydrological model for the Mara River basin.

Process Symbol Formula Comment

Average annual runoff C C = 1− E
P
= e−

Ep
P Based on the Budyko curve using the 95 %

coefficient percentile, hence the modelled average annual
runoff coefficient should be below the
95-percentile of the observations

Groundwater recharge Rs Rs,F >Rs,C, Rs,G Based on the assumption that deeper rooting
vegetation creates preferential drainage
patterns

Annual interception Ei Ei,F >Ei,G, Ei,S Based on the assumption that the interception
is higher in forests than in grassland and
shrublands

Fast runoff infiltration – fQriver < 3 yr−1 Frequency of river runoff. Based on
interviews, locals seldom observed runoff
more than 3 times a year.

Figure 8. Model results at Mines during calibration for water depth time series and water depth exceedance.

Figure 9. Model results at Nyangores during calibration for water depth time series and water depth exceedance.

4 Results and discussion

4.1 Water-level time series and duration curve

Model results were analysed graphically (Figs. 8 to 10 and
Figs. S9 to S19) and numerically based on the Nash–Sutcliffe
values for the objective functions (Table 9). The results of the
objective functions indicate that at Nyangores and Mines, the
calibration and validation results were consistent. At Mines,
the modelled water level was simulated well, particularly

with regard to the duration curve (Fig. 8). At individual
events, there were substantial differences. In some years, for
example in 1974, the observed data were very well repre-
sented by the model outcome. However, in other years this
was not the case. In general, the model captured the dynam-
ics in the water level well. This was the case during both
calibration and validation (see Figs. S12 and S13).

At Nyangores the observed and modelled water levels
were also similar during calibration and validation, ex-
tremely high flows excluded (Fig. 9). However, at Amala,
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Table 7. Coefficients used for the river cross-section.

Riverbank Riverbank Riverbank Reference
width slope slope level
B [m] i1 [–] i2 [–] h0 [m]

Amala 10.0 3.50 1.83 0
Nyangores 19.05 2.65 5.56 0
Mines 43.81 3.53 3.66 10

Table 8. Time periods used for the calibration and validation at the
three basins of Mines, Nyangores and Amala.

Mines Nyangores Amala

Calibration time period 1970–1974 1970–1980 1991–1992
Validation time period 1980–1981 1981–1992 1985–1986

1982–1983

the observed and modelled water levels differed significantly
during calibration (Fig. 10) and validation (Fig. S15). The
model missed several discharge events completely, likely re-
lated to missing rainfall events in the input data due to the
high heterogeneity in precipitation.

4.2 Discharge at sub-catchment level

At Mines, the discharge originates from seven different sub-
catchments, each with a different contribution. Based on field
observations, the mountainous upstream sub-catchments
from the north should have the largest contribution, whereas
the contribution from the relatively drier and flatter Lemek
and Talek tributaries from the eastern part of the catch-
ment should be relatively low. The contribution of each sub-
catchment to the total modelled discharge was assessed on a
monthly timescale and compared with observations.

As shown in Fig. 11, the contribution varied through-
out the year. In the summer (July–September), the mod-
elled discharge mainly originates from the northern sub-
catchments, Nyangores and Amala. However, in the winter
(November–April), the modelled discharge mainly originates
from the Sand and Lower sub-catchments. The eastern Mid-
dle, Talek and Lemek sub-catchments have the lowest dis-
charge throughout the entire year, as has been similarly ob-
served.

In previous studies, it has been shown that only a few
discharge measurements can contain sufficient information
to constrain model predictive uncertainties effectively (Seib-
ert and Beven, 2009). To evaluate the model at the sub-
catchment level, model results were compared with discharge
measurements done during field trips in September and Octo-
ber 2014 at the Emarti Bridge, Serena Pump House and New
Mara Bridge. At all three locations, the point measurements
fitted well within the range of the modelled discharge (see
Fig. 12).

4.3 Rating curve analysis

In this study, the recorded and geometric (Strickler–
Manning) rating curves were compared (Fig. 13). At Mines,
these two rating curves differed significantly. On the one
hand, for medium to high flows, both the recorded and ge-
ometric rating curves run parallel, indicating similar cross-
sectional properties; only the offset differed through chang-
ing riverbed levels. On the other hand, the simulated cross-
section average flow velocities were realistic compared to
the point measurements at Mines indicating that velocities
are greater than 2 m s−1 during high flows (see Fig. 13). At
Nyangores, the recorded and geometric rating curves were
almost identical, while there were significant differences at
the Amala gauging station, especially in the low flows. Inter-
estingly, these observations also hold for the validation pe-
riod for all three stations.

The difference between the recorded and geometric rating
curves at Mines probably resulted from uncertainties in the
available recorded discharge data. In the complete discharge–
water-level graphs for all available data (Fig. S2), large scat-
ter was found. This could be the result of natural variabil-
ity in the reference water level h0 in the rating curve equa-
tion, which was not taken into account. A sensitivity analysis
of the recorded rating curve equation at Mines showed that
a deviation of 0.1 m in the reference water level could al-
ter the discharge with 4 % for high flows and 46 % for low
flows. However, a deviation of 0.5 m resulted in a 19 %–
325 % change in the discharge. Therefore, unnoticed varia-
tions in the riverbed level strongly affect the uncertainty in
the recorded rating curve at Mara Mines, which is located in a
morphologically dynamic section of the river (Stoop, 2017).

At Amala, the difference between both rating curves could
be related to the effect of missing rain events in the input
data as result of the short time series for calibration and val-
idation. This resulted in absent discharge peaks and hence
an underestimation of the flow; these were the most extreme
at Amala. During model calibration, this was compensated
by increasing the parameter c in the Strickler–Manning for-
mula (Eq. 4). As a result, discharge values not only increased
during missed events, but also for all other days. The com-
pensation effect was limited though, since the model was cal-
ibrated on the duration curves instead of the time series. As
parameter c is linearly related to the geometric rating curve
(Eq. 3), the latter was overestimated as well. Therefore, miss-
ing rain events in the input data resulted in the overestimation
of the geometric rating curve.

In short, at the two stations with inconsistent rating curves,
Amala and Mines, the geometric rating curve deviated signif-
icantly from the recordings. Strikingly, the deviations were
observed at the same flow magnitudes where large inconsis-
tencies were found in the observations, for instance in the
low flows at Amala. However, at the gauging station with a
reliable rating curve, Nyangores, the geometric and recorded
discharge–water-level relations were almost identical.
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Figure 10. Model results at Amala during calibration for water depth time series and water depth exceedance.

Figure 11. Monthly averaged modelled discharge for each sub-catchment.

Figure 12. Box plot of the modelled discharge at three locations;
the green asterisk represents the measured discharge in September
and October 2014.

4.4 Limitations

This paper illustrated that the proposed water-level calibra-
tion method simulated the discharge-water-level relation well

for the gauging station where consistent rating curve infor-
mation was available. However, there are several limitations
to this method. First, the slope-roughness parameter compen-
sates for non-closure effects in the water balance, for instance
due to errors in the precipitation, which is extremely het-
erogeneous in the semi-arid Mara basin. Unfortunately, this
heterogeneity is poorly described in our study area with the
available rain gauges (see Sect. S7.2 on the precipitation data
analysis), influencing the modelling results. Therefore, this
parameter should be constrained to minimise this compensa-
tion as much as possible. Second, the cross-section was as-
sumed to be constant during the modelling time period. Data
analyses indicated that expected changes in the river width or
slope cannot affect the rating curve significantly. However, if
this is not the case, then this cross-section change should be
included during the model calibration.

In previous studies, river water-level time series were used
for model calibration by using the Spearman rank correla-
tion function (Seibert and Vis, 2016) or an inverse rating
curve to convert the modelled discharge to water level (Jian
et al., 2017). Compared to these approaches, the calibra-
tion method proposed in this paper has the following ad-
vantages: (1) Water-level time series are direct measurements
and are therefore more reliable compared to processed data
such as satellite based measurements. (2) Merely one new
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Table 9. Overview of the values of the objective functions for each model simulation. Calibration was done based on the water level using
NSlog(h) and NSh; for comparison, objective functions using the discharge were added here as well.

Nyangores Amala Mines

Calibration Validation Calibration Validation Calibration Validation 1 Validation 2

NSlog(d) 0.92 0.75 0.92 −0.23 0.97 0.81 0.93
NSd 0.80 0.69 0.26 0.37 0.97 0.92 0.89
NSlog(Q) 0.92 0.69 0.57 0.63 0.97 0.81 0.93
NSQ 0.55 0.37 0.08 −1.67 0.90 0.76 0.77

Figure 13. Model calibration results at Mines, Nyangores and Amala for discharge–water depth graphs (a) and velocity–water depth
graphs (b).

calibration parameter (the slope-roughness parameter) is in-
troduced instead of three when using an inverse rating curve.
(3) The model is calibrated on water-level magnitudes in-
stead of only the ranks, which would introduce biases. How-
ever, this method also has several disadvantages; (1) cross-
section information is needed and is assumed to be constant
over the time period for which it is applied and (2) the newly
introduced slope-roughness parameter compensates for non-
closure effects in the water balance when not constrained
well.

5 Summary and conclusion

The goal of this paper was to illustrate a new calibra-
tion method using water-level time series and the Strickler–
Manning formula instead of discharge in a semi-arid and
poorly gauged basin. This method offers a potential alter-
native for calibration on discharge data, as is also common
practice in poorly gauged catchments. The semi-distributed
rainfall-runoff modelling framework FLEX-Topo was ap-
plied. The catchment was divided into four hydrological re-
sponse units (HRUs) and seven sub-catchments based on the
river tributaries. For each HRU, a unique model structure
was defined based on the observed dominant flow processes.
By constraining the parameters and processes, unrealistic pa-
rameter sets were excluded from the calibration parameter set
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and the flow volume was constrained. This model was cali-
brated based on water levels to capture the flow dynamics.
For this purpose, the modelled discharge was converted to
water levels using the Strickler–Manning formula. The un-
known slope-roughness parameter was calibrated.

An important output of this calibration approach is the
“geometric rating curve equation”, which relates the dis-
charge to the water level using the Strickler–Manning for-
mula. The geometric and recorded rating curves were sig-
nificantly different at two gauging stations, namely Mines,
the catchment outlet, and Amala, a sub-catchment outlet. At
both locations, the deviations were at the same flow magni-
tudes where large inconsistencies were found in the obser-
vations. However, at the gauging station with a reliable rat-
ing curve, Nyangores, the recorded and geometric discharge-
water-level relations were almost identical. In conclusion,
this calibration method allows reliable simulations of the
discharge–water-level relation, even in a data-poor region.

In addition, this paper analysed the current status of the
hydro-meteorological network in the Mara River basin, fo-
cusing on the data availability and quality. Moreover, a hy-
drological model and an improved geometric rating curve
equation were developed for this river. All three aspects con-
tribute to improving the assessment of the water resources
availability in the Mara River basin.

For future studies, it would be interesting to apply this cal-
ibration method to other studies of river basins with different
climatic conditions and better data availability. Furthermore,
it is recommended to assess the effect of rainfall uncertain-
ties on this calibration method. Moreover, the hydrological
model was calibrated on two signatures and two objective
functions only. However, whether these signatures and objec-
tive functions provide sufficient information for calibration
has not been analysed. Therefore, the procedures for water-
level-based calibration should be analysed in more detail.
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