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Abstract. Understanding the complexity of natural systems,
such as climate systems, is critical for various research and
application purposes. A range of techniques have been de-
veloped to quantify system complexity, among which the
Grassberger–Procaccia (G-P) algorithm has been used the
most. However, the use of this method is still not adaptive
and the choice of scaling regions relies heavily on subjec-
tive criteria. To this end, an improved G-P algorithm was
proposed, which integrated the normal-based K-means clus-
tering technique and random sample consensus (RANSAC)
algorithm for computing correlation dimensions. To test its
effectiveness for computing correlation dimensions, the pro-
posed algorithm was compared with traditional methods us-
ing the classical Lorenz and Henon chaotic systems. The re-
sults revealed that the new method outperformed traditional
algorithms in computing correlation dimensions for both
chaotic systems, demonstrating the improvement made by
the new method. Based on the new algorithm, the complex-
ity of precipitation, and air temperature in the Hai River basin
(HRB) in northeastern China was further evaluated. The re-
sults showed that there existed considerable regional differ-
ences in the complexity of both climatic variables across the
HRB. Specifically, precipitation was shown to become pro-
gressively more complex from the mountainous area in the
northwest to the plain area in the southeast, whereas the com-
plexity of air temperature exhibited an opposite trend, with
less complexity in the plain area. Overall, the spatial pat-
terns of the complexity of precipitation and air temperature
reflected the influence of the dominant climate system in the
region.

1 Introduction

There are increasing interests in understanding system com-
plexity, ranging from natural phenomena to social behav-
iors (Bras, 2015; Lin et al., 2015; Wang et al., 2016). As
an open system with random external forcings and nonlin-
ear dissipation, climate systems are highly complex (Nicolis
and Nicolis, 1984; Jayawardena and Lai, 1994; Rind, 1999;
Wang et al., 2015). Owing to nonlinear interactions among
atmosphere, hydrosphere, and biosphere, climatic variables
exhibit highly nonlinear and dynamic characteristics, which
reflect the complexity of climate systems (Palmer, 1999; Rial
et al., 2004; Sivakumar, 2005; Wu et al., 2010). It is thus im-
perative to quantitatively measure the complexity of climatic
variables for understanding underlying processes. However,
no common definition of system complexity exists in scien-
tific communities, particularly from a mathematical perspec-
tive (Carbone et al., 2016). To resolve this issue, numerous
concepts and methods, including chaos theory, wavelet anal-
ysis, and dynamical analysis, have been proposed to describe
the complexity of climate systems (Lorenz, 1963; Di et al.,
2014; Feldhoff et al., 2015; Sivakumar, 2017; Meseguer-Ruiz
et al., 2017). For instance, the chaos theory has been ex-
tensively used to characterize the chaotic and nonlinear fea-
tures of climate systems (Sivakumar, 2001). Overall, previ-
ous studies based on the chaos theory revealed that the time
series of air temperature and precipitation is nonstationary
with abundant information. The complexity of rainfall and
temperature dynamics has been widely used to indicate the
extent of the complexity of climate systems (Dhanya and Ku-
mar, 2010; Gan et al., 2002).
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One of the important parameters in the chaos theory is cor-
relation dimension, which can be used to measure the com-
plexity and chaotic properties of variables, including precip-
itation and streamflow (Sivakumar et al., 2002; Dhanya and
Kumar, 2011; Kyoung et al., 2011; Lana et al., 2016). Con-
ceptually, the correlation dimension of a variable indicates
the number of primary controls of the variable and thus de-
termines the degree of freedom of the underlying process
(Sivakumar and Singh, 2012). Despite the wide applications
in various scientific fields, the use of the correlation dimen-
sion method is still hindered by certain limitations. For in-
stance, the dimension method proposed by Grassberger and
Procaccia (1983b) (denoted as the G-P method hereafter) is
commonly used in the fields of hydrology and atmospheric
science; however, its calculation procedures are still prob-
lematic (Ji et al., 2011). Specifically, the G-P method uti-
lizes phase space reconstruction (Packard et al., 1980) and
the embedding theorem (Takens, 1981) to compute correla-
tion dimensions, which requires selection of an appropriate
scaling region. The scaling region is a domain, over which
an object exhibits self-similarity across a range of scales.
However, the G-P method relies on visual inspections for
choosing scaling regions, which is subject to human errors
(Sprott and Rowlands, 2001). To tackle this problem, alter-
native methods have been developed to improve the original
G-P method (Maragos and Sun, 1993). For example, Joth-
iprakash and Fathima (2013) utilized empirical equations to
calculate the upper limit of scaling regions. Ji et al. (2011)
applied the clustering analysis technique to determine scal-
ing regions. However, these existing methods for identifying
scaling regions are still not adaptive and the choice of scal-
ing regions relies heavily on subjective criteria, and the use of
the least squares method for fitting straight lines to determine
correlation exponents can include outliers (Cantrell, 2008)
and thus is not optimal. Therefore, studies are still warranted
to seek more objective and adaptive algorithms for identi-
fying scaling regions to obtain more accurate estimates of
correlation dimensions.

The primary aims of this study were twofold. First, a
new algorithm was proposed to improve the original G-P
method, which integrated the methods of normal estimation,
K-means clustering (Lloyd, 1982) and random sample con-
sensus (RANSAC; Fischler and Bolles, 1981). The classical
Lorenz and Henon chaotic systems were chosen to test the
effectiveness of the proposed algorithm for estimating cor-
relation dimensions. Afterwards, the newly developed algo-
rithm was utilized to investigate the nonlinear characteris-
tics of precipitation and air temperature across the Hai River
basin (HRB) in northeastern China. The HRB has been fac-
ing serious water shortage issues due to climate change and
increasing water demand. Although previous studies have in-
vestigated climate variability (e.g., precipitation, air temper-
ature, and evaporation) in the HRB from different perspec-
tives (Bao et al., 2012; Sang et al., 2012; Chu et al., 2010a),
to our best knowledge, there have been no attempts made

so far to quantify the nonlinear characteristics of climatic
variables, especially regarding their chaotic behaviors in the
HRB, which is essential for understanding the nonlinearity
of the climate system in the region. Furthermore, the HRB
is a diverse hydroclimatic region with many subwatersheds
of varying geographical and hydroclimatic conditions, which
makes the region ideal for understanding the climate system
complexity. The rest of this paper is organized as follows:
Sect. 2 describes the calculation procedures of the proposed
algorithm, which is then tested using classical mathematical
models in Sect. 3. Section 4 describes the data obtained from
the HRB and presents the results and analysis. Conclusions
are made in the last part of this paper.

2 Methodology

2.1 Algorithm for computing correlation dimension

Correlation dimensions can be used to identify the com-
plexity of dynamical systems with varying complexity de-
grees (e.g., low-dimensional vs. high-dimensional systems).
A wealth of algorithms have been developed for comput-
ing correlation dimensions, among which the G-P algorithm
has been used most and is also adopted in this study. The
G-P algorithm uses the concept of phase space reconstruc-
tion (Packard et al., 1980) from a single-variable time series.
Here, the method of delays (Takens, 1981) was employed for
reconstructing phase space. Given a time series Xi (i = 1,
2, . . . ,N ), a multi-dimensional phase space can be recon-
structed as follows:

Y j = (Xj ,Xj+τ ,Xj+2τ , · · ·,Xj+(m−1)τ ), (1)

where j = 1, 2, · · · ,N− (m−1)τ ,m is the dimension of Y j
called embedding dimension, τ is delay time, and Xj is the
reconstructed phase space vector.

For the m-dimensional reconstructed phase space, the cor-
relation function C(r, m) is defined as follows:

C(r, m)= lim
N→∞

2
N(N − 1)

N∑
i,j=1

H(r −
∥∥Y i −Y j

∥∥),
1≤ i ≤ j ≤N, (2)

where
∥∥Y i −Y j

∥∥ is the Euclidean distance between the vec-
tors Y i and Y j . H(x) is the Heaviside function with H(x)=
1 for x>0 andH(x)= 0 for x ≤ 0, where x = r−

∥∥Y i −Y j
∥∥

and r is the vector norm (i.e., radius of a sphere) centered
on Y i or Y j ; rmin and rmax were set as the minimum and
maximum distances between points, respectively (Ji et al.,
2011; Lai and Lerner, 1998). If r ≤ rmin, none of the vec-
tor points falls within the volume element and C(r, m)= 0.
Otherwise, if r ≥ rmax, all vector points fall within the vol-
ume element and C(r, m)= 1. If there exists an attractor in
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the reconstructed system, C(r, m) and r are related through
the following relationship:

C(r, m)
r→0
N→∞

≈ αrD2(m), (3)

where α is a constant andD2(m) is the correlation exponent.
D2(m) is usually estimated using the least squares method

by fitting a straight line through ln r vs. ln C(r , m). Accord-
ing to the relationship between D2(m) and m, the saturation
value ofD2(m) is defined as the correlation dimension. If the
saturation value is low (e.g., a low correlation dimension),
the system is considered to exhibit low-dimensional deter-
ministic dynamics (i.e., a chaotic system); otherwise, the sys-
tem is a stochastic one. The range over which the straight
line is fitted through ln r vs. ln C(r , m) is called the scal-
ing region, where the slope is defined. Clearly, choosing an
appropriate scaling region is critical for computing correla-
tion dimensions. In previous studies, scaling regions are usu-
ally determined by visual inspections, and this will be prone
to individual preferences and thus not objective. Therefore,
an objective method with adaptive procedures for computing
correlation dimensions is still desired.

2.2 Scaling region identification

To overcome the limitation of the original G-P algorithm for
selecting scaling regions, we propose an adaptive identifica-
tion algorithm of scaling regions, which utilizes the normal-
based K-means clustering technique and the RANSAC al-
gorithm. The use of the normal-based K-means clustering
technique is to partition all normals of the scatter points into
K clusters with high similarity and to remove the points that
are outside of the range of the scaling region. The RANSAC
algorithm was introduced to fit a straight line through the log-
transformed points obtained by the normal-based K-means
clustering technique, which had been shown to outperform
the traditional least squares method for fitting straight lines
(Kyoung, 2011; Ji et al., 2011). To illustrate the advantages of
using the RANSAC algorithm for linear fitting, a hypothet-
ical example is shown in Fig. 1, which compares the fitting
results obtained from the RANSAC algorithm and the tradi-
tional least squares method. The input data are sampled from
a line y = 0.5x, with added noises and outliers. Here, for the
RANSAC algorithm, the inliers are the points used to fit the
line, whereas the outliers are removed from the line fitting.
It can be seen from Fig. 1 that the fitting line (y = 0.60x−
0.068; R2

= 0.854) obtained from the least squares method
is seriously affected by outliers and deviated from the origi-
nal line y = 0.5x. By contrast, the RANSAC method is able
to distinguish the inliers from outliers effectively and results
in a satisfactory fitting line (y = 0.49x+0.007; R2

=0.990),
demonstrating the advantage of using the RANSAC algo-
rithm for linear fitting.

Figure 1. Comparison of the fitted lines obtained from the
RANSAC algorithm and the least squares method.

The flow chart of the proposed procedures for calculating
correlation dimensions is given in Fig. 2, which consists of
five major steps:

1. For the time series x(t), the time delay τ is computed
by an autocorrelation function (Liebert and Schus-
ter, 1989). Then the minimum embedding dimension
mmin = 2 was set and the phase space was reconstructed
by increasingm to obtain the correlation exponent func-
tion C(r , m).

2. The normals of the scatter points on the ln r ∼ ln C(r ,
m) line are estimated via principal component analysis
(Mitra et al., 2004).

3. The K-means clustering technique is performed on the
normal set N with K = 2 to obtain two different clus-
ters. Set a threshold value T to determine the angle α be-
tween the two clusters. If α>T , the data set with larger
differences in normals is discarded. Then, the K-means
clustering technique is repeated on the remaining data
set until α ≤ T .

4. The RANSAC algorithm is used to fit a straight line
through the set of remaining scatter points.

5. The slope of the line obtained from the RANSAC
method is computed to acquire the correlation dimen-
sion D2(m) for each m. Finally, the saturation correla-
tion dimension is determined using the plot D2(m) vs.
m.

3 Verification of the proposed algorithm

To test the effectiveness of the proposed algorithm, the
classical chaotic models of Lorenz (1963) in Eq. (4) and
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Figure 2. Flow chart of the proposed algorithm for computing correlation dimensions (the details are listed in the text).

Henon (1976) in Eq. (5) were used. The Lorenz and Henon
systems with existing theoretical correlation dimensions
have been studied the most in the past and thus widely used
to analyze the chaotic behavior in climate systems and to test
the effectiveness of algorithms for computing climate system
complexity (e.g., Grassberger and Procaccia, 1983a; Lai and
Lerner, 1998; Ji et al., 2011).

ẋ = σ(−x+ y), ẏ =−xz+ rx− y, ż= xy− bz, (4)

xn+1 = yn+ 1− ax2
n, yn+1 = bxn , (5)

where σ = 10, b = 28, and r = 8/3 in Eq. (4), and a = 1.4
and b = 0.3 in Eq. (5). The theoretical dimensions of the
Lorenz and the Henon systems are 2.05± 0.01 and 1.25±
0.02, respectively (Grassberger and Procaccia, 1983a). As
a comparison, the results obtained by our proposed method
were compared with the theoretical dimensions and the val-
ues obtained by another two commonly used algorithms, in-
cluding the intuitive judgment method (IJM) and the point-
based K-means clustering method (PKC).

According to the autocorrelation function, the time delay τ
was determined to be 10 for the Lorenz system, withm vary-
ing from 2 to 20. Figure 3a shows the relationship between

ln C(r , m) and ln r , with m ranging from 2 to 20. Figure 3b
shows the slopes of ln C(r , m) against ln r by increasing the
embedding dimension m (i.e., the bottom curves are associ-
ated with smallerm values in Fig. 3b). The threshold value T
was set as 5◦ and K was set as 2. The scaling regions of the
curves in Fig. 3a were determined using the normal-based
K-means clustering technique. As an example, an arbitrary
curve was first selected from Fig. 3a, and the results are pre-
sented in Fig. 4. It can be seen from Fig. 4 that the process
of the proposed method for determining the scaling region is
adaptive. Specifically, for the selected curve shown in Fig. 4a,
the normals of the curve were first computed based on Step 2
and the results are plotted in Fig. 4b. Different from previous
K-means methods (e.g., the point-based K-means clustering
method), we measured the similarity of points using the di-
versity between normals of different points. The reason for
using the normal-based method is that the directions of nor-
mals for different points may vary considerably (see Fig. 4b),
whereas for the point-based K-means method, the distance
between different points might be small, making it difficult
to separate the points into different clusters (Fig. 3a). The ob-
tained two separate clusters of the normals (in red and blue)
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Figure 3. Correlation integral as a function of r, with embedding dimension m ranging from 2 to 20 for the Lorenz attractor: (a) ln C(r, m)
vs. ln r, (b) the slopes of ln C(r, m) vs. ln r.

are shown in Fig. 4c. If the angle α between the two clusters
was larger than T , the one with larger differences in normals
was discarded. Then, the K-means clustering technique was
performed again on the remaining data set. This process was
usually repeated for 2–3 times until α ≤ T (e.g., Fig. 4c to e).
The final scaling region was determined as shown in Fig. 4f.

Figure 5a shows the final fitted lines through the scaling re-
gions using the RANSAC method. The slope of the fitted line
is the correlation dimension for each corresponding m. Fig-
ure 5b presents the graph of D2(m) against m with the value
of m varying from 2 to 20. From Fig. 5b, we can see that
D2(m) was saturated when m>5 with the saturation value
approximately equal to 2.054, which was comparable to the
theoretical value of the correlation dimension for the Lorenz
attractor (i.e., 2.05± 0.01). Following the same procedures,
the obtained correlation dimension for the Henon attractor
was 1.243, which was also close to its theoretical value (i.e.,
1.25± 0.02).

To verify the accuracy of our algorithm for computing cor-
relation dimensions, the results derived from the proposed
algorithm were compared with the ones obtained from the
IJM and PKC methods. The IJM method was based on vi-
sual inspections to determine scaling regions (Jothiprakash
and Fathima, 2013), while the PKC method integrated theK-
means algorithm and the point-slope-error technique to de-
termine scaling regions (Ji et al., 2011). The obtained corre-
lation dimensions are reported in Table 1. For the Lorenz sys-
tem, the differences in the correlation dimensions between
the theoretical value and the ones obtained from IJM and
PKC were 0.18±0.01 and 0.014±0.01, respectively, whereas
the difference was much smaller for the newly proposed al-
gorithm (i.e., 0.004± 0.01). Similar conclusions can be also
made for the Henon system, demonstrating the improved per-
formance of the proposed algorithm for determining correla-
tion dimensions. It should be stressed that despite the im-
provement made by our proposed algorithm, further studies
are still needed to address the issues in the computation of

Table 1. Comparison of the correlation dimensions derived from
different methods. TCD: theoretical correlation dimension; IJM: in-
tuitive judgment method; PKC: point-based K-means clustering;
NPA: newly proposed algorithm.

Attractor TCD IJM PKC NPA

Lorenz 2.05± 0.01 2.23± 0.02 2.064 2.054
Henon 1.25± 0.02 1.354± 0.02 1.240 1.243

correlation dimensions. For example, estimation of correla-
tion dimensions is partly dependent on the proper selection
of time delay and embedding dimension; therefore, the im-
pacts of their uncertainties should be further assessed.

4 Application, results, and analysis

The correlation dimension method is an important diagnos-
tic tool for understanding the complexity of natural systems
with chaotic characteristics. In this section, a case study is
presented to illustrate the use of the newly developed algo-
rithm for studying the complexity of climate systems. Specif-
ically, the algorithm was first utilized to compute the corre-
lation dimensions of precipitation and air temperature using
time series obtained from the HRB. Afterwards, the regional
patterns of correlation dimensions for precipitation and air
temperature in the HRB were analyzed.

4.1 Study area and data

The HRB is located in northeastern China (112–120◦ E, 35–
43◦ N; Fig. 6), which hosts one of the most important eco-
nomic zones in China (White et al., 2015). Under the influ-
ences of climate change and human activities, complex water
issues have become increasingly prominent in the HRB (Liu
and Xia, 2004). Topography varies considerably across the
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Figure 4. Illustration of using the normal-basedK-means clustering technique for determining the scaling region. The curve shown here was
randomly selected from Fig. 3.

Figure 5. The final fitted lines and the correlation dimension of the Lorenz system: (a) the final fitted lines through the scaling regions and
(b) correlation dimensions as a function of embedding dimension.

area, with 22 % of the total area for mountains in the western
and northern parts, 40 % for plains in the eastern and south-
ern parts, and 38 % for hilly areas in the central part. The
regional climate in the HRB is of a semiarid or subhumid
type, with mean annual precipitation of 539.0 mm year−1 and
mean annual temperature of 10.2 ◦C. Mean annual precipita-
tion increases from the mountainous areas in the west to the
plains in the east, while mean annual temperature decreases
from south to north. In addition, precipitation in the HRB
exhibits significant interdecadal and interannual variations.

To apply the proposed algorithm for computing correlation
dimensions, monthly precipitation and air temperature data
spanning from 1951 to 2016 were retrieved from 40 meteoro-
logical stations in the HRB and nearby areas (Fig. 6), which
were operated by the China Meteorological Administration
(http://data.cma.cn/site/index.html, last access: 28 Septem-
ber 2018).
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Figure 6. Locations of meteorological stations in the Hai River basin.

Figure 7. Variation of correlation dimension vs. embedding dimension of climate variables: (a) precipitation and (b) air temperature.

4.2 Results and analysis

The correlation dimensions of precipitation and air temper-
ature at all 40 meteorological stations were computed using
the algorithm proposed in this study. Figure 7 shows the re-
lationships between correlation dimension and embedding
dimension for precipitation and air temperature at five rep-
resentative stations across the HRB (i.e., Beijing, Fengning,
Shijiazhuang, Xinxiang, and Zhangbei). The embedding di-
mensions of precipitation and air temperature for the five
stations varied between 10 and 12. It is evident that the re-
lationship between correlation dimension and embedding di-
mension for precipitation and air temperature differed among
the selected stations. In general, correlation dimensions for

precipitation showed gradual saturation processes with re-
spective saturation values of 2.378, 2.407, 3.055, and 2.550
for Beijing, Fengning, Shijiazhuang, and Zhangbei stations,
respectively (Fig. 7a), indicating chaotic dynamical charac-
teristics of precipitation. By comparison, the correlation di-
mension for precipitation at the Xinxiang station increased
with increasing embedding dimensions, suggesting random
characteristics of precipitation. For air temperature, the cor-
relation dimensions at the five stations also showed gradual
saturation processes (Fig. 7b), suggesting low dimensional
chaotic characteristics for air temperature.

Figure 8 presents the spatial distributions of the saturated
correlation dimensions at the 40 meteorological stations for
precipitation and air temperature in the HRB. For both pre-
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Figure 8. The spatial distribution of the correlation dimension values for all the 40 stations: (a) precipitation and (b) temperature.

cipitation and air temperature, the correlation dimensions
varied markedly across the area. The correlation dimension
for precipitation ranged from less than 3 to more than 6,
while the correlation dimension was much lower for temper-
ature (i.e., less than 2). Overall, the ranges of the correlation
dimensions for precipitation and air temperature were com-
parable to previously reported values in other regions with
similar climatic conditions (Kyoung et al., 2011; Sivakumar
and Singh, 2012; Sivakumar et al., 2014). More importantly,
the considerable spatial variations in the dimensionality for
both climatic variables suggest the regional differences in
the complexity of the climate system in the HRB. Specifi-
cally, the correlation dimension for precipitation tended to be
smaller in the northwestern mountainous area, with values of
less than 2.5. In the central area, the correlation dimension
for precipitation became larger, with values of greater than
3, while precipitation in the southeastern plain area showed
very high correlation dimensions, with values of larger than
6. Given that correlation dimensions indicate the number of
controls on the underlying process (Sivakumar and Singh,
2012), Fig. 8a suggests that precipitation processes become
progressively more complex from the mountainous area to
the plain area in the HRB. Interestingly, the regional pat-
tern of the correlation dimension for air temperature showed
an opposite trend with smaller values mainly located in the
northern HRB, indicating more complex temporal dynamics
of air temperature in the area.

The spatial pattern of the correlation dimension for precip-
itation in the HRB may be largely attributed to the regional
flow pathway of moisture flux, which is mainly controlled
by the East Asian Summer Monsoon (EASM). The HRB is

located in a monsoon-dominated region, where the EASM
plays a leading role in the regional meteorological system.
Chen et al. (2013) showed that the EASM had significant
impacts on the spatiotemporal distribution of precipitation in
eastern China. Li et al. (2017) further suggested that there
was a significant correlation between precipitation and the
EASM index in the HRB. Wang et al. (2011) revealed that
large-scale atmospheric circulations had close relationships
with precipitation patterns in the HRB by analyzing the mois-
ture flux derived from NCAR/NCEP reanalysis data. Influ-
enced by the large-scale atmospheric circulation, precipita-
tion in the middle and southeast parts of the HRB is more
sensitive to climate variability due to their locations closer
to the ocean. This leads to the decreasing trend of precipita-
tion from the southeast to the northwest in the HRB, suggest-
ing that the supply of moisture for precipitation in the region
mainly comes from the ocean.

Partly owing to the closer geographical proximity to the
ocean (Fig. 8), the EASM has a stronger impact on precip-
itation in the southern and central areas than in the north-
ern part of the HRB. Furthermore, at the north corner of the
HRB, the westerlies primarily affect the hydrometeorologi-
cal system and thus weaken the impact of the EASM on pre-
cipitation (Li et al., 2017). In addition, other factors (e.g., to-
pography, vegetation distribution, and human activity) may
also have impacts on regional patterns of climate variables.
In particular, the Yan and Taihang mountain range located in
the northwestern HRB obstructs the vapor transport driven
by the EASM, resulting in lower spatiotemporal variability
in precipitation in the northern part of the HRB. As a result,
precipitation had higher degrees of complexity in the south-
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ern HRB, while its complexity was lower in the mountainous
area in the northwestern HRB. As for air temperature, the
orographic effect on air temperature might be stronger in the
mountainous area (Chu et al., 2010b), resulting in the higher
complexity of temperature in this area. However, it should be
noted that the range of the correlation dimension for air tem-
perature from 1.0 to 2.0 suggests that two primary controls
on temperature exist at all stations across the region.

5 Conclusions

In this study, the original G-P algorithm for calculating corre-
lation dimensions was modified by incorporating the normal-
basedK-means clustering technique and the RANSAC algo-
rithm. Using the proposed method, the spatial patterns of the
complexity of precipitation and air temperature in the HRB
were analyzed. The following conclusions were reached:

1. The effectiveness of the proposed method for calcu-
lating correlation dimensions was illustrated using the
classical Lorenz and Henon chaotic systems. The re-
sults showed that the new method outperformed the tra-
ditional intuitive judgment and point-based K-means
clustering method for computing correlation dimen-
sions.

2. Except for few stations in the northern region, precip-
itation at most of the meteorological stations in the
HRB showed chaotic behaviors. Specifically, the corre-
lation dimension for precipitation showed an increasing
trend from the mountainous region in the northwest to
the plain area in the southeast, indicating that precip-
itation processes became progressively more complex
from the mountainous area to the plain area. The spa-
tial pattern of the complexity of precipitation reflected
the influence of the dominant climate system in the re-
gion. Meanwhile, air temperature at all meteorological
stations showed chaotic characteristics. In contrast to
precipitation, the complexity of air temperature exhib-
ited an opposite trend, with less complexity in the plain
area.

The modified G-P algorithm proposed in this study can
be used more objectively to characterize the complexity of
climate systems (and other hydrological systems, such as
streamflow, soil moisture, and groundwater) and thus pro-
vide a more reliable estimate of the number of dominant fac-
tors governing climate systems. Theoretically, it can provide
valuable information for optimizing the number of parame-
ters in climate models to reduce computational demands and
model parameter uncertainties. Furthermore, the findings of
this study can be used for the regionalization of hydrome-
teorological systems in the HRB, which has important sig-
nificance in prediction in ungaged areas (Lebecherel et al.,
2016). It should be noted that more studies are still required

to verify the present results using other nonlinear techniques,
such as the Lyapunov exponent (Wolf et al., 1985) and ap-
proximate entropy (Pincus, 1995), which might provide ad-
ditional insights into climate complexity analysis.
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