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Abstract. The principle of maximum entropy (POME) can
be used to develop vertical soil moisture (SM) profiles. The
minimal inputs required by the POME model make it an
excellent choice for remote sensing applications. Two of
the major input requirements of the POME model are the
surface boundary condition and profile-mean moisture con-
tent. Microwave-based SM estimates from the Advanced Mi-
crowave Scanning Radiometer (AMSR-E) can supply the
surface boundary condition whereas thermal infrared-based
moisture estimated from the Atmospheric Land EXchange
Inverse (ALEXI) surface energy balance model can provide
the mean moisture condition. A disaggregation approach
was followed to downscale coarse-resolution (∼ 25 km) mi-
crowave SM estimates to match the finer resolution (∼ 5 km)
thermal data. The study was conducted over multiple years
(2006–2010) in the southeastern US. Disaggregated soil
moisture estimates along with the developed profiles were
compared with the Noah land surface model (LSM), as well
as in situ measurements from 10 Natural Resource Con-
servation Services (NRCS) Soil Climate Analysis Network
(SCAN) sites spatially distributed within the study region.
The overall disaggregation results at the SCAN sites indi-
cated that in most cases disaggregation improved the tempo-
ral correlations with unbiased root mean square differences
(ubRMSD) in the range of 0.01–0.09 m3 m−3. The profile re-
sults at SCAN sites showed a mean bias of 0.03 and 0.05
(m3 m−3); ubRMSD of 0.05 and 0.06 (m3 m−3); and corre-
lation coefficient of 0.44 and 0.48 against SCAN observa-

tions and Noah LSM, respectively. Correlations were gener-
ally highest in agricultural areas where values in the 0.6–0.7
range were achieved.

1 Introduction

Although soil moisture (SM) represents a relatively small
part of the overall hydrologic cycle, it is perhaps the most
important part to human survival. SM is the source of water
for all vegetation on Earth. It also plays an important role in
water and energy exchanges between the land surface and at-
mosphere. Hydrologically, SM is an indicator of drought or
lack thereof, and antecedent moisture conditions are impor-
tant determinants of runoff response to rainfall events. Thus,
SM is a vital part of any terrestrial ecosystem analysis as well
as land surface and climate models.

Although SM can be measured in situ, these observations
are necessarily point based and may not be indicative of con-
ditions over larger areas. In addition, in situ SM data are
generally only available at a few spatially sparse locations
(Aghakouchak et al., 2015) though a number of field cam-
paigns over the years have produced high-density observa-
tions globally, but only for very short time periods over lim-
ited domains. Thus, remote sensing is increasingly being re-
lied upon to supply SM observations. Much of the recent ef-
forts in remote sensing of SM estimation have been focused
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on surface or near-surface observations (0–5 cm); however,
moisture throughout the root zone can be just as important.
The moisture within the root zone exerts a controlling in-
fluence on land–atmospheric fluxes of energy and water un-
der vegetated condition. The actual distribution of root zone
moisture is a function of vegetation canopy root density and
distribution (Mishra et al., 2015). For this reason, SM at
shallow depths (< 100 cm) is known to be extremely vari-
able both as functions of time (Starks et al., 2003) and depth
(Scott et al., 2003).

Remotely sensed SM estimates, particularly from MW
sensors, are often assimilated into land surface and agricul-
tural models in order to provide near-real-time updates of
model states (Liu et al., 2011; Lievens et al., 2015; Pinning-
ton et al., 2018; Ridler et al., 2014; Yang et al., 2016). How-
ever, such models are often not effective in assimilating sur-
face SM into the deeper layers of the model (Kumar et al.,
2009; Draper et al., 2011). This deficiency in model SM as-
similation could be mitigated if the entire SM profile was de-
veloped from remotely sensed data and then assimilated into
the model. However, remote sensing alone cannot deduce the
distribution of moisture within a soil column. The purpose of
the study was to develop and test a method to merge surface
and root zone SM estimates from remote sensing sources to
develop an entire SM profile for assimilation into land sur-
face models (LSMs).

Although several approaches have been proposed for de-
termining SM profiles, most require either observed profile
data so that a regression or inversion model can be devel-
oped (Arya and Richter, 1983; Kondratyev et al., 1977; Kos-
tov and Jackson, 1993; Srivastava et al., 1997; Singh, 1988).
Another common approach is to estimate surface or total root
zone moisture using remote sensing and then assimilate those
observations into a LSM to determine root zone SM distri-
butions. The NASA Land Information System (LIS; Kumar
et al., 2006) contains a suite of LSMs and data assimila-
tion tools for this purpose that are commonly utilized as a
source of SM data. However, as mentioned above, studies
have shown that the LSMs are not particularly effective in
this regard and the models themselves have their own issues
(e.g., bias, ancillary data requirements).

Due to the inherent complexities involved with the move-
ment of SM in the column, several studies have argued that
SM uncertainties and complexities can be best described
through the description of its entropy (Mays et al., 2002;
Pachepsky et al., 2006; Singh, 2010). The maximization of
entropy characterizes the diffusion of moisture through the
soil column over a period of time. The principle of maximum
entropy (POME) states that if the inferences had to be drawn
from incomplete information then they should be based on
the probability distribution with maximum entropy allowed
by the a priori information. Al-Hamdan and Cruise (2010)
used the maximum entropy formulation of Jaynes (1957a, b)
based on the Shannon entropy (Shannon, 1948) to formulate
the POME-based SM profile development algorithm. Unlike

other methods, the entropy approach suffers from no a priori
assumptions about the nature or shape of the moisture pro-
files in real space. The method is a statistical approach and
guarantees the minimum variance unbiased profile subject
to the boundary and initial conditions specified. This could
be an improvement over other analytical methods that do
presuppose a functional form of the SM distribution. Singh
(2010) provides a full explanation of the theory of entropy of
moisture movement in porous media.

Subsequent to its introduction the POME method has been
adopted and extended by several authors, e.g., Mishra et al.
(2013), Mishra et al. (2015), Pan et al. (2011) and Singh
(2010). Initial studies by Al-Hamdan and Cruise (2010) and
Singh (2010) compared their results against experimental
data under laboratory settings. However, studies by Pan et al.
(2011) and Mishra et al. (2013) involved application and
validation of the POME model outside laboratory environ-
ment. Later, Mishra et al. (2015) provided extensive vali-
dation of the profiles developed using the POME approach
against a US Department of Agriculture Soil Climate Anal-
ysis Network (SCAN) site located in northern Alabama, as
well as with a detailed physically based mathematical model
of moisture movement in the soil profile.

The objective of this study is to develop SM profiles from
remotely sensed data over the southeastern US without the
aid of observed profile data. The approach utilizes both mi-
crowave (MW) data (to supply surface estimates) and ther-
mal infrared (TIR) estimates (for total root zone moisture)
within the POME profile methodology. The POME model
requires only the upper and lower boundary conditions, as
well as the mean moisture content, as input. The surface
and mean moisture contents can be supplied by satellite
estimates, whereas the lower boundary condition (∼ 100–
200 cm) is often fairly stable (Mahmood and Hubbard, 2007)
and can be parameterized or used to tie the remotely sensed
profile to model climatology when assimilated into a LSM or
crop model. Therefore, the POME model is ideal for the in-
tegration of remotely sensed data from multiple sensors such
as MW and TIR to develop a unified SM profile.

The goal of this research is to provide SM profiles at op-
erational or near-operational (1–5 km) spatial resolutions to
be consistent with other fine-scale hydrologic and agricul-
tural modeling work taking place in the study region (Mishra
et al., 2013; McNider et al., 2015). Consequently, before the
SM profiles can be calculated, the disparity in spatial resolu-
tion between the MW and TIR data must be resolved. MW
data are available at much coarser spatial resolutions (25–
40 km) than are TIR data (1–10 km). The approach selected
here is to downscale (or disaggregate) the coarse MW data
to the resolution of the TIR data. This is accomplished via
an evaporative efficiency method proposed by Merlin et al.
(2012, 2013, 2015). The spatial resolution selected is 4.7 km
(∼ 5 km hereafter) that corresponds to the operational scale
of the NWS Multisensor Stage IV precipitation product (Lin
and Mitchell, 2005). This facilitates the future integration of
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the profiles into operational land surface, hydrologic or agri-
cultural models that are currently operating in the region. It is
quite possible that these models could be improved through
assimilation of observed SM profiles, especially in regions of
the world where climate information is sparse.

As stated earlier, the overall objective of the study is to de-
termine the efficacy of SM profiles developed directly from
remotely sensed data, without the use of a LSM or ancil-
lary data. The study consists of four parts: (a) a multiyear
disaggregation of the coarse-resolution MW surface SM to
the 5 km spatial resolution; (b) calculation of SM profiles for
each 5 km grid using the POME approach, with the down-
scaled MW data serving as the surface boundary condition
and TIR estimates providing mean SM; (c) validation of the
SM profiles against a gridded LSM and in situ data; and
(d) error analyses including evaluation of downscaled MW
surface SM estimates against LSM and in situ data. Two in-
dependent data sources are used for comparison and valida-
tion purposes, ground observations from 10 available SCAN
sites and gridded 3 km Noah LSM SM data aggregated to the
5 km spatial resolution.

2 Study area and data sources

2.1 Study area

The study area for this research is the southeastern US and
consists of four states: Alabama, Georgia, Florida and South
Carolina (Fig. 1). The region is home to a significant amount
of current hydrologic and agricultural research activity where
accurate SM modeling is of significant importance (McNider
et al., 2011, 2015; Mishra et al., 2013). The southeastern US
represents a subtropical humid climate that typically has rel-
atively hot and humid summers and precipitation that is gen-
erally evenly distributed throughout the year. The mean an-
nual precipitation is 1250–1500 mm based on the 1981–2010
period. Mean annual temperature ranges from 14 ◦C in north-
ern Alabama to nearly 24 ◦C in southern Florida. The region
is roughly 31 % forest, 54 % shrubs and 12 % agricultural
land and the rest of the area is covered by urban (1.9 %),
savanna (1.8 %), water etc. according to Moderate Resolu-
tion Infrared Spectroradiometer (MODIS) 2008 land cover
data aggregated to 5 km spatial resolution. The majority of
the soils (nearly 80 %) at the surface are classified as sand
with loamy sand and sandy loam, as determined from the
Soil Information for Environmental Modeling and Ecosys-
tem Management (Miller and White, 1998). These soils are
known to have relatively low water holding capacity that can
lead to great temporal variation in upper layer (1–10 cm) SM
conditions and relatively frequent short-term droughts (1–4
week periods) during growing seasons in various parts of the
region (McNider et al., 2015). Although the study region is
overwhelmingly represented by a forest and shrub landscape,
vegetation types that are known to adversely affect the accu-

Figure 1. (a) Overview of study area showing location of all active
SCAN sites. The dark blue circles indicate sites with most consis-
tent data availability and are being used for comparison and valida-
tion in this study. (b) The figure shows a land cover map (MODIS-
2008) for the study area.

Table 1. SCAN site 5 km and its dominant land cover (MODIS,
2008) and soil characteristics (SCAN) at the surface and at a depth
of 100 cm (S: sand; L: loam; C: clay; and Si: silt). Soil information
was not available for sites 2037 and 2038.

SCAN Lat/long Land cover Soil type (SCAN)

site (◦) Surface 100 cm

2009 30.3/−84.4 Savannas/mixed forest S S
2013 33.8/−83.4 Crop/savannas SL C
2027 31.5/−83.5 Cropland S SL
2037 34.3/−79.7 Crop/shrubland – –
2038 32.6/−81.2 Crop/savannas – –
2053 34.9/−86.5 Cropland SiCL SiC
2078 34.9/−86.6 Cropland SiCL C
2113 34.2/−86.8 Crop/savannas L SCL
2114 32.6/−88.2 Savannas SCL CL
2115 32.4/−85.7 Savannas LS SC

racy of MW signals, the study does present an opportunity
to evaluate the performance of the merged MW–TIR profiles
in a challenging environment and may provide greater confi-
dence in the robustness of the system. Further, the southeast-
ern US is one of the more data-rich regions of the world (in
terms of climate and soil data), providing ample opportunity
for calibration as well as validation of results.

2.2 Data sources

2.2.1 Microwave surface SM

Over the past several years, much attention has been given
to the use of MW sensors to measure surface SM re-
motely, e.g., Soil Moisture Ocean Salinity (SMOS), the Ad-
vanced Microwave Scanning Radiometer for Earth Observa-
tion (AMSR-E), Soil Moisture Active Passive (SMAP), the
Special Sensor Microwave Imager (SSM/I) (Kerr et al., 2010;
Entekhabi et al., 2010a; Njoku et al., 2003; Paloscia et al.,
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2001). The use of the MW band is the only remote sens-
ing technique that is physically based as well as quantitative
(Kondratyev et al., 1977; Schmugge et al., 1992). Further-
more, due to their all-weather and day and night capabilities,
MW sensors are widely used globally and offer high tempo-
ral data availability. This study employs one of the more ex-
tensively used and validated MW-based SM datasets from the
AMSR-E mission operating in the X-band frequency from
the National Snow and Ice Data Center (NSIDC) and em-
ploys the standard NASA retrieval algorithm (Njoku et al.,
2003). The NSIDC is one of two AMSR-E datasets supported
by NASA, with the other being the Vrije Universiteit Am-
sterdam - Land Parameter Retrieval Model (VUA-LPRM)
dataset. The LPRM uses a single dual-polarized channel
(X- or C-band) to deduce relationships between geophysi-
cal variables such as SM and vegetation characteristics and
brightness temperatures (Cho et al., 2015). Several studies
such as Wagner et al. (2007), Draper et al. (2011), Jackson
et al. (2010) and Gruhier et al. (2008) have compared the
two datasets and the general conclusion has been that the
VUA-LPRM algorithm may be slightly superior in terms of
correlation to in situ data, especially at lower latitudes and
sparse vegetation (Brocca et al., 2011). However, Jackson
et al. (2010) found that for the southeastern US, the NASA
retrieval algorithm outperformed the LPRM in terms of bias
and root mean square error (RMSE). Furthermore, as pointed
out by Njoku et al. (2005) and Jackson et al. (2010) the ef-
fects of radio frequency interference (RFI) on C-band sig-
nals are more pronounced over countries such as the US
and Japan, and therefore X-band retrievals are preferred over
such regions. Hence, the X-band-based standard NASA (or
NSIDC) dataset was selected for this study. The daily Level-
3 AMSR-E SM X-band product (AELand3) (Njoku, 2004)
from the ascending (13:30 LT) overpass was collected for this
study. The ascending overpass was selected to be consistent
with the timings of the TIR retrievals, which are forced with
morning and local noon skin temperatures obtained from the
Geostationary Operational Environmental Satellite (GOES)
Imager instrument. The Level-3 AMSR-E SM estimate is a
25 km gridded data product.

2.2.2 Thermal infrared – ALEXI

Techniques to retrieve root-zone moisture that rely upon TIR
data are inferred from surface energy fluxes typically re-
trieved at relatively high spatial resolutions. TIR-based evap-
otranspiration (ET) estimates are generally related to land
surface temperature (LST) and vegetation cover fraction.
Models such as the Surface Energy Balance System (SEBS;
Su, 2002); the Surface Energy Balance Algorithm for Land
(SEBAL; Bastiaanssen et al., 1998); and the Two Source En-
ergy Balance (TSEB; Norman et al., 1995) exploit this re-
lationship with varying degrees of complexities. The two-
source-based Atmospheric Land Exchange Inverse (ALEXI)
(Anderson et al., 1997, 2007; Hain et al., 2011) model has

been implemented over the continental US and used as a
source of surface energy fluxes (Anderson et al., 1997; Nor-
man et al., 2003), ET (Anderson et al., 2011b, 2012), SM
(Hain et al., 2009; Mishra et al., 2013) and an evaporative
stress index (Anderson et al., 2011a, 2013). A continental-
scale implementation of the ALEXI model was used in this
study to estimate instantaneous energy fluxes. ALEXI fluxes
are available at approximately 4.7 km (0.04◦) spatial resolu-
tion on a daily time step since the year 2000 over the conti-
nental US, generated using 15 min resolution GOES 10.7 µm
channel TIR data. ALEXI estimates of actual ET and SM are
used in this study. A known drawback of TIR-based methods
is that they are limited to cloud-free conditions.

2.2.3 In situ observations

The study area contains 25 operational US Department of
Agriculture SCAN (Schaefer et al., 2007) monitoring sta-
tions. In addition to meteorological observations such as pre-
cipitation, air temperature, relative humidity these monitor-
ing stations measure soil temperature and moisture content
primarily at depths of 5, 10, 20, 50 and 100 cm at hourly and
daily time steps. The SCAN sites use Hydra Probes (Stevens)
to observe SM conditions (Schaefer et al., 2007). Most of
these 25 SCAN sites are located in northern and central Al-
abama. Ten sites with the most consistent data availability
and with good geographical distribution across the study area
were employed for the comparison. The SM data were ob-
tained from http://www.wcc.nrcs.usda.gov/scan/ (last access:
June 2015). Table 1 lists the major land cover type (at 5 km
scale) along with soil characteristics at the selected sites.

2.2.4 Noah soil moisture

The Noah SM product generated within the NASA LIS (Ku-
mar et al., 2006) framework was selected as a complementary
evaluation dataset. The Noah model SM product used in this
study is provided by the NASA Short-Term Prediction Re-
search and Transition Center (SPoRT). The model is driven
by actual meteorological forcings from the North Ameri-
can Land Data Assimilation system-Phase 2 (NLDAS2) (Xia
et al., 2012), and thus serves as a valuable comparison dataset
by which to measure the MW downscaling and profile re-
sults. While Noah SM also has biases and uncertainties, the
comparisons reveal regional patterns of agreement (disagree-
ment) with the remote sensing estimates. In the event that the
POME profiles prove to be superior to the LSM in certain
instances, this would indicate that the LSM (or other hydro-
logic or agricultural models) might be improved through as-
similation of the remotely sensed SM profiles. The compar-
ison assumes that errors in the Noah model are independent
from the errors associated with MW- and TIR-based esti-
mates. Noah SM estimates are available in four layers: 0–10,
10–40, 40–100 and 100–200 cm depths. It should be noted
that there are inconsistencies in the surface layer depths be-
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tween Noah and MW data: the surface layer in the Noah
model is the top 0–10 cm of the soil column, while the down-
scaled MW represents the top 0–2 cm. The 3 km Noah SM
products were aggregated to 5 km scale to be consistent with
the TIR products.

Additionally, the NLDAS2 gridded temperature forcing
data (0.125◦ resolution) were also utilized for computing
potential ET (PET). The NLDAS2 forcing data were avail-
able from the NASA land data assimilation portal (https:
//ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php, last access:
September 2015). The GTOPO30 digital elevation model
(DEM) was used as source of elevation information for the
study area. The GTOPO30 product was made available by
the US Geological Survey’s EROS Data Center (https://lta.
cr.usgs.gov/GTOPO30, last access: October 2015). The 1 km
gridded soil characteristic data for the study area was avail-
able from the Soil Information for Environmental Modeling
and Ecosystem Management (Miller and White, 1998).

3 Methodology

3.1 ALEXI retrievals

3.1.1 Surface evaporation

A time-differential application of the ALEXI model was per-
formed to monitor the rise in LST from morning to local
noon. The early rise in LST is used to diagnose the par-
titioning of net radiation into sensible, latent and soil heat
fluxes. The rise in LST from morning to near noon is known
to be correlated with the moisture content of the soil: com-
pared to a dry land surface, wetter surfaces warm slowly,
thus requiring more energy for evaporating surface moisture
(Hain et al., 2011; Kustas et al., 2001). The soil heat con-
duction flux is parameterized as a function of net radiation
following Santanello and Friedl (2003); latent heat from the
canopy (transpiration) is estimated assuming a nonstressed
modified Priestley–Taylor (Priestley and Taylor, 1972) ap-
proach. Finally, the soil (surface) latent heat is the resid-
ual of the canopy latent heat and latent heat of the soil and
canopy system LEs = LEsys−LEc. Here LEs, LEsys and LEc
represent the latent energy of surface, system and canopy,
respectively. Detailed model description and derivation are
provided in earlier studies (Anderson et al., 2007; Hain et al.,
2011). If the residual is negative (an indicator of condensa-
tion, an unlikely process during daytime; Hain et al., 2011)
then the canopy transpiration is relaxed iteratively until it
reaches zero. The surface evaporation from ALEXI is used
to compute the soil evaporative efficiency (SEE) function re-
quired for the disaggregation (described in Sect. 3.2).

3.1.2 Mean root zone moisture retrieval

The ratio of actual to potential ET (fPET) is functionally re-
lated to the fraction of available water (fAW). Multiple rela-

tionships between the ratios of PET and available water, in-
cluding linear, nonlinear, piecewise linear or threshold, have
been proposed with varying degrees of success (Hain et al.,
2009). Large-scale applications prefer simpler linear func-
tions as sensitivity to SM is constant and thus relatively less
detailed soil characteristics are required (Song et al., 2000).
In this study a linear relationship proposed by Wetzel and
Chang (1987) is employed: fPET = 0.85 ·fAW. The resulting
ALEXI SM estimation is given as follows:

θALEXI = (θfc− θwp)(0.85 · fAW)+ θwp. (1)

Here θfc and θwp represent the field capacity and wilting
point of the soil, respectively. ALEXI retrievals can be in-
terpreted based on fraction of vegetation cover (fc) as ei-
ther surface moisture content (fc < 0.3), predominantly root-
zone moisture (fc > 0.75), or a composite of both surface
and root-zone moisture for fc between these limits. In this
study Priestley–Taylor PET was used with ALEXI actual ET
to compute fAW. It is argued that the SM retrieval from diag-
nosed evaporative fluxes is reasonable when the SM content
is within the limits of wilting point and field capacity (Hain
et al., 2011). Since in this study we are concerned with root
zone SM content, it is not anticipated that the limitation men-
tioned will lead to significant error, as conditions resulting in
the entire soil column through the root zone being above field
capacity (or less than wilting point) would be rare.

3.2 Surface disaggregation

The spatial resolution of the TIR-based ALEXI SM esti-
mates are roughly 5 km× 5 km. Thus, in order to utilize
them in conjunction with the AMSR-E MW data, the coarse-
resolution MW surface estimates must be downscaled to
match the ALEXI spatial scale. A physically based, semiem-
pirical SEE model in combination with a first-order Taylor
series expansion around the coarse-resolution SM was used
to map surface evaporative fluxes to SM content at finer res-
olutions. The SEE disaggregation approach has become very
popular recently and has been employed by several investiga-
tors at varying spatial scales and locations: Chen et al. (2017)
disaggregated SMAP SM to 250 m – correlation (r): −0.3–
0.72, RMSE: 0.06–0.27; Malbéteau et al. (2016) used the al-
gorithm to downscale coarse-scale SM to 1 km resolution – r:
0.70–0.94, root mean square difference (RMSD): 0.07–0.09;
Merlin et al. (2015) downscaled SMOS SM to 1 km scale –
r: −0.22–0.64, RMSD: 0.05–0.32; Molero et al. (2016) also
downscaled coarse-resolution SMOS SM to 1 km scale – r:
0.35–0.47, unbiased RMSD (ubRMSD): 0.04–0.12. In gen-
eral, the disaggregation improves agreement with in situ ob-
servations in comparison with coarse-scale estimates.

The disaggregation approach decouples the soil evapo-
ration from the top few centimeters of the soil and the
vegetation transpiration through ET partitioning. The disag-
gregation algorithm used in this study follows the concept
of the DISaggregation based on Physical and Theoretical
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scale CHange (DISPATCH; Merlin et al., 2010, 2012, 2013)
model. The model accounts for aerodynamic resistance over
bare soil in addition to soil parameters such as field capac-
ity via the SEE. Detailed DISPATCH algorithm derivation
and description is presented by Merlin et al. (2012). Here we
represent the prominent disaggregation equation as follows:

SMHR = SMLR+
∂SMmod

∂SEE

[
SEEHR−

〈
SEEHR

〉
LR

]
. (2)

HR and LR refer to the high- and low-resolution variables,
respectively. There have been multiple linear and nonlinear
relationships proposed between SEE and surface SM in the
past (Budyko, 1961; Komatsu, 2003; Lee and Pielke, 1992;
Manabe, 1969; Noilhan and Planton, 1989). A recent study
by Djamai et al. (2015) suggest that the nonlinear model per-
forms better in humid climatic condition. Therefore a nonlin-
ear model suggested by Noilhan and Planton was used in this
study to guide the DISPATCH algorithm:

∂SMmod

∂SEE
=

SMLR

cos−1
(
1− 2SEELR

√
SEELR (1−SEELR)

) . (3)

3.2.1 Modified SEE computation

The SEE, which can be defined as the ratio of actual to poten-
tial surface soil evaporation (Fang and Lakshmi, 2014; Mer-
lin et al., 2010), is computed at the high resolution first, and
then the SEE results are aggregated to the respective low-
resolution 25 km MW scale. The studies by Merlin et al.
(2010, 2012) demonstrated the use of MODIS LST, nor-
malized difference vegetation index (NDVI) and albedo to
determine surface and vegetation temperature and evapora-
tion. The SEE was defined as Ts,max−Ts,HR

Ts,max−Ts,min
, where Ts,max is

the soil temperature at SEE= 0; Ts,min is soil temperature at
SEE= 1, and Ts,HR represents soil temperature at the high-
resolution grid scale.

However, in this study we employed the ratio of the es-
timated surface evaporation from ALEXI to the potential
evaporation to compute SEE directly at the 5 km ALEXI
resolution. As mentioned earlier, the two-source land sur-
face representation in ALEXI separates surface evaporation
and canopy transpiration. The potential surface evaporation
is calculated using the Hamon PET (Hamon, 1963). Hamon
PET estimates are completely dependent upon atmospheric
demand irrespective of soil and vegetation characteristics and
can act as a proxy of potential surface evaporation (PE). This
represents a subtle change in the definition of SEE from
the Merlin formulation in that in our case all land cover–
soil matrix combinations are weighted equally as opposed
to being weighted by their assumed PE value as in Mer-
lin (approximated as function of surface temperature). Since
the southeastern US is an energy-limited, water-rich environ-
ment (Ellenburg et al., 2016), evaporation is controlled pri-
marily by water availability and atmospheric demand; there-
fore, the effects of this change are not expected to be large.

Hamon PET estimates have been found to be comparable to
radiation-based methods (e.g., Priestley–Taylor) to observed
ET in the southeastern US at monthly or longer timescales
(Lu et al., 2005) and are computed using air temperatures
from the NLDAS2 forcing data subject to terrain adjustment.
Terrain adjustment of coarse-resolution temperature data was
performed using a 30 m digital elevation map of the region
and constant lapse rate of −6.5 K km−1 (Cosgrove, 2003).
Recently, Mishra et al. (2018) utilized the DISPATCH al-
gorithm with modified SEE computation to disaggregate the
coarse-resolution SMAP SM over the continental US to 9 and
3 km resolutions with mean correlation of 0.47 and ubRMSD
of 0.064 m3 m−3 against SCAN observations.

3.3 Profile development

A multiyear vertical SM profile was developed for each
ALEXI grid cell using the POME model developed by Al-
Hamdan and Cruise (2010) over the study area. Maximizing
the Shannon entropy, they developed a model to create mono-
tonic profiles using boundary conditions and mean moisture
content information via the method of Lagrange multipliers
in an effective soil moisture (2) term:

2(z)=
ln
[
exp(λ220)± exp(1− λ1)

(
z
L

)]
λ2

. (4)

The Lagrange multipliers (λ) can be determined from appli-
cation of the constraints and boundary conditions (surface
effective saturation, 20) and mean effective saturation value
of the soil column (2), z is calculation depth, and L is total
depth of the column. Equation (4) is a monotonically increas-
ing (+ sign) or decreasing (− sign) function, representing dry
(increasing from the top boundary) and wet (increasing from
the bottom boundary) case profiles. For details of the POME
model please see the Appendix A. Effective saturation values
are mapped back to volumetric water content using soil water
characteristics from Rawls et al. (1982) (see Appendix B).

Handling Dynamic Cases: Experience has shown that not
all SM profiles are monotonic as given by Eq. (4). In fact,
it is clear that some profiles can be parabolic in shape (i.e.,
demonstrate an inflection point), especially immediately af-
ter rain events (dynamic case), or due to sharp changes in soil
characteristics (Al-Hamdan and Cruise, 2010; Mishra et al.,
2015) (see Fig. A1). Such cases are identified when mass bal-
ance cannot be kept by the monotonic assumption and thus
Eq. (4) has no solution. In these cases, it is assumed that the
inflection point is located in the soil layer with the greatest
field capacity (Mishra et al., 2015). The POME model is then
applied twice; from the surface to the inflection point, and
then from the inflection point to the bottom boundary. This
procedure was only required in 9 % of the profiles generated
in the study.

As mentioned previously, POME is a statistical approach
that begins with the assumption of a uniform SM distribution
initially and envisions the profile as either monotonically in-
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creasing or decreasing, or possessing one prominent inflec-
tion point. The final profile will then be the optimal one sub-
ject to the given boundary and initial conditions. Of course,
this is a simplification of the true behavior of SM in the field;
however, numerous previous studies have demonstrated that
if given accurate input data, the error in the profiles will
generally be less than < 3 % (Al-Hamdan and Cruise, 2010;
Singh, 2010; Mishra et al., 2015).

In the present application, the surface boundary condition
is supplied by the downscaled AMSR-E estimates and the
mean moisture content from the ALEXI model, and the lower
boundary is parameterized as 50 % of available water con-
tent. Experience has shown that SM behavior becomes less
dynamic deeper into the soil column and thus selection of a
constant value (in terms of effective moisture content) might
serve as a useful first approximation. Since in many ways,
this is a proof-of-concept study, it was felt that this would
be appropriate and would remain in the spirit of the “maxi-
mum entropy” concept that a minimum of a priori informa-
tion should be used in the calculation of the profiles. Inciden-
tally this assumption serves to introduce error into the anal-
ysis as all profiles do not exhibit this behavior (see Fig. 5)
(particularly in terms of volumetric SM content, which is de-
pendent on underlying soil characteristics) and even those
that do may not stabilize around the particular SM state se-
lected.

3.4 Temporal compositing

The ALEXI data are available from 2000 to present and
AMSR-E from 2002 to 2011. For this study, the years 2006–
2010 were selected for analysis as the NRCS SCAN data
was most consistently available during this period (nearly
92 %). The ascending AMSR-E SM estimates were available
on 64.5 % of the days on an average for all scan site loca-
tions while ALEXI retrievals were available on only 36 % of
the days due to cloud cover limitations. Earlier studies such
as by Leng et al. (2017a, b) explored a vegetation and aero-
dynamic coefficient-based gap-filling algorithm for satellite-
derived SM estimations. Despite showing promise, the pro-
posed algorithm requires ancillary datasets that are not part
of this study (e.g., wind speed) which might add additional
error to the analysis. While temporal compositing can be
used for gap filling, it also tends to reduce the day-to-day
noise associated with the satellite retrievals (Anderson et al.,
2011a). Further, there is a strong correlation between sur-
face SM and moisture dynamics at lower layers for temporal
lags of less than 5 days (Penna et al., 2013; Alfieri et al.,
2017). Therefore, a 3-day moving window unweighted mean
was used on AMSR-E and ALEXI retrievals to develop a
composite dataset. Compositing of the ALEXI surface ET in-
creased the mean data availability from 36 % to nearly 63 %
over all scan sites and in the case of AMSR-E compositing
ensured close to 100 % data availability. The availability of
pixels with intersection of AMSR-E and ALEXI data more

than doubled from 22.5 % to 58.7 % for the study period over
all sites.

3.5 Evaluation metrics

The remote-sensing-derived SM profiles developed using the
POME model were compared and validated against in situ
observations from 10 NRCS SCAN sites along with the grid-
ded Noah LSM SM products over the study area. The data
gaps in all three datasets restrict the possibility of time se-
ries analysis; therefore, pair-wise temporal statistical com-
parisons were performed using traditional matrices such as
correlation coefficient (r), RMSD and bias. It has been ar-
gued that in cases with either the model or reference dataset
being biased in mean or amplitude of fluctuations, the tra-
ditional RMSD tends to be an overestimation of true unbi-
ased data (Entekhabi et al., 2010b). Therefore an ubRMSD
in addition to traditional RMSD was also computed. The
ubRMSD can easily be computed by removing the bias term
form the definition as follows:

ubRMSD=
√(

RMSD2
−Bias2). (5)

To assess the quantitative error between three datasets against
an unknown true observation, the triple collocation (TC) er-
ror estimation method was employed (Stoffelen, 1998). TC
has become a very popular technique for simultaneous error
analysis of three datasets since its adaptation to SM states
by Scipal et al. (2008). The procedure is based on the as-
sumption of linear relationships between the three estimates
of the SM at a specific location and the unknown true value.
The unknown truth is eliminated from the linear error equa-
tions through subtraction and then cross-multiplication to de-
termine the error variances of the datasets relative to each
other (Gruber et al., 2016). The assumption is that the er-
rors in the three datasets are independent and random. Mul-
tiple recent studies have used the triple collocation method
for error estimation (such as Crow et al., 2015; Yilmaz et al.,
2014; Su et al., 2014; McColl et al., 2014). A detailed re-
view of method derivations and application to SM error es-
timation and analysis is presented by Gruber et al. (2016).
In this study, the TC errors were computed using variances
and covariances of the datasets (McColl et al., 2014; Stoffe-
len, 1998; Su et al., 2014). The covariance-based approach
enables us to compute unscaled error variances directly. Fur-
ther, the covariance notation also computes the sensitivity of
the datasets (β2

i σ
2
2) against true SM signal. Here β is the

scaling parameter, i is the dataset and σ 2
2 is the variance of

the true jointly observed SM signal. Sensitivity estimates can
be used to further validate and intercompare the datasets. Re-
cently, McColl et al. (2014) proposed a methodology to com-
pute the correlation coefficient between the involved datasets
(referred to as X,Y,Z) and underlying true SM signal as fol-
lows:
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R2
i =

β2
i σ

2
2

β2
i σ

2
2+β

2
i σ

2
εi

. (6)

Here σ 2
εi

is the error variance of the dataset where i ∈

[X,Y,Z]. The sensitivity of individual dataset is estimated
as follows:

β2
Xσ

2
2 =

σXYσXZ

σYZ
,

β2
Yσ

2
2 =

σYXσYZ

σXZ
,

β2
Zσ

2
2 =

σZXσZY

σXY
. (7)

4 Results and discussions

4.1 Comparison with Noah LSM

For comparing SM profiles, 0–100 cm POME-based profiles
at 5 cm layer depth intervals were aggregated using the un-
weighted simple mean to the depths consistent with the Noah
LSM: 0–10, 10–40, and 40–100 cm. The analysis can be ap-
proached from three perspectives: the surface values repre-
sent the MW downscaling, the bias represents the ALEXI
model performance as it is providing the total SM content in
the root zone, and the RMSD is representative of the entropy
model since it measures the moisture distribution within the
soil column.

Figure 2 shows the statistics of multiyear temporal SM
profile comparisons between the POME and the Noah LSM
for the study region. The figure shows that the mean RMSD
and ubRMSD tend to be relatively stable with depth over the
entire region, an indication of relative stability for the pro-
file developed using the POME model. As depth increased,
pixel bias ranged from 0.05 to 0.13 m3 m−3, indicating that
the mean SM data from the ALEXI model is positively bi-
ased compared to the Noah LSM, although the mean bias
was ≤ 0.05 m3 m−3 for all layers. The overall RMSD at all
layers was found to be under 0.085 in volumetric SM. More-
over more than 97 % pixels across the study area showed
ubRMSD of less than 0.06 m3 m−3 across all layers, indi-
cating good agreement between the POME model and the
Noah SM estimates (Jackson et al., 2010). Comparing Fig. 2
with the land cover map (Fig. 1), it seems that the higher
correlations (r > 0.6) occur more prominently in the agri-
culturally dominant portions of the study area for the top
two layers (0–40 cm). The overall correlations in the range
of 0.46–0.54 across layer depths suggest that the temporal
variabilities from remote-sensing-driven POME model com-
pared fairly well against Noah SM.

Comparison between POME and Noah SM profiles by
land cover type (Fig. 3) indicates that the absolute bias tends
to increase with depth in the savannah, shrub and forest land
covers while the reverse is evident for the urban, grass and

crop coverages. It appears that overall bias is lowest in the
savannah, forest and agricultural land classes and since those
classes (particularly forest) dominate the region, this natu-
rally leads the relatively low overall region-wide bias shown
in Fig. 2.

The RMSD (and ubRMSD) present an opportunity to
judge the overall profile development process. It is clear from
Fig. 3 that the RMSD improves from the surface to the mid-
dle layer and then increases again in the bottom layer in
every land cover class except shrub. The top- and bottom-
layer RMSDs are being impacted by the boundary conditions
placed on the POME integral by the MW and the parame-
terized lower boundary. Clearly, the POME process tends to
improve the imprecise surface boundary as depth increases
until the assumed lower boundary condition is encountered
and results in deterioration of the profile RMSD.

In terms of correlation, the middle layer (10–40 cm) has
the highest correlation (overall mean r = 0.54) for all land
cover types, with the highest mean correlation of 0.7 for
crop-dominated land cover. This further demonstrates the ca-
pabilities of the ALEXI model to estimate root-zone mean
SM content in comparison to the Noah LSM. Incidentally,
for most crops, the majority of the root mass is distributed
in the top 60 cm of the soils column (Wu et al., 1999). The
higher root density ensures the strong coupling of the land–
plant–atmosphere system which tends to improve the accu-
racy of ALEXI in that zone. Increased correlations in the 10–
40 cm layer indicate the ability of ALEXI to mimic the tem-
poral patterns in the root-zone consistently relative to Noah.
As depth increases, the root density is reduced and thus the
coupling between land and atmosphere is also reduced. This
fact, along with the relatively coarse parameterization of the
lower boundary on the POME profile, leads to a relative de-
crease in correlation at layer 3 (40–100 cm) at all land covers
except for trees (forest). The cropland showed the highest
correlations with the Noah profile while keeping the RMSD
and bias consistent with other land types. Agricultural ar-
eas demonstrated correlations ranging from 0.5 to 0.7 with
a mean correlation of 0.62.

The overall analysis by layer depths appears to indicate
that the profiles developed through the POME model using
the disaggregated MW and the ALEXI-derived mean SM
content are in good agreement with the Noah LSM in the
southeastern US and in very good agreement in agricultural
areas of the region.

4.2 Comparison with in situ observations

The comparison against Noah LSM SM estimates provided
useful insights into the performance of TIR-based SM pro-
files developed through the POME model. The comparisons
against the LSM specifically add to the analysis of results as
a function of land cover, yet as mentioned earlier, the analysis
does not assume that Noah is a perfect model – it may have
its own errors. Therefore multiple NRCS SCAN site in situ
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Figure 2. Map of bias, RMSD, ubRMSD and correlation coefficients between Noah and POME SM profiles over multiple years (2006–2010)
at different layer depths: (a) 0–10 cm, (b) 10–40 cm and (c) 40–100 cm.

Figure 3. Comparison of Noah and POME SM profiles at multiple
layer depths by land cover across southeastern United States.

observations are used for further validations. When compar-
ing remotely sensed data to site-specific in situ observations,
disparities in spatial scale and sensing depth must be consid-
ered. Although some authors prefer to remove bias due to the
differing scales before comparisons are made (Brocca et al.,
2011), it is also quite common to do the comparisons without
adjusting for scale, even when only one in situ site is avail-

able (McCabe et al., 2005; Sahoo et al., 2008). In this study
no bias corrections were performed.

Figure 1 shows the location of each of the sites used for
validation along with the underlying land cover map. Ta-
ble 1 summarizes the SCAN site characteristics, dominant
land cover types and soil characteristics at the surface and
100 cm depth. Dominant land cover for sites 2009, 2114 and
2115 are predominantly savannas and forest type (hereafter
referred as forest sites), whereas sites 2013, 2037, 2038 and
2113 are a mix of cropland either with savannas or shrubs
(hereafter referred as mixed cropland sites). Only sites 2027,
2078 and 2053 (hereafter referred as cropland sites) are pre-
dominantly cropland at the 5 km spatial resolution footprint.
The crop and mixed crop sites are shown in bold in the fol-
lowing text. The SCAN sites monitored SM at depths of 5,
10, 20, 50 and 100 cm. The POME-based profiles are devel-
oped at 5 cm layer depth increments down to 100 cm depth.

The results of the developed profiles in comparison to the
SCAN site observations are shown in Fig. 4. First, it is ev-
ident in all the statistics except the correlation that the pat-
tern demonstrated in the previous comparisons persists in
that the statistics often tend to improve with depth, with oc-
casional deterioration when the lower boundary is encoun-
tered. Considering the performance of ALEXI initially, the
bias appears to be reasonable in most cases where the major-
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ity of instances the absolute bias is less than 0.1 (m3 m−3),
but it appears to be best in the mixed cropland areas (mean
absolute bias of 0.07 m3 m−3 across all depths) and worse
in forested sites (mean absolute of 0.13 m3 m−3). In fact, at
7 of the 10 total sites the overall bias is considerably less
than the average moisture content at the SCAN site itself.
At the two sites with the highest bias (2009 and 2027), the
mean moisture content from ALEXI was about twice the
observations at all layers, indicating that the satellite esti-
mates showed considerable positive bias (mean bias 0.17
and 0.13 m3 m−3, respectively). Hain et al. (2011) pointed
out that sensitivity of the ALEXI model decreases as mois-
ture content nears either the wilting point or the field capac-
ity. Both sites 2009 and 2027 had sandy soils at the SCAN
site and exhibited the lowest mean moisture content of all
sites. At site 2009, which has sandy soil through the column,
the mean SM content was 0.05 m3 m−3 against the wilting
point of 0.033 m3 m−3, while 2027 site had sand at the sur-
face and sandy loam (wilting point= 0.095 m3 m−3) at the
100 cm depth and the mean SM content was 0.12 m3 m−3.
Moreover, the site 2009 is located in a forest-dominated re-
gion, whereas for site 2027 (located in southwestern Geor-
gia), the higher bias in remotely sensed observations can be
attributed to additional SM content due to irrigation. South-
western Georgia is one of the most irrigated regions of the
study area. In contrast, the SCAN site observations are pri-
marily governed by precipitation alone.

In the case of RMSD, half the sites showed an average
RMSD of 0.1 m3 m−3 or less. RMSD tends to be better at
the mixed land use sites, while poor performances at sites
2009, 2115 and 2027 skewed the forest and cropland re-
sults. As in the bias case, these sites demonstrated the highest
mean RMSD values (Fig. 4). However, with the exception
of these sites, the average RMSD was less than the SCAN
average moisture content in all cases. The ubRMSD, how-
ever, at all sites was better with the overall ubRMSD for
all layer depths and land cover types exhibiting an average
ubRMSD of 0.07 m3 m−3. The ubRMSD tended to improve
with depth for all cases (Fig. 4) up to the depth of 50 cm, but
showed a rise at the 100 cm depth as discussed previously.
Improvements in ubRMSD with depth indicate the ability of
the POME model to converge and correct itself from the ef-
fects of the noisy surface boundary condition until the as-
sumed lower boundary affected the performance in that layer.

The r results are interesting and do not necessarily track
the other two indices. It is clear from Fig. 4 that POME
tended to perform better in agricultural land use areas than
in other environments. Similar to the bias results, correlation
was poorest at forested locations. In all, three sites showed
average correlation above 0.5, with four other sites showing
a correlation above 0.4. Two sites (2009, 2113) produced av-
erage correlations of 0.16 and 0.32 across all depths. As dis-
cussed earlier, site 2009 is forested while 2113 is located near
a water body (Lake Catoma). Overall, the crop sites showed
the highest correlations (0.51) followed by mixed crop sites

Figure 4. Statistics at SCAN sites showing bias, correlation, RMSD
and ubRMSD between SCAN observations and POME SM profiles
at multiple layer depths.

(0.42), an indication of the ability of the satellite-derived sur-
face and mean moisture content estimates to mimic wetting
and drying patterns over time across depths.

However, the correlation consistently declined with depth
at most of the agriculture and mixed agriculture sites. The
decline most often became more pronounced after the second
(or sometimes third) layer, indicating that the influence of
the parameterized lower boundary extends through the lower
50 cm of the profile, at least to some extent. The use of a
constant lower boundary condition would not be expected to
correlate with variable observation.

4.3 Intercomparison of Noah and POME with in situ
observations

The POME profiles have been compared with the Noah LSM
across the study region and against in situ observations at
10 locations. However, as mentioned earlier, both analyses
have some limitations either in terms of proxy ground truth
(in case of LSM) or spatial representation (in situ observa-
tions). Therefore, in this section an intercomparison between
the three datasets is performed to assess the relative strength
of each SM dataset. Figure 5 shows the time series of the
SM state from the Noah LSM, SCAN observations and the
POME model. Consistent with the layer depths of the Noah
LSM, the POME profile and the SCAN observations were
aggregated to 0–10, 10–40, and 40–100 cm layer depths.

The figure shows that the three datasets track each other
well in some cases and that in others there are significant
discrepancies. In general, with the exception of a few cases,
it appears that the POME and SCAN profiles track better
than the Noah simulations in the lower soil layers. In par-
ticular, the Noah model shows a prominent cycling effect in
the bottom layer at many sites that is not present in the other
two datasets. However, the POME time series at the sites
dominated by agricultural and mixed land uses (e.g., 2027,
2053, 2078, 2037, 2013) exhibit a pronounced cyclic effect
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Figure 5. Time series of soil moisture condition (every 8-day interval) at 10 NRCS SCAN sites from the POME model (blue), Noah LSM
(green) and in situ observations (red) at three layer depths (2006–2010).

in the surface layers in addition to a positive bias compared
to the Noah and the SCAN data. The sites in northern Al-
abama (2053 and 2078) and in western Georgia (2027) are
located in some of the most highly irrigated regions of the
study area. Therefore, the MW-derived upper boundary con-
dition for the POME model is likely to sense the irrigation
activity in the region compared to the precipitation-derived
Noah LSM and SCAN observations. Further, the other two
sites (2037 and 2013) are located in areas with close proxim-
ity to surface water and hence the MW surface SM estimates
can be contaminated and result in the positive bias being ob-

served at those locations. The forest-dominated sites (2009,
2114 and 2115), however, showed that the POME model pro-
files are more comparable overall to the Noah LSM than to
the point-sourced SCAN observations. The mixed agricul-
tural sites (2113 and 2038) are located in regions hardly ex-
periencing any irrigation activity and not impacted by sur-
face water and thus showed little to no bias at the surface
against Noah and SCAN profiles. The time series observa-
tions suggest that the downscaled MW surface SM is able
to sense irrigation activity and therefore may provide an ac-
curate surface boundary condition to the POME model. At
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lower depths (40–100 cm) the POME profile seems to be in
better agreement with the SCAN observations than the Noah
estimates, which indicates that the parameterization of the
lower boundary condition seems to be reasonable in this case,
and that the POME profiles actually improve with depth in
contrast to the Noah simulations. The dynamic nature is ob-
served at lower depths for few sites (particularly 2013 and
2115). This anomalous behavior can be attributed to the fact
that these sites had porous soils near the surface with clay
layers beneath, while site 2113 is located in close proxim-
ity to a stream and is potentially influenced by surface water
intrusion.

Table 2 shows the detailed statistics of comparison among
Noah LSM SM, in situ observations and POME profiles at
each SCAN site location. The results are further summa-
rized across all sites in Fig. 6. The overall results show that
the satellite-based and LSM SM estimates are reasonably
comparable based on error statistics of ubRMSD (0.05 vs.
0.04 m3 m−3) and absolute bias (0.08 vs. 0.07 m3 m−3). For
the surface layer (0–10 cm) comparisons, the Noah correla-
tions are superior to the POME model (r = 0.75 vs. 0.54),
although in several cases the Noah correlations decrease ver-
tically through the soil column to the point that the two
approaches are much more comparable (Fig. 6). This case
does not show the steep decline in correlation through the
POME profiles as before, indicating that amalgamation of
the lower layers into one 60 cm layer has dampened that ef-
fect. In terms of mean bias across layers, the POME model
is superior in four cases, Noah is superior in four cases and
in the other two cases (2115 and 2053) the two models per-
form the same. In terms of ubRMSD, the POME is supe-
rior to Noah at three locations while at another six locations
the difference is within 0.01 (m3 m−3). Overall, the aver-
age statistics across all depths and all sites, the Noah aver-
age RMSD was 0.09 m3 m−3 in comparison to the POME
RMSD of 0.10 m3 m−3 against ground-based SCAN obser-
vations. The unbiased RMSD between Noah and SCAN was
0.04 m3 m−3, and for the POME it was 0.05 in volumetric
SM. Figure 6 shows that the Noah LSM tended to become
less accurate compared to the SCAN observations with depth
while the POME generally showed the reverse.

The three datasets can be further compared through TC
analysis. TC has the advantage that the SCAN observations
are treated equally with the LSM and POME as just another
estimate of the true SM state. The analysis is performed for
three layers to be consistent with the LSM model configu-
ration (Fig. 7). The surface results (0–10 cm) showed that in
most instances the SCAN observations are closer to the true
SM compared to the Noah and POME data; however, the lat-
ter two datasets also show high coefficient of determination
(R2) values at several sites. The middle and bottom layer re-
sults appear to indicate that the Noah LSM is superior (with 5
and 9 instances of R2 > 0.8, respectively), while the SCAN
observations and the POME model track each other fairly
well with six and five instances, respectively, of R2 > 0.4 for

Figure 6. POME and Noah SM profile statistics at all SCAN sites
compared against in situ observations averaged across layer depths.

the POME and five and four such instances for SCAN obser-
vations. It should be noted here that although TC accounts for
total error among the three datasets, the Noah results may be
problematic in that, unlike the other two datasets, the deter-
ministic SM equation (e.g., Richards equation) governs the
movement of moisture through the column and some of the
random errors are eliminated. This would not affect the sur-
face layer, which is governed by precipitation and surface
evaporation. Thus, the errors in the LSM at the deeper layers
may be dampened and thus affect the results.

5 Error characterization

The developed profile results are impacted by the boundary
conditions applied to the POME as the integral serves to tran-
sition the profile between the upper and lower boundary con-
ditions. The upper boundary is associated with the MW sur-
face SM estimates while the lower boundary was assumed for
this study and potentially could be parameterized or used as
a calibration parameter. In addition, the mean SM estimated
from ALEXI determines the total mass to be distributed. Ear-
lier studies by Al-Hamdan and Cruise (2010) and Mishra
et al. (2015) showed that the POME model is capable of pro-
ducing profiles with significant accuracy with mean absolute
errors in the range of 0.5 %–3.0 % for known input condi-
tions. However, in this study inputs to the POME model are
derived from remotely sensed measurements, in addition to
a parameterized bottom boundary condition. Hence, profile
errors may be characterized in terms of errors in input pa-
rameters.

Figure 8a and b shows the sensitivity of the profile in terms
of bias and RMSD to variations in the mean and surface
constraints. From Fig. 8a it is clear that, even if the surface
boundary condition is off by 50 % (in effective SM), the over-
all profile RMSD and bias is less than 0.35 (in effective SM),
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Table 2. Results of temporal comparisons in absolute bias (m3 m−3), RMSD (m3 m−3), ubRMSD (m3 m−3) and correlation at 10 sites
between the developed profile and Noah SM profiles against SCAN observations at 0–10, 10–40 and 40–100 cm depths (NP – Noah vs.
POME; SP – SCAN vs. POME; and NS – Noah vs. SCAN).

Site
Bias RMSD ubRMSD Correlation

NP SP NS NP SP NS NP SP NS NP SP NS

2009 0.02 0.13 0.11 0.05 0.14 0.12 0.04 0.04 0.03 0.12 0.23 0.56

0–
10

cm

2014 0.00 −0.10 −0.10 0.06 0.13 0.11 0.06 0.07 0.03 0.54 0.50 0.85
2015 0.01 0.15 0.14 0.07 0.16 0.14 0.07 0.06 0.00 0.50 0.54 0.72
2027 0.09 0.19 0.10 0.10 0.20 0.11 0.06 0.07 0.05 0.64 0.49 0.70
2053 0.05 0.03 −0.02 0.07 0.06 0.04 0.05 0.06 0.03 0.77 0.75 0.85
2078 0.05 0.03 −0.02 0.09 0.09 0.05 0.07 0.08 0.05 0.73 0.69 0.72
2113 0.00 0.02 0.03 0.06 0.08 0.06 0.06 0.08 0.05 0.41 0.51 0.86
2037 0.06 0.08 0.02 0.09 0.10 0.04 0.07 0.06 0.03 0.40 0.63 0.72
2038 0.02 0.02 0.16 0.06 0.06 0.04 0.05 0.05 0.04 0.34 0.37 0.62
2013 0.04 0.07 0.23 0.07 0.09 0.04 0.05 0.05 0.03 0.59 0.67 0.88

2009 0.06 0.18 0.12 0.08 0.19 0.13 0.05 0.03 0.05 0.21 0.17 0.37

10
–4

0
cm

2014 0.02 −0.14 −0.16 0.05 0.14 0.17 0.04 0.04 0.06 0.69 0.60 0.78
2015 0.00 0.04 0.04 0.04 0.06 0.05 0.04 0.04 0.03 0.52 0.51 0.80
2027 0.06 0.14 0.08 0.07 0.14 0.09 0.04 0.05 0.04 0.70 0.56 0.63
2053 0.00 0.03 0.03 0.05 0.07 0.06 0.05 0.06 0.05 0.67 0.51 0.74
2078 0.01 −0.06 −0.06 0.05 0.07 0.09 0.05 0.05 0.06 0.69 0.56 0.56
2113 0.04 0.03 −0.01 0.08 0.06 0.03 0.06 0.05 0.03 0.37 0.37 0.91
2037 0.07 0.10 0.02 0.08 0.10 0.03 0.03 0.03 0.02 0.57 0.55 0.78
2038 0.08 −0.01 −0.09 0.09 0.04 0.10 0.05 0.04 0.04 0.44 0.39 0.55
2013 0.07 0.05 −0.02 0.10 0.08 0.04 0.07 0.06 0.03 0.29 0.27 0.88

2009 0.09 0.20 0.11 0.10 0.20 0.12 0.05 0.03 0.05 0.22 0.16 0.33

40
–1

00
cm

2014 0.04 −0.17 −0.21 0.08 0.17 0.22 0.07 0.02 0.07 0.65 0.59 0.68
2015 0.00 −0.02 −0.02 0.04 0.08 0.06 0.04 0.07 0.05 0.48 0.45 0.81
2027 0.08 0.05 −0.02 0.10 0.06 0.06 0.06 0.03 0.06 0.38 0.40 0.58
2053 0.01 −0.04 −0.04 0.08 0.06 0.06 0.08 0.05 0.05 0.49 0.51 0.85
2078 0.03 −0.08 −0.11 0.08 0.09 0.13 0.08 0.04 0.06 0.54 0.54 0.74
2113 0.07 −0.03 −0.10 0.11 0.06 0.11 0.08 0.05 0.05 0.32 0.27 0.85
2037 0.09 0.04 −0.04 0.10 0.05 0.06 0.04 0.03 0.03 0.52 0.45 0.68
2038 0.13 −0.10 −0.22 0.14 0.10 0.23 0.06 0.03 0.06 0.42 0.40 0.35
2013 0.12 0.08 −0.04 0.15 0.12 0.09 0.09 0.09 0.07 0.16 0.10 0.65

Figure 7. Triple collocation analyses of SM profiles from Noah (green), POME (blue) and in situ observations (red) at scan site locations at
the depths of 0–10, 10–40 and 40–100 cm.
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and the maximum possible deviation in the surface boundary
results in bias and RMSD of 0.62 and 0.67 (in effective SM),
respectively. The sensitivity study of the mean moisture con-
tent (Fig. 8b) shows that the bias and RMSD of the profile
(in terms of effective SM) are linearly related to the devia-
tions in the assumed mean. Furthermore, Fig. 8 indicates that
the profile is more sensitive to errors in the mean than it is to
deviations in the surface boundary condition.

5.1 Effect of disaggregation of AMSR-E MW data

Figure 8 shows that the POME profile is sensitive to the sur-
face boundary conditions. In this study these conditions are
provided by AMSR-E; therefore, it is instructive to exam-
ine the relative accuracy of the downscaled MW data. To
that end, the AMSR-E surface SM before and after disag-
gregation is compared to both the Noah LSM and the in situ
SCAN data to quantify the effect of the SEE downscaling al-
gorithm. The results from a temporal analysis between coarse
and downscaled (fine) resolution MW surface SM with the
Noah LSM surface is shown in Fig. 9 for the study do-
main. The figure shows that the generally negative bias of
the original AMSR-E data (overall mean =−0.08 m3 m−3)
when compared to the Noah LSM was transformed by the
disaggregation to a positive bias in the eastern half of the
study area although the overall bias remained slightly nega-
tive. The positive bias in the eastern zone was largely in the
0.04 to 0.13 m3 m−3 range. It is also apparent that this same
area exhibited a substantial increase in correlation between
the downscaled MW and Noah data. Comparing Fig. 9 to the
land cover image in Fig. 1, it can be seen that the increase
in correlation was largely in the agricultural bands in south-
western Georgia leading into southeastern Alabama. How-
ever, a few areas, such as extreme southwestern and east–
central parts of Alabama, showed degradation in correlation
with downscaling. The land cover map shows that these ar-
eas are generally forested. Overall the temporal r showed a
modest increase from 0.21 to 0.25 with downscaling for the
study area, indicating that downscaled AMSR-E is slightly
more comparable to Noah LSM surface SM. Perusal of the
figure shows that the poor results in Florida and along the
eastern seaboard are primarily responsible for the low cor-
relations. It also demonstrates the fundamental property that
the downscaling process will be compromised in areas where
the original MW data was of exceptionally poor quality to
begin with.

It is difficult to determine the impact of the disaggregated
MW surface SM estimates on the profiles compared to the
LSM. First, the statistics shown in Fig. 9 are for the sens-
ing depth of the raw AMSR-E data (0–2 cm) while the rel-
atively better statistics shown in Fig. 2 are for the top layer
corresponding to the Noah LSM (0–10 cm). This disparity in
depth is undoubtedly affecting the results. The introduction
of the mean SM from ALEXI also affects the near-surface
layer in the POME profile since mass balance must be main-

tained throughout the soil column. In any case, comparison
of Figs. 2 and 9 shows that the profile statistics are consider-
ably improved compared to the MW surface values and thus
the noise in the MW data has a minimal effect when com-
pared to the Noah LSM.

The results of the comparison with the SCAN sites are per-
haps more instructive and are given in Table 3 below. The
table shows that in terms of correlation, the disaggregated
data were better related to the in situ data than were the orig-
inal coarse scale MW data (r of 0.53 vs. 0.31). This result
was particularly evident at the agricultural SCAN sites (r of
0.64 vs. 0.42). These results were obtained at a slight cost in
the bias (bias of 0.07 vs. −0.02 m3 m−3) and RMSD (0.12
vs. 0.10 m3 m−3), although the difference was not as great
in unbiased RMSD. In the case of Table 3, the SCAN depth
is the same as the MW so comparisons are apt. In cases of
relatively high bias in the MW data (e.g., sites 2009, 2114,
2053, 2078) this error is introduced into the POME profile.
Figure 8 shows that errors in the surface boundary of about
0.1 translate to bias and RMSD in the profile of about 0.05
(in effective SM). It appears from Table 3 that at the sites
demonstrating the consistently higher bias and RMSD, the
error in the surface boundary could be responsible for one-
third to one-half of that total.

5.2 Effect of mean SM inputs

The mean SM content within soil columns in this study ob-
tained from the TIR-based ALEXI model served as one of
the two remotely sensed input parameters for the POME
model. Therefore the mean SM content retrieved from the
ALEXI model is compared with the Noah LSM. The re-
sults of the temporal analysis between the two datasets are
shown in Fig. 10. The overall bias between the two datasets
is 0.04 m3 m−3. The overall RMSD is 0.08 m3 m−3, with
ubRMSD of 0.04 m3 m−3, indicating that the mean SM con-
tent of the two datasets is similar. In terms of correlation co-
efficient, the root zone correlation nearly doubled (r = 0.49)
compared to the surface correlations (Fig. 9). Further, com-
parison of Fig. 10 with Fig. 1 reveals that, similar to the
surface SM analysis, the mean SM content with the high-
est correlations (r > 0.5) is observed mostly in agriculture-
dominated areas.

Figure 8b shows that the translation of the error in the
mean SM content to errors in the POME profile is linear, so
an error of 0.04 in the ALEXI mean compared to the LSM
would translate into a similar error in the computed profile.
Examination of column 2 (NP) in Table 2 above shows that
this error represents the majority of the errors in the com-
puted POME profiles compared to the LSM.

Overall, the analysis revealed that the surface SM esti-
mates accounted for, at most, one-third to one-half of the
error in the SM profiles developed using the POME model.
For most of the cases, the mean SM content and the param-
eterized lower boundary accounted for the majority of the
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Figure 8. POME model sensitivity to (a) boundary conditions and (b) profile mean input towards profile bias and RMSD in terms of effective
SM.

Figure 9. Map of the southeastern United States demonstrating temporal statics in bias, RMSD, ubRMSD and correlation between (a) coarse-
and (b) fine-resolution AMSR-E (MW) and Noah LSM surface SM (2006–2010).

error. Recent advances, such as the L-band sensor aboard
the SMAP mission, offer the potential for even better cor-
related MW data. In addition, further analysis of the lower
boundary condition parameterization could improve the pro-
files, particularly in the lower layers. As discussed earlier,
since the ultimate purpose of the developed profiles is to be
assimilated into a LSM, the lower boundary can serve as a
highly effective way to tie the POME profile to the model
climatology by using the model SM in the lowest layer of
the soil column as the lower boundary on the POME inte-
gral. Since this level (100–200 cm) is normally well below
the root mass of most vegetation species (particularly row
crops) (Wu et al., 1999), then its selection will have minimal
impact on the LSM model results. For instance, Mishra et al.
(2013) used POME-generated profiles to update SM within a
crop model using the lower boundary condition from the crop
model itself. If sufficient ground truth data are available, cal-
ibration could be accomplished, or the lower boundary could

be set as a function of soil properties in the bottom layer of
the profile.

The relatively sparse (5–10-day recurrence interval) avail-
ability of the ALEXI TIR-based SM retrieval is the major
weakness of the procedure and necessitated compositing of
the data into 3-day running means. However, the issue is a
function of the semitropical humid climate of the southeast-
ern US. Drier regions of the world would not suffer as much
from this issue. Thus it is possible that the proposed method
could be employed to deduce vertical SM profiles in regions
of the world where observed climate data are scarce or in-
sufficient to drive ecological models. These profiles could be
assimilated into such models to help correct for bias due to
the poor climate inputs.
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Table 3. Statistical comparison before and after disaggregation of coarse-resolution MW SM against SCAN observations (r – correlation
coefficient; bias, RMSD and ubRMSD in m3 m−3; N – number of days data points was available; maximum possible N = 1825).

Mean SM SCAN/MW(25 km) SCAN/MW(5 k)

Site
SCAN MW MW N Bias RMSD ubRMSD r Bias RMSD ubRMSD r

(25k) (5k)

2009 0.06 0.18 0.19 841 0.12 0.12 0.02 −0.12∗ 0.13 0.14 0.04 0.17
2014 0.26 0.15 0.19 1055 −0.11 0.14 0.09 0.30 −0.07 0.12 0.09 0.47
2015 0.08 0.15 0.25 1103 0.08 0.09 0.04 0.42 0.17 0.19 0.08 0.60

Mean 0.03 0.12 0.05 0.22 0.08 0.15 0.07 0.42

2027 0.08 0.13 0.29 1241 0.05 0.06 0.03 0.48 0.21 0.22 0.08 0.50
2053 0.24 0.14 0.32 1160 −0.10 0.13 0.08 0.43 0.08 0.10 0.06 0.74
2078 0.25 0.14 0.31 1080 −0.12 0.13 0.05 0.34 0.06 0.10 0.08 0.68

Mean −0.06 0.10 0.05 0.42 0.12 0.14 0.07 0.64

2113 0.20 0.14 0.18 1014 −0.06 0.12 0.10 0.44 −0.02 0.10 0.09 0.47
2037 0.16 0.14 0.21 1157 −0.02 0.06 0.05 0.11 0.06 0.10 0.09 0.62
2038 0.14 0.16 0.16 1067 0.02 0.05 0.04 0.45 0.02 0.06 0.06 0.31
2013 0.21 0.15 0.23 1218 −0.06 0.09 0.06 0.21 0.02 0.05 0.05 0.55

Mean −0.03 0.08 0.06 0.26 0.02 0.08 0.07 0.53

Overall Mean −0.02 0.10 0.06 0.31 0.07 0.12 0.07 0.53

∗ Nonsignificant correlation using two-tailed t test at 99 % CI (confidence interval).

Figure 10. Map of temporal statistics between root zone ALEXI
and Noah SM (2006–2010).

6 Conclusions

This study evaluated the feasibility of linking downscaled
MW surface SM with TIR root zone estimates to develop

entropy-based vertical SM profiles. The SM profiles (in-
cluding surface values) were compared to in situ data at
the southeastern US as well as the Noah LSM within the
NASA LIS. Initial results are encouraging. The SEE disag-
gregation method of Merlin et al. (2012), guided by high-
resolution TIR estimates from the ALEXI model, showed
promise when compared to the in situ and modeled esti-
mates in a humid semitropical region of the US. The POME-
generated SM profiles generally compared favorably with the
SCAN site profiles and the Noah LSM.

When the Noah LSM and the POME profiles were com-
pared to the in situ data in terms of bias, the POME-generated
profiles were clearly superior at four sites, the LSM was su-
perior at four sites and the two methods were similar at the
other sites. However, it must be noted that there is a scale
mismatch when comparing with in situ observations, and
also biases may exist in SCAN observations as well as the
models. The maximum correlation in the range of 0.4–0.65
was observed in agriculturally dominant areas. Further, the
highest correlations were found at the depth of 10–40 cm, co-
inciding with the maximum root density for crops and thus
offering a better coupling between land and atmosphere. The
ALEXI model was able to pick the wetting and drying trends
in the root zone consistently.

Compared to in situ observations, the bias and RMSD of
the Noah model often tended to degrade vertically with depth
while the reverse was evident in most of the POME profiles.
While acknowledging that the SCAN data contains biases
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and errors of their own, this characteristic of the remote-
sensing-driven POME method seems to open the possibility
that profiles from LSMs could be improved in terms of bias
and RMSD through the assimilation of the remotely sensed
profiles. This conclusion is bolstered by the results of pre-
vious studies, for example Al-Hamdan and Cruise (2010),
Singh (2010) and Mishra et al. (2015), who found that the
when the input data are well defined, the POME profiles are
highly accurate throughout the soil column. TC analysis re-
vealed that the POME and observed SCAN site observations
tracked well, while the LSM appeared to show less vari-
ability, possibly due to the use of the deterministic Richards
equation to model SM movement through the soil column.

Error analyses revealed that the majority of the error in
the POME-generated profiles was due to error in the mean
SM deduced from the ALEXI retrievals and the parameter-
ized lower boundary condition. The lower boundary was sim-
ply assumed to be 50 % of available moisture capacity and
this assumption proved to be incorrect in some cases where
the lower layer in the soil column exhibited marked tempo-
ral variability. The SEE downscaling procedure increased the
correlation of the surface SM compared to both the LSM and
the SCAN sites, especially in agricultural areas where corre-
lations in the range of 0.5–0.8 were achieved. In the mean-
time, the overall bias was reduced by a factor of 4 and the
RMSD was only slightly increased (0.09 to 0.10 m3 m−3).
The error analysis suggested that the MW-derived surface
boundary accounted for at most one-third to one-half of the
overall error in the POME profiles. Downscaling was gener-
ally less effective in locations where the AMSR-E demon-
strated positive bias and appeared to lose effectiveness as the
bias increased. MW surface observations can be contami-
nated when a high percentage of the pixel is dominated by
water, such as near large streams or lakes or in the near-
coastal region. Dense vegetation also tends to degrade the
MW results.

Data availability. Data and code are available on request from the
authors.
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Appendix A: The principle of maximum entropy
(POME) model

Three distinct SM profiles cases are possible: wet case – up-
per layer is wetter than the lower; dry case – upper layer is
drier than the lower; and dynamic case – a mix of wet and dry
cases, which typically has at least one prominent inflection
point. The wet case arises right after an irrigation or precipi-
tation event; dry case profiles occur a long time after a precip-
itation or irrigation event. The dynamic case is caused some
time after a precipitation or irrigation event when the surface
dries up but the middle layers still have elevated moisture
contents from earlier precipitation or irrigation events. Fig-
ure A1 shows these three possible cases.

A1 Application of entropy to SM profile development

The information in a system in state i according to the clas-
sical Shannon entropy formulation is given as follows:

Ii = ln
(

1
pi

)
. (A1)

Here pi is the probability that the system is in state i, and ln
is the natural logarithm. The mean information content of a
variable or process is given by Shannon entropy formulation
in continuous form:

H =−

n∫
i=1

f (x) ln(f (x))dx. (A2)

Here, f (x) is a continuous probability distribution function
(pdf) and n is the number of values a variable can take.
Higher values of entropy would mean the lesser prior in-
formation availability; in other words, higher entropy means
higher uncertainty. According to Mays et al. (2002), the in-
formational entropy is a measure of the correspondence be-
tween the pdf of the dataset associated with a system and
the pdf associated with the minimum information about the
system. In cases where the minimum a priori information
is available or the system is unpredictable, the probability
distribution would be uniform and the entropy will be high
(Pachepsky et al., 2006).

The principle of maximum entropy was developed by
Jaynes (1957a, b) and proposes that if inferences has to be
drawn from incomplete information then it should be drawn
from a probability distribution that has the maximum entropy
permitted by the a priori information. Based on this concept,
Al-Hamdan and Cruise (2010) developed an entropy-based
algorithm to model SM profiles, assuming uniform distribu-
tion throughout the soil column. The method was based on
the approach developed to compute the vertical velocity dis-
tribution in open channels by Chiu (1987).

Figure A1. Plot displaying the three possible cases of the soil mois-
ture profile.

The application of POME to develop a one-dimensional
SM profile requires two constraints: total probability,

20∫
2L

f (2)d2= 1, (A3)

and the mass balance constraint,

20∫
2L

2f (2)d2=2. (A4)

Here2 is the effective saturation and2 is the mean mois-
ture of the soil column, whereas 20 and 2L are the upper
(surface) and lower (bottom) effective saturation. The effec-
tive SM is given as (θ − θwp)/(θfc− θwp). The second con-
straint serves to connect the first moment in probability space
to the mean water content of the soil column in physical
space. The Shannon entropy is given by Shannon (1948):

I =−

∞∫
0

f (x) ln(f (x))dx (A5)

Maximizing I in Eq. (A5) for the uniform pdf subject to
the constraints, Chiu (1987) developed the one-dimensional
profile of a variable decreasing monotonically from the sur-
face down using the method of Lagrange multipliers. Al-
Hamdan and Cruise (2010) applied the same technique to
develop vertical SM profiles either increasing or decreasing
with depth from the surface:

2(z)=
ln
[
exp(λ220)± exp(1− λ1)

(
z
L

)]
λ2

. (A6)
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The Lagrange multipliers (λ) can be determined from ap-
plication of the constraints and boundary conditions (surface
effective saturation, 20) and mean effective saturation value
of the soil column 2, z is calculation depth, and L is total
depth of the column. Equation (A6) is a monotonically in-
creasing (+ sign) or decreasing (− sign) function, represent-
ing dry (increasing from the top boundary) and wet (increas-
ing from the bottom boundary) case profiles (Fig. A1). The
dynamic case can be handled by dividing the profiles into
multiple monotonic profiles and running the wet or dry case
models for each of those profiles separately while keeping
the mass balance.

Appendix B: Soil water characteristics

The soil water characteristics used in this study to map ef-
fective to volumetric SM and vice versa is obtained from the
values reported by Rawls et al. (1982) in their study. Table B1
summarizes the properties used for each soil type.

Table B1. The soil water characteristic values used in this study based on the earlier study by Rawls et al. (1982).

Soil type Residual Wilting point Field capacity Porosity
(m3 m−3) (m3 m−3) (m3 m−3) (m3 m−3)

Sand 0.020 0.033 0.091 0.437
Loamy sand 0.035 0.055 0.125 0.437
Sandy loam 0.041 0.095 0.207 0.453
Silt loam 0.015 0.133 0.330 0.501
Silt 0.020 0.110 0.370 0.481
Loam 0.027 0.117 0.270 0.463
Sandy clay loam 0.070 0.148 0.255 0.398
Silty clay loam 0.040 0.208 0.366 0.471
Clay loam 0.075 0.197 0.318 0.464
Sandy clay 0.109 0.239 0.339 0.430
Silty clay 0.056 0.250 0.387 0.479
Clay 0.090 0.272 0.396 0.475
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