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Abstract. The Upper Ganga River basin is socioeconomi-
cally the most important river basin in India and is highly
stressed in terms of water resources due to uncontrolled land
use and land cover (LULC) activities. This study presents
a comprehensive set of analyses to evaluate the popula-
tion growth, LULC transformations, and water quality nexus
for sustainable development in this river basin. The study
was conducted at two spatial scales: basin scale and dis-
trict scale. First, population data were analyzed statistically
to study demographic changes, followed by LULC change
detection over the period of February–March 2001 to 2012
(Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data)
using remote sensing and geographical information sys-
tem (GIS) techniques. Trends and spatiotemporal variations
in monthly water quality parameters, viz. biological oxygen
demand (BOD), dissolved oxygen (DO, measured in per-
centage), fluoride (F), hardness (CaCO3), pH, total coliform
bacteria and turbidity, were studied using the Mann–Kendall
rank test and an overall index of pollution (OIP) developed
specifically for this region, respectively. A relationship was
deciphered between LULC classes and OIP using multivari-
ate techniques, viz. Pearson’s correlation and multiple linear
regression. From the results, it was observed that population
has increased in the river basin. Therefore, significant and
characteristic LULC changes were observed. The river be-
came polluted in both rural and urban areas. In rural areas,
pollution is due to agricultural practices, mainly fertilizers,
whereas in urban areas it is mainly contributed from domes-
tic and industrial wastes. Water quality degradation has oc-
curred in the river basin, and consequently the health status

of the river has also changed from acceptable to slightly pol-
luted in urban areas. Multiple linear regression models devel-
oped for the Upper Ganga River basin could successfully pre-
dict status of the water quality, i.e., OIP, using LULC classes.

1 Introduction

Water quality is defined in terms of chemical, physical
and biological (bacteriological) characteristics of the water.
These characteristics may vary for different regions based
on their topography, land use and land cover (LULC), and
climatic factors. Demographic changes, anthropogenic ac-
tivities and urbanization are potential drivers affecting the
quantity and quality of available water resources on local,
regional and global scales. They pose a threat to the quan-
tity and quality of water resources, directly by increased an-
thropogenic water demands and water pollution. Indirectly,
the water resources are affected by LULC changes and as-
sociated changes in water use patterns (Yu et al., 2016). In a
region, urbanization occurs due to natural population growth
and migration of people from rural to urban areas due to eco-
nomic hardship (Bjorklund et al., 2011; Shukla and Gedam,
2018). It may change natural landscape characteristics and
river morphometry and increase pollutant load in water bod-
ies. Anthropogenic activities are directly correlated with de-
cline in the water quality (Haldar et al., 2014). In order to in-
crease crop yield, farmers introduce various chemicals in the
form of fertilizers, pesticides, herbicides, etc., causing addi-
tion of pollutants to the river (Rashid and Romshoo, 2013;
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Yang et al., 2013). In urban areas, pollutants are introduced
from leachates of landfill sites, stormwater runoff and direct
dumping of waste (Tsihrintzis and Hamid, 1997). LULC and
water quality indicator parameters are often used in water
quality assessment studies (Kocer and Sevgili, 2014; Liu et
al., 2016; Sanchez et al., 2007; Tu, 2011).

LULC changes may alter the chemical, physical and bio-
logical properties of a river system, e.g., biological oxygen
demand (BOD), temperature, pH, chloride (Cl), color, dis-
solved oxygen (DO), hardness (measured by CaCO3), tur-
bidity, total dissolved solids (TDSs). (Ballestar et al., 2003;
Chalmers et al., 2007; Smith et al., 1999). Several studies
have been carried out across the world to understand this
phenomenon. Hong et al. (2016) studied the effects of LULC
changes on the water quality of a typical inland lake of an
arid region in China. The study concluded that water pol-
lution is positively correlated to agricultural land and ur-
ban areas, whereas it is negatively correlated to water and
grassland. Li et al. (2012) studied effects of LULC changes
on the water quality of the Liao River basin, China. In this
river basin, upstream water quality was found to be better
than downstream due to less influence from LULC changes
in the region. Similarly, the impact of LULC changes was
studied on Likangala catchment, southern Malawi. Even
though the water quality remained in an acceptable class,
downstream the river was found to be polluted, with an in-
crease in the abundance of E.Coli, cations and anions (Pul-
lanikkatil et al., 2015). The composition and distribution of
benthic macroinvertebrate assemblage were studied in the
Upper Mthatha River, Eastern Cape, South Africa (Niba and
Mafereka, 2015). Results revealed that the distribution of the
benthic macroinvertebrate assemblage is affected by season,
substrate and habitat heterogeneity. LULC changes induce
changes in the river water, which affects their species distri-
bution.

Water quality changes in the Ganga river, at various lo-
cations in Allahabad, were studied during the postmon-
soon season by Sharma et al. (2014) using a water qual-
ity index (WQI) and statistical methods. Considerable wa-
ter quality deterioration was observed at various locations
due to the vicinity of the river to the highly urbanized
city of Allahabad. A combination of water quality indices,
viz. the Canadian WQI by Canadian Council of Ministers
of the Environment (CCME-WQI), Oregon Water Quality
Index (OWQI) and National Sanitation Foundation Water
Quality Index (NSF-WQI), were used to analyze the pollu-
tion of Sapanca Lake Basin (Turkey), and a good relationship
was observed between the indices and parameters. Eutroph-
ication was identified as a major threat to Sapanca Lake and
its stream system (Akkoyunlu and Akiner, 2012). A river has
the capability to reduce its pollutant load, also known as self-
purification (Hoseinzadeh et al., 2014). In extreme situations,
degradation of the river ecosystem caused by anthropogenic
factors can be irreversible. Hence, it is crucial to understand
the effects of demographic changes and LULC transforma-

tions on water quality for pollution control and sustainable
water resources development in a river basin (Milovanovic,
2007; Teodosiu et al., 2013).

Ganga River is extremely significant to its inhabitants as
it supports various important services, such as the follow-
ing: (i) being a source of irrigation for farmers in agriculture
and horticulture, (ii) providing water for domestic and indus-
trial purposes in urban areas, (iii) being a source of hydro-
power, (iv) serving as a drainage system for waste and help-
ing in pollution control, (v) acting as a support system for
terrestrial and aquatic ecosystems, (vi) providing religious
and cultural services, (vii) helping in navigation, (viii) sup-
porting fisheries and other livelihood options, etc. (Amaras-
inghe et al., 2016; SoE report, 2012; Watershed Atlas of
India, 2014). However, for the past few decades the Upper
Ganga River basin (UGRB) has experienced rapid growth in
population, urbanization, industrialization, infrastructure de-
velopment activities and agriculture. Due to these changes,
maintaining the acceptable water quality for various uses is
being challenged. Therefore, there is a need for a compre-
hensive study to understand the causative connection (nexus)
between the changing patterns of population, LULC and wa-
ter quality in this river basin.

Remote sensing and GIS are efficient aids in preparing
and analyzing spatial datasets such as satellite data, digital
elevation models (DEMs), etc. Remote sensing technology
is used in preparing LULC maps of a region, whereas GIS
helps in the delineation of river basin boundaries, extraction
of the study area, hydrological modeling, spatiotemporal data
analysis, etc. (Kindu et al., 2015; Kumar and Jhariya, 2015;
Wilson, 2015). The selection of an appropriate method for a
study is based on the objectives and availability of the data
and tools required for the study. Ban et al. (2014) observed
that water quality monitoring programs monitor and pro-
duce large and complex water quality datasets. Water quality
trends vary both spatially and temporally, causing difficulty
in establishing a relationship between water quality parame-
ters and LULC changes (Phung et al., 2015; Russell, 2015).
Assessment of surface water quality of a river basin can be
carried out using various water quality and pollution indices
based on environmental standards (Rai et al., 2011). These
indices are the simplest and fastest indicators to evaluate the
status of water quality in a river (Hoseinzadeh et al., 2014).
Demographic growth, LULC changes and their effects on
water quality in a region are very site specific. Hence, dif-
ferent regions and countries have developed their own water
quality and pollution indices for different types of water uses
based on their respective water quality standards and permis-
sible pollution limits (Abbasi and Abbasi, 2012; Rangeti et
al., 2015).

There are various water quality indices available world-
wide that can be used for water quality assessment, e.g., the
composite water quality identification index (CWQII) (Ban
et al., 2014); river pollution index (RPI), forestry water
quality index (FWQI) and NSF-WQI (Hoseinzadeh et al.,

Hydrol. Earth Syst. Sci., 22, 4745–4770, 2018 www.hydrol-earth-syst-sci.net/22/4745/2018/



A. K. Shukla et al.: Population growth, land use and land cover transformations, and water quality nexus 4747

2014), Canadian water quality index (CWQI) (Farzadkia et
al., 2015), comprehensive water pollution index of China (Li
et al., 2015), Prati’s implicit index of pollution (Prati et al.,
1971), Horton’s index, Nemerow and Sumitomo pollution
index, Bhargava’s index, Dinius second index, Smith’s in-
dex, Aquatic toxicity index, Chesapeake Bay water qual-
ity indices, modified Oregon WQI, Li’s regional water re-
source quality assessment index, Stoner’s index, two-tier
WQI, CCME-WQI, DELPHI water quality index, universal
WQI, overall index of pollution (OIP) and coastal WQI for
Taiwan (Abbasi and Abbasi, 2012; Rai et al., 2011). Cur-
rently, there is not a sufficient amount of literature available
on comparisons between all the abovementioned water qual-
ity indices based on clusters, differences, validity, etc. How-
ever, in a study by Sinha and Das (2015), a comparison was
made between CCME and DELPHI water quality indices
based on multivariate statistical techniques, viz. coefficient
of determination (R2), root mean square error (RMSE), and
absolute average deviation. Results revealed that the DEL-
PHI method had higher predictive capability than the CCME
method. There is no universally accepted method for the de-
velopment of water quality indices. Therefore, there is no es-
tablished method by which 100 % objectivity or accuracy can
be achieved without any uncertainties. There is continuing
interest across the world to develop accurate water quality
indices that suit best for a local or regional area. Each water
quality index has its own merits and demerits (Sutadian et al.,
2016; Tyagi et al., 2013).

Water quality management and planning in a river basin
requires an understanding of the cumulative pollution ef-
fect of all the water quality indicator parameters under con-
sideration. This helps in assessing the overall water qual-
ity/pollution status of the river in a given space and time,
in a specific region. In this study, a WQI called the overall
index of pollution was developed specifically for Indian con-
ditions by Sargoankar and Deshpande (2003) and is used to
assess the health status of surface waters across the Upper
Ganga River basin. A number of studies have successfully
used OIP to assess the surface water quality of various In-
dian rivers. The concentration ranges used in the class indices
and individual parameter indices (IPIs) assists in evaluating
the changes in individual water quality parameters, whereas
OIP assesses the overall water quality status of Indian rivers.
This index helped to identify the parameters that are affected
due to pollution from various sources. It is immensely help-
ful in studying the spatial and temporal variations in the sur-
face water quality of both rural and urban subbasins due to
the influence of demographic and LULC changes. The self-
cleaning capacity of the river system investigated using OIP
adds to the understanding of the resilience capacity of the
river system against the changes occurring in water quality
due to anthropogenic activities. OIP has been used success-
fully to study the surface water quality status of the two most
important and highly polluted rivers of the tropical Indian re-
gion, viz. Ganga and Yamuna. It is also used for water quality

assessment of comparatively smaller river, like the Chambal
River and Sukhna lake of Chandigarh (Chardhry et al., 2013;
Katyal et al., 2012; Shukla et al., 2017; Sargaonkar and Desh-
pande, 2003; Yadav et al., 2014). Therefore, OIP is used in
the present study as an effective tool to communicate the wa-
ter quality information. In the recent years, combinations of
multivariate statistical techniques, e.g., Pearson’s correlation,
regression analyses, have been used successfully to study the
links between LULC changes and water quality (Attua et al.,
2014; Gyamfi et al., 2016; Hellar-Kihampa et al., 2013).

The main objective of this study is to understand the
causative connection (nexus) between the changing patterns
of population growth, LULC transformations, and water
quality of water-stressed Upper Ganga River basin through
a comprehensive set of analyses. The present study is con-
ducted at two different spatial scales, (a) at complete river
basin level (small scale) and (b) at district level (large scale),
to evaluate the changes at both regional and local scales.
The effect of different seasons, viz. premonsoon, monsoon
and postmonsoon, on the water quality is also examined.
A relationship is developed between LULC and OIP using
Pearson’s correlation and multiple linear regression. Find-
ings from this research work may help engineers, planners,
policy makers and different stakeholders for sustainable de-
velopment in the Upper Ganga River basin.

2 Study area

The Upper Ganga River basin is experiencing rapid rate
of change in LULC and irrigation practices. A part of the
UGRB is selected as the study area (Fig. 1). It is located
partly in Uttarakhand, Uttar Pradesh, Bihar and Himanchal
Pradesh states of India and covers a total drainage area of
238 348 km2. The geographical extent of the river basin is be-
tween 24◦32′16′′ N, 76◦53′33′′ to 31◦57′48′′ N, 85◦18′25′′ E.
The altitude ranges from 7500 m in the Himalayan region
to 100 m in the lower Gangetic plains. Some mountain
peaks in the headwater reaches are permanently covered
with snow. Annual average rainfall in the UGRB is in the
range of 550–2500 mm (Bharati and Jayakody, 2010). Ma-
jor rivers contributing to this river basin include the Bhagi-
rathi, Alaknanda, Yamuna, Dhauliganga, Pindar, Mandakini,
Nandakini, Ramganga, and Tamsa (Tons) rivers. Tehri Dam,
constructed on Bhagirathi River, is one of a number of im-
portant multipurpose hydropower projects, along with sev-
eral other smaller hydropower projects of low capacity. This
region is comprised of major cities and towns such as Al-
lahabad, Kanpur, Varanasi, Dehradun, Rishikesh, Haridwar,
Moradabad, Bareilly Bijnor, Garhmukteshwar, Narora, Far-
rukhabad, Badaun, Chandausi, Amroha, Kannauj, Unnao,
Fatehpur, and Mirzapur. Most predominant soil groups found
in this region are alluvial, sand, loam, clay and their combi-
nations. Due to favorable agricultural conditions majority of
the population practices agriculture and horticulture. How-
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ever, a large portion of the total population lives in cities lo-
cated mainly along Ganga River. Most of them work in urban
or industrial areas.

3 Data acquisition

In this study, two types of dataset were used, which are listed
below:

i. Spatial dataset. This was comprised of (a) a Shut-
tle Radar Topography Mission (SRTM) 1 arcsec global
DEM of 30 m spatial resolution; (b) Landsat 7 Enhanced
Thematic Mapper Plus (ETM+) images, 23 in total, for
the month of February–March in 2001 and 2012, with
30 m spatial resolution (both the SRTM DEM and time
series Landsat dataset were collected from the United
States Geological Survey, USGS, 2016c); (c) Survey
of India toposheets (topographical maps) of 1 : 50 000
scale from Survey of India (SoI), Government of In-
dia (GoI); (d) published LULC, water bodies, urban
land use and wasteland maps from Bhuvan Portal, In-
dian Space Research Organization (ISRO), GoI (Bhu-
van, 2016) (SoI toposheets and published maps were
used as reference to improve the LULC classification
results); and (e) ground control points (GCPs) were col-
lected using Global Positioning System (GPS) during
the field visit and Google Earth (for ground truthing of
prepared LULC maps).

ii. Nonspatial dataset. This was acquired from various de-
partments of GoI: (a) census records and related reports
of the years 2001 and 2011 from Census of India (Cen-
sus of India, 2011); (b) reports on LULC statistics from
Bhuvan Portal, ISRO, GoI; (c) monthly water qual-
ity dataset (BOD, DO, fluoride (F), hardness (CaCO3),
pH, total coliform bacteria and turbidity) of the year
2001–2012 from Central Water Commission (CWC);
and (d) water quality reports from the Central Pollution
Control Board (CPCB), Uttar Pradesh Pollution Control
Board (UPPCB), CWC and National Remote Sensing
Centre (NRSC), ISRO, GoI.

4 Data preparation and methodology

4.1 Delineation of the river basin

This section discusses the data preparation and step-by-step
methodology carried out in this study. A flowchart of the
methodology is illustrated in Fig. 2. First, a field recon-
naissance survey was conducted in the Upper Ganga River
basin, India, to understand the study area. The global SRTM
DEM (30 m spatial resolution) was preprocessed by filling
sinks in the dataset using ArcGIS 10.1 geoprocessing tools.
Further, Upper Ganga River basin boundary was delineated

following a series of steps using ArcHydro tools. The follow-
ing base layers were manually digitized for the study area,
viz. stream network, railway lines, road network, major reser-
voirs, canals and settlements, using SoI topographic maps
and updated further with recent available Landsat ETM+
dataset of the year 2012.

4.2 Population analysis

Census of India, GoI, provided village-scale population data
for rural areas and ward- and city-scale population data for
urban areas for the years 2001 and 2011. Village- and ward-
scale population data of 77 districts, falling into Upper Ganga
River basin were identified and organized into rural and
urban population. Total population and population growth
rate (PGR) were statistically estimated for 77 individual dis-
tricts and for the complete study area over the years 2001
and 2011. Population growth rates were also estimated for
rural and urban populations. In addition, the total popula-
tion and population growth rates were estimated for upper
and lower reaches of the study area. These comprehensive
analyses were done to understand the demographic changes
occurring in the study region.

4.3 LULC mapping and change detection

For LULC mapping and change analysis, preprocessing of
the time series satellite dataset is required (Lu and Weng,
2007). The Landsat 7 ETM+ dataset of the years 2001 and
2012 were downloaded from the USGS website. Each year
consisted of 23 images of the months of February–March.
Images of same months were used to reduce errors in LULC
change detection due to different seasons. Due to failure in
the scan line corrector (SLC) of the Landsat 7 satellite, the
images of the year 2012 had scan line errors, which resulted
in a 22 % data gap in each scene. However, despite only have
78 % of data available per scene, it is one of the most ra-
diometrically and geometrically accurate satellite datasets in
the world and therefore it is still very useful for various stud-
ies (USGS, 2018). For heterogeneous regions, using a Neigh-
bourhood Similar Pixel Interpolator (NSPI) is the simplest
and most effective method to interpolate the pixel values
within the gaps with high accuracy (Chen et al., 2011; Gao
et al., 2016; Liu and Ding, 2017; Zhu et al., 2012; Zhu and
Liu, 2014). Therefore, to correct scan line errors, Interactive
Data Language (IDL) code for NSPI algorithm developed by
Chen et al. (2011) was run on ENVI version 5.1. This algo-
rithm filled the data gaps in the satellite images with high
accuracy, i.e., RMSE of 0.0367.

Further, satellite images were georeferenced to a com-
mon coordinate system, i.e., Universal Transverse Mercator
Zone 43N with World Geodetic System (WGS) 1984 data
for proper alignment of features in the study area. In total
75 control points were chosen from SoI toposheets of scale
1 : 50 000, which were used as a base map for georectifica-
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Figure 1. Location map of the study area in northern India and water quality monitoring stations across the Upper Ganga River basin.

tion. To make the two satellite images comparable, a good
radiometric consistency and proper geometric alignment are
required. But these are difficult to achieve due to differ-
ences in atmospheric conditions, satellite sensor character-
istics, phonological characteristics, solar angle, and sensor
observation angle on different images (Shukla et al., 2017).
A relative geometric correction (image-to-image coregistra-
tion) method was employed to maintain geometric consis-
tency of both the satellite images using polynomial geometric
model and nearest neighbor resampling methods. The recent
Landsat ETM+ image of 2012 was used as reference image
for co-registration and the image of 2001 was georectified
with respect to it. RMSE of less than 0.5 was used as crite-
ria for geometric corrections of the images to ensure good
accuracy (Gill et al., 2010; Samal and Gedam, 2015).

To reduce the radiometric errors and get the actual re-
flectance values, the Topographic and Atmospheric Correc-
tion for Airborne Imagery (ATCOR-2) algorithm available
in ERDAS Imagine 2016 was used. The SRTM DEM was
used to derive the characteristics, viz. slope, aspect, shadow
and skyview. This algorithm provided a very good accuracy
in removing haze, and in topographic and atmospheric cor-
rections of the images (Gebremicael et al., 2017; Muriithi,
2016). Finally, an image regression method was applied to
the images to normalize the variations in the pixel brightness
value due to multiple scenes taken on different dates.

The images were mosaicked and study area was extracted.
In total 2014 GCPs were collected from the GPS (dual fre-
quency receiver: SOKKIA: model no. S-10) survey during
the field visit and from Google Earth, with horizontal accu-
racy in the range of 2–5 m. 1365 GCPs were used to train
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Figure 2. Flowchart illustrating methodology and steps followed in the study.

the maximum likelihood classifier (MLC) and the remaining
649 points (collected from GPS) were later used for accu-
racy assessment. Out of 1365 GCPs, 830 were collected us-
ing GPS survey and the remaining 535 were collected from
Google Earth images. In the present study, to account for
spatial autocorrelation among different LULC features, be-
fore image classification an exploratory spectral analysis was
carried out using histograms of each band to understand the
spectral characteristics of the LULC features. The spatial au-
tocorrelation was analyzed using a semivariogram function,
which is measured by setting variance against variable dis-
tances (Brivio et al., 1993). The estimated semivariogram
was plotted to assess the spatial autocorrelation in respec-
tive bands in the satellite image. The range and shape (piece-
wise slope) of the semivariograms were examined visually
to determine the appropriate sizes for training data, the win-
dow size and the sampling interval for spatial feature extrac-
tion (Chen, 2004; Xiaodong et al., 2009).

A window size of 7×7 was chosen for sampling the train-
ing data, which gives the better classification results on Land-
sat ETM+ images (Wijaya et al., 2007). While developing
the spectral signatures for different LULC classes, informa-

tion acquired from band histograms and Euclidean distances
were used for class separability. SoI topographic maps and
Google Earth images, as well as published LULC, water
bodies, urban land use and wasteland maps of Bhuvan Por-
tal were used as reference to improve the LULC classifica-
tion results. Due to higher confusion between barren land
and urban areas at few places, urban areas were classified
independently by masking these on the image. Uncertain-
ties in misclassification between forest and agricultural land
were reduced by adding more training samples. This sig-
nificantly improved the classification accuracy (Gebremicael
et al., 2017). Hence, MLC of the supervised classification
approach was used to classify the time series images into
six LULC classes, viz. snow/glaciers, forests, built-up lands,
agricultural lands, water bodies and wasteland. LULC dis-
tribution was estimated for the years 2001 and 2012. Due
to lack of ground truth data of the year 2001, the accuracy
assessment was done for the LULC of the year 2012. Both
time series satellite dataset are from Landsat ETM+, with the
same spatial resolution of 30 m, and a large number of GCPs
are available for the year 2012. Hence, the LULC map of year
2012 would represent the overall accuracy of both maps. A
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simple random sampling of 649 test pixels belonging to cor-
responding image objects were selected and verified against
reference data.

In this sampling method, a selection of sample units was
made in such a way that every possible distinct sample got
an equal chance of selection. This sampling method provided
comparatively better results on the large image size follow-
ing the rule of thumb recommended by Congalton, i.e., a
minimum of 75–100 samples should be selected per LULC
category for large images (Congalton, 1991; Foody, 2002;
Gonçalves et al., 2007; Hashemian et al., 2004; Kiptala et
al., 2013; Samal and Gedam, 2015). Following Congalton’s
rule of thumb for better accuracy in simple random sam-
pling, GCPs were selected in the range of 94–137 for each
LULC class in proportion to their areal extent on the im-
age. Therefore, sufficient spatial distribution of the sampling
points was achieved for each LULC class. Accuracy assess-
ment results were presented in a confusion matrix showing
characteristic coefficients, viz. user’s accuracy, producer’s
accuracy, overall accuracy and Kappa coefficients. The con-
fusion matrix gave the ratio of number of correctly classi-
fied samples to the total number of samples in the refer-
ence data. The User’s accuracy (errors of commission) and
Producer’s accuracy (errors of omission) expressed the ac-
curacy of each LULC types, whereas the overall accuracy
estimated the overall mean of user accuracy and producer
accuracy (Campbell, 2007; Congalton, 1991; Jensen, 2005).
The Kappa coefficient denoted the agreement between two
datasets corrected for the expected agreement (Gebremicael
et al., 2017). Further, a postclassification change detection
method was employed for comparing the LULC maps of
2001 and 2012. This method provided comparatively, more
accurate results than image difference method (Samal and
Gedam, 2015). LULC distribution and change statistics be-
tween the years 2001 and 2012 were estimated for individual
districts and for the complete UGRB.

4.4 Water quality analysis

4.4.1 Selection of water quality monitoring stations

To understand the impact of LULC transformations on the
water quality of the UGRB, two water quality monitoring sta-
tions, viz. Uttarkashi and Rishikesh, were chosen in the upper
reaches of the river basin. This part of the river basin com-
prises of highly undulating terrain with moderately less an-
thropogenic influences. Moreover, three water quality mon-
itoring stations, viz. Ankinghat (Kanpur), Chhatnag (Alla-
habad) and Varanasi, were selected in the lower reaches
of the river basin. This part of the river basin falls under
Gangetic plains with extreme anthropogenic activities. Spa-
tiotemporal changes in the water quality of these monitoring
stations were examined over a period of the year 2001–2012
and the LULC–OIP relationship was studied using various

statistical analyses, viz. Mann–Kendall rank test, OIP, Pear-
son’s correlation and multiple linear regression.

4.4.2 Mann–Kendall test on monthly water quality
data

A nonparametric Mann–Kendall rank test (Mann, 1945;
Kendall, 1975) was performed on the seven monthly wa-
ter quality parameters, viz. BOD, DO, F, hardness (CaCO3),
pH, total coliform bacteria and turbidity, observed at the
five water quality monitoring stations, to understand the ex-
isting trends in the water quality parameters of the years
2001–2012. In this test, the null hypothesis H0 assumed that
there is no trend (data are independent and randomly or-
dered) and it was tested against the alternative hypothesis
H1, which assumes that there is a trend. The standard nor-
mal deviate (Z statistic) was computed following a series of
steps as given by Helsel and Hirsch (1992) and Shukla and
Gedam (2018). The positive value of Z test shows a rising
trend and a negative value indicates a falling trend in the wa-
ter quality data series. The significance of the Z test was ob-
served on confidence level of 90 %, 95 % and 99 %. The test
was performed on monthly water quality data of January to
December of the years 2001–2012. Standard deviation (SD)
was estimated separately for each month.

4.4.3 Estimation of OIP

For a selecting water quality index, the following criteria is
followed (Abbasi and Abbasi, 2012; Horton, 1965): (i) a lim-
ited number of variables should be handled by the index used
to avoid making the index unwieldy; (ii) the variables used
in the index should be significant in most areas; and (iii)
only reliable data variables for which the data are available
should be included. Hence, the seven most relevant water
quality parameters in Indian context i.e., BOD, DO, total co-
liform (TC), F, turbidity, pH and hardness (CaCO3) that are
affected due to changes in LULC are chosen. BOD, DO, and
TC are the parameters mainly affected by urban pollution.
F, turbidity and pH are general water quality parameters af-
fected by both natural and anthropogenic factors. However,
hardness (CaCO3) is a parameter affected mainly by agricul-
tural activities and urban pollution.

In the present study, an OIP developed by Sargaonkar
and Deshpande (2003) is used that is a general water qual-
ity classification scheme developed specifically for tropi-
cal Indian conditions where, in the proposed classes (C1:
excellent; C2: acceptable; C3: slightly polluted; C4: pol-
luted; and C5: heavily polluted water), the concentration lev-
els or ranges of the significant water quality indicator pa-
rameters are defined with due consideration to the Indian
water quality standards (Indian Standard Specification for
Drinking Water, IS-10500, 1983; Central Pollution Control
Board, Government of India, classification of inland sur-
face water, CPCB-ADSORBS/3/78-79). Wherever the water
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Table 1. Classification scheme of water quality used in OIP (source: Sargoankar and Deshpande, 2003).

Class
Classification Class index Concentration limit/ranges of water quality parameters

(score)

BOD DO F Hardness pH Total coliform Turbidity
(mg L−1) (%) (mg L−1) (CaCO3, mg L−1) (no unit) (MPN per 100 mL) (NTU)

Excellent C1 1 1.5 88–112 1.2 75 6.5–7.5 50 5
Acceptable C2 2 3 75–125 1.5 150 6.0–6.5 and 7.5–8.0 500 10
Slightly polluted C3 4 6 50–150 2.5 300 5.0–6.0 and 8.0–9.0 5000 100
Polluted C4 8 12 20–200 6.0 500 4.5–5 and 9–9.5 10 000 250
Heavily polluted C5 16 24 < 20 and > 200 < 6.0 > 500 < 4.5 and > 9.5 15 000 > 250

quality criteria were not defined, international water qual-
ity standards (Water quality standards of European Commu-
nity (EC); World Health Organization (WHO) guidelines;
standards by WQIHSR; and Tehran Water Quality Criteria
by McKee and Wolf, 1963) were used. It was observed that
different agencies use different indicator parameters, termi-
nologies and definitions for classification schemes and cri-
teria such as action level, acceptable level, guide level, and
maximum allowable concentration, etc. for different uses of
water. Hence, a common classification scheme was required
to be defined to understand the water quality status in terms
of pollution effects of the water quality parameters being
considered. Table 1 illustrates the OIP classification scheme
and the ranges of concentrations of the parameters under con-
sideration. The basis on which the concentration levels for
each of the parameters in the given classes are selected are
described below (Sargaonkar and Deshpande, 2003):

– Turbidity. According to the Indian Standards for Drink-
ing Water (IS-10500, 1983) and EC water quality stan-
dards, 10 NTU is the maximum desirable level or max-
imum admissible level for turbidity. Therefore, in the
OIP classification scheme this value is considered for
class C2 (acceptable) water quality. As per WQIHSR
standards and WHO Guidelines, 5 NTU is considered
to be maximum acceptable level; hence, it is consid-
ered in class C1 (excellent). A value of 10–250 NTU
is considered to be good water quality, and > 250 NTU
as poor water quality by the Wolf and McKee (1963)
water quality criteria. Therefore, accordingly the turbid-
ity is split into the following ranges: 10–100 for class
C3 (Slightly Polluted), 100–250 for class C4 (polluted)
and > 250 as class C5 (heavily polluted) water quality.

– BOD. For BOD, the classification given by Prati et
al. (1971) is used, which conforms with the CPCB wa-
ter quality standards, i.e., for class “A” water (drink-
ing water) BOD values should be 2 mg L−1, and for
class “B” water (outdoor bathing), BOD values should
be 3 mg L−1. According to EC water quality standards,
for freshwater fish water quality or recreational use the
guide level and maximum admissible level should be
3 and 6 mg L−1 respectively. And according to Mc-

Kee and Wolf (1963) water quality scheme, the BOD
of > 2.5 indicates poor water quality. Hence, in OIP
classification scheme, for classes C3 (slightly polluted),
C4 (polluted) and C5 (heavily polluted) water quality,
the higher concentration values are assigned in geomet-
ric progression.

– DO. The maximum DO at a given space and time is
the function of water temperature. It is highly variable
and specific to a location. The average tropical temper-
ature of India is 27 ◦C and 8 mg L−1 is the correspond-
ing average DO saturation concentration reported from
studies, which represents 100 % DO concentration and
applies to class C1. During daytime, in eutrophic water
bodies with high organic loading, very high DO concen-
tration is observed, which is an undesirable situation.
Therefore, in the OIP classification scheme for DO in a
particular class, the concentration ranges on both lower
and higher sides of the average DO level are considered.
The ranges of DO concentration defined are illustrated
in Table 1.

– F . As fluoride is a toxic element, the classification cri-
teria for it is more stringent. According to Indian stan-
dards for drinking water (IS 10500, 1983), the desirable
limit for fluoride is 0.6–1.2 mg L−1, which is consid-
ered to be under class C1 in OIP classification scheme.
According to EC standards for surface water (potable
abstraction) and action level in WHO Guidelines, the
mandatory limit for F is 1.5 mg L−1, which is consid-
ered the maximum level in class C2. A value of 1.5–
3.0 mg L−1 of F is considered to be good water quality
but the concentration > 3.0 mg L−1 indicates poor wa-
ter quality according to McKee and Wolf (1963) water
quality standards. Hence, for class C3 (slightly polluted)
water quality, the concentration value of 2.5 mg L−1

is used. The F concentration > 1.5 mg L−1 is bad for
human health as it can result in tooth decay and fur-
ther higher levels can cause bone damage through flu-
orosis. Therefore, concentration values of 6.0 and >
6.0 mg L−1 are used for classes C4 and C5 respectively.
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– Hardness (CaCO3). As per Indian standards for drink-
ing water, the desirable limit (maximum) for hard-
ness is 300 mg L−1, whereas the concentration value
of 500 mg L−1 is indicated as action level according
to WHO Guidelines. Hence, accordingly the ranges
of hardness were taken as follows: class C1 as 0–
75 mg L−1, class C2 as 75–150 mg L−1, class C3 as
150–300 mg L−1, class C4 as 300–500 mg L−1 and >
500 mg L−1 in class C5.

– pH. According to CPCB, ADSORBS/3/78-79, a pH
range of 6.5 to 8.5 is considered for classes A (drink-
ing water), B (outdoor bathing) and D (propagation of
wild life, fisheries, recreation and aesthetic). The EC
standard guide limit for surface waters (potable abstrac-
tions) is 5.5–9.0. Hence, based on these the concentra-
tion level of pH in the OIP classification scheme is de-
fined for classes C1–C5, as given in Table 1.

– Total coliform. In the given OIP scheme, for class
C1, C2 and C3 the Coliform bacteria count of 50,
500 and 5000 MPN per 100 mL respectively, as spec-
ified in the CPCB classification of inland surface wa-
ter is considered. Coliform count ranges of 50–100,
100–5000 and > 5000 are considered to be excellent,
good and poor water quality respectively by McKee and
Wolf (1963) water quality criteria. EC bathing water
standards consider a count of 10 000 MPN per 100 mL
as the maximum admissible level; therefore, the con-
centration range 5000–10 000 is assigned to class C4,
which indicates polluted water quality and makes the
criteria more stringent. The count of > 10000 indicates
heavily polluted water and therefore, it was assigned to
class C5.

After the concentration levels and ranges were assigned to
each parameter in the given classes, the information on water
quality data was transformed in discrete terms. Different wa-
ter quality parameters are measured in different units. There-
fore, in order to bring the different water quality parameters
into a commensurate unit so that the integrated index can be
obtained to be used for decision making, an integer value of
1, 2, 4, 8 or 16 (also known as class index score, as given
in Table 1) was assigned to each class i.e., C1, C2, C3, C4
and C5 respectively in geometric progression. The number
termed as class index indicated the pollution level of water
in numeric terms and it formed the basis for comparing wa-
ter quality from excellent to heavily polluted (Table 1). For
each of the parameter concentration levels, the mathematical
expressions were fitted to obtain this numerical value called
an index Pi or IPI, which indicates the level of pollution for
that particular parameter. Table 2 illustrates these mathemat-
ical equations. The value function curves, wherein, on the
Y -axis the concentration of the parameter is taken and on the
X-axis index value is plotted for each parameter. The figures

of value function curves for important water quality parame-
ters used in the OIP scheme can be obtained from Sargaonkar
and Deshpande (2003). The value function curves provide
the pollution index Pi or IPI for individual pollutants. For any
particular given concentration, the corresponding index can
be read directly from these curves or can be estimated using
mathematical equations given for the value function curves,
as illustrated in Table 2. Hence, IPIs were calculated for each
parameter at a given time interval. Finally, the OIP is calcu-
lated as the mean of Pi or IPIs of all the seven water quality
parameters considered in the study and mathematically it is
given by expression (1):

OIP=
6iPi

n
, (1)

where Pi is the pollution index for the ith parameter, i = 1,
2, . . . , n and n denotes the number of parameters. Finally,
OIP was estimated for each water quality monitoring station
across the UGRB over a period of 2001 to 2012. It gave the
cumulative pollution effect of all the water quality param-
eters on the water quality status of a particular monitoring
station at a given time. For each water quality monitoring
station of the UGRB, the OIP was estimated for three pri-
mary seasons, i.e., premonsoon, monsoon and postmonsoon
seasons. The interpretation of IPI values for individual pa-
rameter index or OIP values to determine the overall pollu-
tion status is carried as follows: the index value of 0–1 (class
C1) indicates excellent water quality, 1–2 (class C2) indi-
cates acceptable, 2–4 (class C3) indicates slightly polluted,
4–8 (class C4) indicates polluted and 8–16 (class C5) indi-
cates heavily polluted water. The upper limit of the range is
to be included in that particular class. In case some additional
relevant water quality parameters are required to be consid-
ered, an updated OIP can be developed using methodology
given by Sargaonkar and Deshpande (2003). The mathemat-
ical value function curves can be plotted for the new param-
eters to get the mathematical equations, which will help to
calculate IPIs. As OIP uses an additive aggregation method,
the average of the IPIs of all the parameters will estimate up-
dated OIP.

4.5 Statistical analysis

Due to religious, economic and historical importance of
River Ganga, the most important cities and districts of the
UGRB are in close proximity to the River Ganga. The water
quality of selected monitoring stations is highly influenced
by type of activity occurring in the district where they are
located. In a study, buffer zones of different thresholds were
created surrounding a water quality monitoring station to de-
termine the dominant LULC class that affects the water qual-
ity of that particular station (Kibena et al., 2014). However,
in the UGRB the population data were available at district
level not at buffer level. Districts selected in this study con-
sisted of both urban and rural areas. District-scale LULC
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Table 2. Mathematical expressions for value function curves (source: Sargoankar and Deshpande, 2003).

Serial no. Parameter Concentration
range

Mathematical expressions

1 BOD < 2
2–30

x = 1
x = y/1.5

2 DO ≤ 50
50–100
≥ 100

x = exp(−(y−98.33)/36.067)
x = (y− 107.58)/14.667
x = (y− 79.543)/19.054)

3 F 0–1.2
1.2–10

x = 1
x = ((y/1.2)−0.3819)/0.5083

4 Hardness (CaCO3) ≤ 75
75–500
> 500

x = 1
x = exp (y+ 42.5)/205.58
x = (y+ 500)/125

5 pH 7 > 7
< 7

x = 1
x = exp((y− 7.0)/1.082)
x = exp ((7− y)/1.082)

6 Total coliform ≤ 50
50–5000
5000–15 000
> 15000

x = 1
x = (y/50)× 0.3010
x = ((y/50)− 50)/16.071
x = (y/15000)+ 16

7 Turbidity ≤ 10
10–500

x = 1
x = (y+ 43.9)/34.5

change was extremely helpful in comprehending the water
quality changes at the local scale and to identify the source of
pollutants at a particular monitoring station, whereas LULC
changes at the basin level provided a broad outlook on the
status of water quality of the complete study area, which is
also very useful for some applications. Though the spatial
and mapped data could be more useful and relevant when
compared with remote sensing data, the monitoring stations
in the UGRB were scarce. Therefore, over a relatively large
study area, the interpolation maps generated using OIP were
not likely to provide very good comparison results with
LULC changes. Hence, districts were chosen as a unit and
district-scale population and LULC distribution were related
to water quality (OIP) of the monitoring stations to compre-
hend the nexus between them.

Various methods and models are already developed to
study effects of LULC changes on water quality. However,
these methods could not be applied directly to a region be-
cause of the differences in the data availability, climatic, to-
pographic and LULC variations that may introduce errors.
Necessary modifications were made in the present evalua-
tion methodology as required. Due to the unavailability of the
continuous data on population, satellite-based LULC and wa-
ter quality at desired interval in the UGRB, establishing the
interrelationship between these factors is not trivial. There-
fore, to develop the relationship between LULC classes and
water quality (OIP), a two-time-slice analysis was done for
the years 2001 and 2012, with a seasonal component. Mul-
tivariate statistical analyses, viz. Pearson’s correlation and
multiple linear regression, were employed between LULC

classes (independent variable) and OIP (dependent variable).
Pearson’s Correlation determined strength of association be-
tween the variables, whereas the prediction regression model
was developed using multiple linear regression.

5 Results and discussion

Section 5.1 presents the results of population changes in the
districts of the UGRB and the complete study area. Sec-
tion 5.2 presents the accuracy assessment results of LULC
map, followed by Sect. 5.3, where the LULC distribution
across the study area is discussed both at basin scale and
at district scale. Section 5.4 presents the trend analysis re-
sults of monthly water quality data. In Sect. 5.5 the popula-
tion growth, LULC transformation and water quality nexus
has been described for the whole UGRB, whereas Sect. 5.6
presents it for the five districts separately. Finally, Sect. 5.7
describes the relationship between LULC and water qual-
ity (OIP).

5.1 Population dynamics

Analysis of the population dataset of the years 2001 and
2011 acquired from Census of India, GoI, reveals that in
the UGRB, out of the 77 districts that fall in four differ-
ent states, viz. Uttar Pradesh, Uttarakhand, Bihar and Hi-
manchal Pradesh, total population and PGR has increased
in 74 districts. With the majority of the districts showing
a population increase, the total population of the UGRB
has consequently increased (Table 3). The PGR of 20.45 %
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Table 3. Table showing total population and population growth rate (PGR) in percentage in the census years 2001 and 2011.

Serial no. Districts Total population Total population Population growth rate
(2001) (2011) (PGR) %

1 Agra 3 620 436 4 418 797 22.1
2 Aligarh 2 992 286 3 673 889 22.8
3 Allahabad 4 936 105 5 954 391 20.6
4 Almora 630 567 622 506 −1.3
5 Ambedkar Nagar 2 026 876 2 397 888 18.3
6 Azamgarh 3 939 916 4 613 913 17.1
7 Bageshwar 249 462 259 898 4.2
8 Baghpat 1 163 991 1 303 048 11.9
9 Bahraich 2 381 072 3 487 731 46.5
10 Ballia 2 761 620 3 239 774 17.3
11 Balrampur 1 682 350 2 148 665 27.7
12 Barabanki 2 673 581 3 260 699 22.0
13 Bareilly 3 618 589 4 448 359 22.9
14 Basti 2 084 814 2 461 056 18.0
15 Bhojpur 2 243 144 2 728 407 21.6
16 Bijnor 3 131 619 3 682 713 17.6
17 Budaun 3 069 426 3 681 896 20.0
18 Bulandshahar 2 913 122 3 499 171 20.1
19 Buxar 1 402 396 1 706 352 21.7
20 Chamoli 370 359 391 605 5.7
21 Champawat 224 542 259 648 15.6
22 Dehradun 1 282 143 1 696 694 32.3
23 Deoria 2 712 650 3 100 946 14.3
24 Etah 1 561 705 1 774 480 13.6
25 Faizabad 2 088 928 2 470 996 18.3
26 Farrukhabad 1 570 408 1 885 204 20.0
27 Fatehpur 2 308 384 2 632 733 14.1
28 Firozabad 2 052 958 2 498 156 21.7
29 Gautam Buddha Nagar 1 202 030 1 648 115 37.1
30 Ghaziabad 3 290 586 4 681 645 42.3
31 Ghazipur 3 037 582 3 620 268 19.2
32 Gonda 2 765 586 3 433 919 24.2
33 Gopalganj 2 152 638 2 562 012 19.0
34 Gorakhpur 3 769 456 4 440 895 17.8
35 Hardoi 3 398 306 4 092 845 20.4
36 Haridwar 1 447 187 1 890 422 30.6
37 Hathras 1 336 031 1 564 708 17.1
38 Jaunpur 3 911 679 4 494 204 14.9
39 Jyotiba Phule Nagar 1 499 068 1 840 221 22.8
40 Kannauj 1 388 923 1 656 616 19.3
41 Kanpur Dehat 1 563 336 1 796 184 14.9
42 Kanpur Nagar 4 167 999 4 581 268 9.9
43 Kaushambi 1 293 154 1 599 596 23.7
44 Kheri 3 207 232 4 021 243 25.4
45 Kinnaur 78 334 84 121 7.4
46 Kushinagar 2 893 196 3 564 544 23.2
47 Lucknow 3 647 834 4 589 838 25.8
48 Maharajganj 2 173 878 2 684 703 23.5
49 Mainpuri 1 596 718 1 868 529 17.0
50 Mau 1 853 997 2 205 968 19.0
51 Meerut 2 997 361 3 443 689 14.9
52 Mirzapur 2 116 042 2 496 970 18.0
53 Moradabad 3 810 983 4 772 006 25.2
54 Muzaffarnagar 3 543 362 4 143 512 16.9
55 Nainital 762 909 954 605 25.1
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Table 3. Continued.

Serial no. Districts Total population Total population Population growth rate
(2001) (2011) (PGR) %

56 Patna 4 718 592 5 838 465 23.7
57 Pauri Garhwal 697 078 687 271 −1.4
58 Pilibhit 1 645 183 2 031 007 23.5
59 Pithoragarh 462 289 483 439 4.6
60 Pratapgarh 2 731 174 3 209 141 17.5
61 Rae Bareli 2 872 335 3 405 559 18.6
62 Rampur 1 923 739 2 335 819 21.4
63 Rudraprayag 227 439 242 285 6.5
64 Sant Kabir Nagar 1 420 226 1 715 183 20.8
65 Sant Ravidas Nagar 1 353 705 1 578 213 16.6
66 Saran 3 248 701 3 951 862 21.6
67 Shahjahanpur 2 547 855 3 006 538 18.0
68 Shravasti 1 176 391 1 117 361 −5.0
69 Siddharthnagar 2 040 085 2 559 297 25.5
70 Sitapur 3 619 661 4 483 992 23.9
71 Siwan 2 714 349 3 330 464 22.7
72 Sultanpur 3 214 832 3 797 117 18.1
73 Tehri Garhwal 604 747 618 931 2.3
74 Udhamsingh Nagar 1 235 614 1 648 902 33.4
75 Unnao 2 700 324 3 108 367 15.1
76 Uttarkashi 295 013 330 086 11.9
77 Varanasi 3 138 671 3 676 841 17.1

Total Upper Ganga River basin 171 186 859 206 188 401 20.45

is observed in the total population of the UGRB from
2001 to 2011. Table 3 illustrates that the PGR is ≥ 20 %
in the districts with bigger urban agglomerations or cities,
e.g., Agra, Allahabad, Bahraich, Ghaziabad, Lucknow, Kan-
pur (Dehat+Nagar), Varanasi, Patna. However, Almora,
Pauri Garhwal and Shravasti are showing decreasing PGR.
It is to be observed that these are either hilly or very small
towns with poor employment opportunities. People migrate
from these locations to nearby cities, thereby decreasing the
PGR. It was noticed from Census of India reports that the
population density of Dehradun (Rishikesh), Kanpur, Alla-
habad and Varanasi districts are much higher against the
average population density of the Ganga River basin, i.e.,
520 km−2. Varanasi is one of the most populated districts in
the country.

Ganga River basin is the most sacred as well as populated
river basins in India that is endowed with varying topogra-
phy, climate and mineral-rich alluvial soils in the Gangetic
Plains area. Due to high soil fertility in the region, 60 % of
the population practice agricultural activities, especially in
the Gangetic Plains or lower reaches of the UGRB. This ac-
counts for the high rural population in the region. Due to
hilly terrain in the upper reaches of the basin, the popula-
tion is lower compared to the lower reaches of the basin. Due
to its religious and economic significance, a large number of
densely populated cities and towns are located on the banks

of the river mainly in the Gangetic Plain region. These cities
have large growing populations and an expanding industrial
sector (NRSC, 2014).

Growth rates for urban and rural areas of upper and lower
reaches of the UGRB were calculated from official statis-
tics (Fig. 3). It brings forth the clear picture of a compar-
atively high rise in the rural population of lower reaches.
Urban population has also increased along with rural pop-
ulation in the lower reaches (Fig. 3a). Both rural and urban
population have increased in upper reaches but the growth
is relatively slower than lower reaches. However, PGR is
higher in urban areas of both reaches between 2001 and
2011, which indicates urbanization of the region (Fig. 3b).
After Dehradun city was declared capital of the Uttarakhand
state in the year 2000 and due to subsequent industrialization
in the region, the PGR of the upper reaches has increased.
Hence, population rise in the UGRB is due to natural popu-
lation growth and migration of the people from remote and
rural areas to urban areas.

5.2 Accuracy assessment of LULC map

Postaccuracy assessment, the cross-tabulation (confusion
matrix) of the mapped LULC classes against that observed
on the ground (or reference data) for a sample of cases at
specified locations are presented in Table 4. From the results
it is observed that spectral confusion is common between
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Figure 3. Growth in the rural and urban population of upper and
lower reaches of the UGRB between 2001 and 2011. (a) Total pop-
ulation and (b) population growth rate (PGR).

few classes. For example, frozen snow/glaciers are some-
times misclassified as built-up or wasteland, whereas melted
ones are misinterpreted as water bodies. Similarly, forest ar-
eas are wrongly depicted as agricultural lands on a few oc-
casions. Sometimes barren rocky wastelands are misclassi-
fied as built-up areas, and wastelands with shrubs/grasses
are misjudged as agricultural lands. Therefore, in terms of
producer’s accuracy all classes are over 90 %, except for
three classes, i.e., forest, wasteland and snow/glacier, while
in terms of user’s accuracy, all the classes are very close to
or more than 90 % (Table 4). Both producer’s and user’s ac-
curacy are found to be consistent for all LULC classes. For
the past LULC map, a similar level of accuracy can be ex-
pected with a very little deviation. An overall classification
accuracy of 90.14 % was achieved with Kappa statistics of
0.88, showing good agreement between LULC classes and
reference GCPs. From the accuracy assessment results, it is
evident that the present classification approach has been ef-
fective in producing LULC maps with good accuracy.

5.3 Distribution of LULC

The LULC maps of the UGRB for February–March 2001
and 2012 are shown in Fig. 4. District boundaries of the
five districts, i.e., Uttarkashi, Dehradun, Kanpur, Allahabad

Figure 4. LULC maps of Upper Ganga River basin. (a) LULC map
of February–March 2001 and (b) LULC map of February–March
2012.

and Varanasi, chosen for district-scale LULC analysis are
highlighted in this figure. The gross percentage area in each
LULC class and their changes from 2001 to 2012 in the
UGRB are illustrated in Fig. 5. From the results it is observed
that the agricultural lands, built-up, forest and snow/glaciers
have increased, whereas the water bodies and wasteland have
decreased. The highest percentage change is observed in
the built-up class, which has increased by 43.4 %. In 2001,
17.1 % of wastelands were present in the study area, which
have reduced to 11.4 %. Therefore, the wastelands are the
second most dynamic category, with the significant decrease
of 33.6 %. Agriculture land, forest and snow/glaciers have
also increased by 2.9 %, 14.5 % and 1.1 % respectively. Con-
versely, water bodies have decreased from 2.0 % in 2001 to
1.8 % in 2012 (Fig. 5).
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Table 4. Accuracy assessment of the 2012 LULC map produced from Landsat ETM+ data, representing both the confusion matrix and the
Kappa statistics. The bold values highlight the number of GCPs selected in each LULC class and total number of GCPs used in the accuracy
assessment of the 2012 LULC map. AG= agricultural land, BU= built-up, F= forest, SG= snow/glacier, WL=wasteland and WB=water
bodies.

Classified Reference data Row total User’s Overall Kappa
data accuracy (%) statistics

AG BU F SG WL WB

AG 128 0 6 0 3 0 137 93.43 0.88
BU 2 96 2 5 1 0 106 90.57
F 11 0 88 3 0 3 105 83.81
SG 0 4 1 103 2 1 111 92.79
WL 1 2 0 7 82 2 94 87.23
WB 0 0 1 1 6 88 96 91.67

Column
Total

142 102 98 119 94 94 649

Producer’s
accuracy (%)

90.14 94.12 89.80 86.55 87.23 93.62

Overall
classification
accuracy (%)

90.14

Figure 5. Graph showing LULC distribution of the years 2001–2012. (a) LULC area in percentage (%) and (b) LULC changes from 2001
to 2012 in Upper Ganga River basin.
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Table 5. Change matrix showing LULC interconversion between
the year 2001 and 2012 in Upper Ganga River basin. Figures indi-
cate the percentage (%) of basin area.

LULC class F WL WB AG BU SG LULC
2001

F 13.3 0.0 0.0 0.0 0.0 0.0 13.3
WL 1.7 11.4 0.0 1.7 2.2 0.1 17.1
WB 0.2 0.0 1.8 0.0 0.0 0.0 2.0
AG 0.0 0.0 0.0 58.3 0.0 0.0 58.3
BU 0.0 0.0 0.0 0.0 5.3 0.0 5.3
SG 0.0 0.0 0.0 0.0 0.0 4.0 4.0

LULC 2012 15.2 11.4 1.8 60.0 7.5 4.1 100.0

Table 5 presents the change matrix, showing the conver-
sion of one LULC class to another between the years 2001 to
2012. Results reveal that 1.7 %, 1.7 %, 2.2 % and 0.1 % of the
wastelands in the basin area have converted to forest, agricul-
tural land, built-up and snow/glaciers respectively. Therefore,
significant increases in these LULC classes are observed in
the UGRB on the expanse of wastelands, resulting in high
water demand. With increase in agricultural lands and built-
up, water requirements have increased in the river basin to
meet irrigation, domestic and industrial water demands of ru-
ral and urban regions. About 0.2 % of the water bodies in the
region are converted to forest during the summer season due
to natural vegetation growth. Forest areas have also increased
in the region due to the implementation of various govern-
ment policies for forest protection and reforestation. Hence,
a slight reduction and increase in the water bodies and forest
classes are observed respectively.

District-scale LULC change studies are useful in compre-
hending the link between LULC and water quality at the local
scale, and in identifying the source of pollutants at a partic-
ular monitoring station. Table 6 presents the LULC statistics
of the five districts from 2001 to 2012, where water quality
monitoring stations are located. It shows increase in built-
up and agricultural lands in all the districts, whereas waste-
lands have decreased. Forest areas have increased slightly in
Uttarkashi and Varanasi, although they have remained un-
changed in the remaining districts. The snow/glacier class
is only present in Uttarkashi district and it has slightly in-
creased from 2001 to 2012. Water bodies have increased
slightly in all the districts except Dehradun where it has
reduced slightly. Hence, significant LULC changes are ob-
served in the UGRB at both basin and district scales.

5.4 Trend analysis on monthly water quality data

From the results of trend analysis (Mann–Kendall rank test)
it is observed that each water quality parameter varies with
time and location, and hence the changes in the water quality
parameters are observed in all the months (Table 7). No reg-
ular trends are observed in the water quality data; therefore,

Table 6. District-scale changes in LULC in (a) Ut-
tarkashi, (b) Dehradun, (c) Kanpur, (d) Allahabad and (e) Varanasi.

LULC class 2001 % 2012 % % change
(2001–2012)

(a) Uttarkashi

Forest 39.3 39.7 1.1
Wasteland 10.3 8.3 −19.3
Water bodies 1.4 1.5 4.6
Agricultural land 0.6 1.4 122.8
Built-up area 0.2 0.6 186.3
Snow and glacier 48.2 48.6 0.8

Total area 100.0 100.0

(b) Dehradun

Forest 59.8 59.8 0.1
Wasteland 18.8 3.4 −82.1
Water bodies 4.8 4.3 −9.8
Agricultural land 13.5 20.3 50.6
Built-up area 3.2 12.2 283.9

Total area 100.0 100.0

(c) Kanpur

Forest 0.3 0.3 8.7
Wasteland 23.4 4.7 −79.8
Water Bodies 2.5 2.6 3.8
Agricultural land 63.7 67.0 5.2
Built-up area 10.1 25.3 152.1

Total area 100.0 100.0

(d) Allahabad

Forest 1.5 1.5 −1.2
Wasteland 22.1 16.0 −27.8
Water bodies 3.0 3.1 1.3
Agricultural land 70.5 73.4 4.2
Built-up area 2.8 6.0 111.7

Total area 100.0 100.0

(e) Varanasi

Forest 0.6 0.7 24.4
Wasteland 16.8 6.0 −64.5
Water bodies 3.1 3.3 7.1
Agricultural land 76.8 79.4 3.4
Built-up area 2.7 10.5 291.8

Total area 100.0 100.0

they are very site specific. Results from statistical analyses
reflect that comparatively high SD and significant changes
are observed in water quality of the monsoon month (July),
which is followed by premonsoon and postmonsoon months
in decreasing order. The effect of different seasons on water
quality is reported from various studies (Islam et al., 2017;
Sharma and Kansal, 2011; Singh and Chandna, 2011). In
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this study, three significant seasons are identified and hence
the water quality data are organized into three groups: pre-
monsoon season (February–May), monsoon season (June–
September) and postmonsoon season (October–January).

From each group, one representative month, i.e., May, July
or November, is chosen, which represents that particular sea-
son the best. It reduced the redundancy of the dataset and
avoided the confusion that can be caused by a large insignif-
icant dataset of varying trends that makes no sense. For ex-
ample, SD values in BOD of Kanpur station in May, July
and November are 2.01, 2.67 and 1.04 respectively. In other
months, the SD value of the BOD is close to the SD value of
the representative months. In addition, from Table 7 it is evi-
dent that trends for BOD and turbidity in July are significant
for almost all the stations against other water quality param-
eters. They are increasing over the years from 2001 to 2012.
Premonsoon (May) data signify the water quality pollution
from point sources of pollution from various sewage drains
and industrial effluents. In addition to the point sources of
pollution, monsoon (July) data took into account the non-
point source of pollution, e.g., discharge of surface runoff
from urban areas into the nearby streams during rainfall.
Postmonsoon (November) data help to understand the wa-
ter quality condition of the rivers after the rainfall is over.
Therefore, in this study, further water quality data analysis
was done for the same three representative months.

5.5 State of the population growth, LULC
transformations and water quality nexus in the
UGRB

In this section, the association between the three components
population growth, LULC transformations and water qual-
ity are established. Seasonal water quality parameter values
for UGRB over the periods of 2001–2012 are presented in
Table 8. Their respective IPI values and OIP for each mon-
itoring station are illustrated in Table 9. In the UGRB the
population increase in both rural and urban areas has re-
sulted in significant changes in LULC distribution. Increase
in PGR of 20.45 % in the complete basin has resulted in in-
creases of 43.4 % and 2.9 % in urban and rural areas respec-
tively. Therefore, this river basin is urbanizing gradually with
increases in industrial operations. Urbanization, industrial-
ization and intense agricultural activities have caused water
quality degradation between the periods of 2001 and 2012.
Nearly all the parameters are relatively higher in July, which
is during the rainy season. Hence, their subsequent IPI val-
ues and resulting OIP are also high in this month. Hardness
(CaCO3) and pH values are higher in monsoon months as bi-
carbonates, hydroxides and phosphates from rock weathering
are transported to the river water by surface runoff. Turbidity
is also high due to the addition of organic matter from land
surfaces to the nearby stream through surface runoff. F is in-
troduced into the river by surface runoff carrying F from in-
dustrial regions. High DO values are attributed to increased

diffusion of oxygen into the water during increased stream
flow caused by storm events. Increases in BOD and total col-
iform bacteria are a result of increased transportation of mu-
nicipal sewage containing organic matter and various strains
of coliform bacteria. Similar results were reported from the
studies done by various researchers (Attua et al., 2014; Chap-
man, 1992; Hellar-Kihampa et al., 2013; Jain et al., 2006).

In the UGRB, the population growth and LULC transfor-
mations are lower in the upper reaches therefore the water
quality of the monitoring stations located in this region (Ut-
tarkashi and Rishikesh) has remained in the acceptable class
range (OIP: 1.38–1.58) from 2001 to 2012. Conversely, in
the lower reaches, the water quality has deteriorated from
the acceptable class to the slightly polluted class (OIP: 1.87–
2.79) at the monitoring stations (Ankinghat, Chhatnag and
Varanasi) due to increased pollutants in the river water from
urban, agriculture and industrial sectors (Fig. 6 and Ta-
ble 9). Further, explanation on the connection between pop-
ulation growth, LULC transformations and water quality in
the UGRB is given at the district or local scale in Sect. 5.6.

5.6 State of the population growth, LULC
transformations and water quality nexus in the
districts of the UGRB

Besides analysis at complete river basin level, the district
level studies are also important. Each district has differ-
ent topography, climate, population and LULC distribution.
Therefore, the water management strategies in these districts
should be based on the sources of pollutants and the health
status of the river. Spatiotemporal variations in the water
quality of the UGRB are studied using OIPs for three dif-
ferent seasons, viz. premonsoon (May), monsoon (July) and
postmonsoon (November), from the years 2001–2012. Rain-
fall amount, duration and intensity are important drivers af-
fecting surface water quality parameters of a water body pri-
marily during monsoon and postmonsoon seasons. For exam-
ple OIP at Ankinghat (Kanpur) has slightly increased from
2.51 in premonsoon season to 2.79 in monsoon season in the
year 2012. In postmonsoon season, it has further decreased
to 2.77. Similarly, at Chhatnag (Allahabad) station higher
OIP (2.23) is noticed in monsoon season than in another two
stations in the year 2012 (Table 9). Other factors such as type
of LULC, type of soils, amount and type of waste genera-
tion, treatment facilities, etc. also affect the water quality. At
Varanasi station, OIP values are higher in premonsoon sea-
son (2.28) than in another two seasons in 2012. Reduced val-
ues in monsoon season are probably due to relatively lower
rainfall at this station. It indicates high influence of anthro-
pogenic activities on the river water than natural drivers such
as rainfall. But at the same station, in the year 2001 the OIP
values were higher in monsoon season (2.08) than in other re-
maining seasons. Hence, high spatiotemporal variations are
observed in the water quality status of the river (Table 9).
Water quality parameters, viz. hardness (CaCO3), F, pH and
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Table 8. Water quality parameters across the Upper Ganga River basin for premonsoon, monsoon and postmonsoon seasons over periods
of 2001–2012. Units: BOD=mg L−1; DO=%; F=mg L−1; hardness (CaCO3)=mg L−1; pH= no unit; total coliform=MPN; turbid-
ity=NTU.

Parameters Water quality monitoring stations

Uttarkashi Rishikesh Kanpur Allahabad Varanasi

May Jul Nov May Jul Nov May Jul Nov May Jul Nov May Jul Nov

(a) Year 2001

BOD 1.1 1.1 1.1 1.1 1.0 1.1 2.8 1.7 2.4 4.0 4.2 3.7 2.5 2.2 1.8
DO 88 104 89 71 60 64 89 96 93 92 84 95 90 92 85
F 0.19 0.04 0.22 0.23 0.16 0.26 0.61 0.21 0.34 0.09 0.50 0.51 0.3 0.05 0.51
Hardness (CaCO3) 65 60 68 76 67 74 99 78 86 95 194 159 99 176 142
pH 8.1 8.1 8.1 8.1 8.1 8.1 8.0 8.3 8.1 8.2 8.3 8.2 8.2 8.4 8.2
Total coliform – – – – – – – – – 3000 6200 6500 5100 5300 2400
Turbidity – – – – – – 2.0 3.1 2.3 0.1 0.2 0.1 0.1 0.1 0.1

(b) Year 2012

BOD 1.1 1.2 1.0 1.0 1.2 1.2 7.0 10.0 4.0 2.9 3.2 2.4 3.0 3.9 2.9
DO 73 64 73 81 75 77 86 75 90 85 108 98 101 98 98
F 0.45 0.26 0.44 0.09 0.19 0.06 0.70 0.80 0.51 0.51 0.67 0.56 0.57 0.54 0.52
Hardness (CaCO3) 45 24 34 33 23 56 110 102 90 97 85 92 89 75 81
pH 7.8 7.7 7.6 7.8 8.0 7.8 8.7 8.4 8.1 8.2 8.5 8.2 8.7 8.4 8.7
Total coliform – – – – – – – – – 5200 5800 4600 5600 7300 4700
Turbidity – – – – – – 4.0 6.0 5.4 0.1 0.5 0.1 0.1 0.2 0.1

Table 9. Individual parameter indices (IPIs) and overall indices of pollution (OIPs) computed at various water quality monitoring stations of
the Upper Ganga River basin over periods of 2001 and 2012 for premonsoon, monsoon and postmonsoon seasons. Bold IPI and italic OIP
values are significant.

Parameters Water quality monitoring stations

Uttarkashi Rishikesh Kanpur Allahabad Varanasi

May Jul Nov May Jul Nov May Jul Nov May Jul Nov May Jul Nov

(a)

BOD 1.00 1.00 1.00 1.00 1.00 1.00 2.87 2.40 2.60 2.67 2.80 2.47 1.67 1.47 1.20
DO (%) 1.33 1.28 1.27 2.49 3.24 2.97 1.27 0.79 0.99 1.06 1.61 0.86 1.20 1.06 1.54
F 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Hardness (CaCO3) 1.00 1.00 1.00 1.78 1.00 1.00 1.99 1.80 1.87 1.95 3.16 2.66 1.99 2.89 2.45
pH 2.76 2.76 2.76 2.76 2.76 2.76 2.52 3.33 2.76 3.03 3.33 3.03 3.03 3.65 3.03
Total coliform – – – – – – – – – 3.43 4.60 4.98 4.02 3.48 3.21
Turbidity – – – – – – 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

OIP (2001) 1.42 1.41 1.41 1.81 1.80 1.75 2.61 2.49 2.54 2.02 2.50 2.29 1.99 2.08 1.92

(b)

BOD 1.00 1.00 1.00 1.00 1.00 1.00 4.67 6.67 2.67 1.93 2.13 1.60 2.00 2.60 1.93
DO (%) 2.36 2.97 2.36 1.81 2.22 2.08 1.47 2.22 1.20 1.54 1.49 0.65 1.13 0.65 0.65
F 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Hardness (CaCO3) 1.00 1.00 1.00 1.00 1.00 1.00 2.10 2.02 2.91 1.97 1.86 1.92 1.90 1.00 1.82
pH 2.09 1.91 1.74 2.09 2.52 2.09 4.81 3.65 2.76 3.03 4.00 3.03 4.81 3.65 4.81
Total coliform – – – – – – – – – 4.05 4.11 3.90 4.14 5.97 3.93
Turbidity – – – – – – 1.00 1.20 1.08 1.00 1.00 1.00 1.00 1.00 1.00

OIP (2012) 1.49 1.58 1.42 1.38 1.55 1.44 2.51 2.79 2.77 2.07 2.23 1.87 2.28 2.27 2.16
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Figure 6. Spatial variations in the overall indices of pollution (OIPs) in the Upper Ganga River basin from 2001 to 2012 for the (a) premon-
soon period (b) monsoon period, (c) postmonsoon period.

turbidity, generally increase during postmonsoon season due
to the addition of various pollutants and sediments in the river
water during monsoon period.

Water quality monitoring stations of Ut-
tarkashi (PGR= 11.9 %) and Rishikesh (Dehradun
PGR= 32.3 %) are located in the foothills of the Hi-
malayas with relatively low gross population in small towns.
These stations are least influenced by human intervention
among all the stations. They are mainly influenced from the
generation of silts (due to steep hilly slopes) and climatic
factors such as rainfall. For example, IPI for pH in 2001
remained at 2.76 in both the stations. In 2012 the pH ranged

between 1.74 (postmonsoon season) and 2.09 (premon-
soon season) at Uttarkashi station. At Rishikesh station it
ranged between 2.09 (pre and postmonsoon season) and
2.52 (monsoon season), which is slightly better than the IPI
values in 2001. Therefore, all the water quality parameters at
these stations are in the acceptable range with no significant
variations in the IPI values of the parameters over time.
As the Ganga River descends down to the Gangetic Plains,
a large number of tributaries join the River Ganga. One
of those, the River Yamuna that passes from metropolitan
city of New Delhi and many other Class-I cities (popu-
lation> 100000), joins the River Ganga at Allahabad. It

www.hydrol-earth-syst-sci.net/22/4745/2018/ Hydrol. Earth Syst. Sci., 22, 4745–4770, 2018



4764 A. K. Shukla et al.: Population growth, land use and land cover transformations, and water quality nexus

carries a large amount of untreated pollutant load from both
municipal and industrial areas of these cities on its way and
adds to the river Ganga. During rainfall, toxic urban runoff
is discharged to the river directly or through storm water
drains. Similarly, water pollution at Kanpur was caused by
urban domestic wastes and industries, mainly tanneries. At
Varanasi river water again gets affected by municipal and
industrial discharges into the river. Varanasi being the last
monitoring station collects pollutants from all the above
cities, and hence it is identified as the most severely polluted
station in the UGRB, which keeps varying with time. In
2001, Allahabad is the most polluted station followed by
Varanasi and Kanpur. However, in 2012, Kanpur is the
most polluted station followed by Varanasi and Allahabad,
indicating LULC changes. The water quality remained in
the acceptable to slightly polluted class range.

Total population of all three cities is very high and Kan-
pur has the highest population (6 377 452) amongst them.
Varanasi has the highest population density in the region.
Similarly, Allahabad had a PGR of 20.6 % between 2001
and 2011. These cities are the biggest centers of commer-
cial activities in the UGRB. The main industry types in Alla-
habad district are glass, wire products, battery, etc., whereas
Varanasi consists of textile, printing, electrical-machinery-
related industries. In the lower reaches of the Ganga River,
major industrialization has occurred in and around Kanpur.
Tanneries are the major types of industries in Kanpur; the
majority of them are located in the Jajmau area, which is
close to River Ganga. The wastewater generated from vari-
ous tanning operations, e.g., soaking, liming, deliming and
tanning, result in increased levels of organic loading, salin-
ity and specific pollutants such as sulfide and chromium.
These are very toxic pollutants and affect the parameters,
viz. BOD, hardness (CaCO3), pH and turbidity (Rajeswari,
2015). Hence, due to wastewater from tanneries and munic-
ipal discharges, high IPI values of hardness (CaCO3) (2.10)
and pH (4.81) are observed for Kanpur station in 2012. IPI
values of hardness (CaCO3) (1.90) and pH (4.81) at Varanasi
station are just lower than Kanpur and are followed by water
quality of Allahabad, which showed close IPI values of 1.97
and 4.00, respectively. These cities do not have tanneries but
their urban sewage and industrial effluents affect the water
quality of the river.

Other than tanneries and industries based on agriculture,
textile, paper, mineral, metal and furniture are also present.
Unnao is other industrial town located close to Kanpur. A
large amount of municipal sewage generated in the urban res-
idential areas and industrial effluents are discharged into the
water. In total, 6087 MLD (million liters per day) of wastew-
ater is discharged into the Ganga River. Out of the whole
river basin, six sub-regions alone, namely Kanpur, Unnao,
Rai-Bareeilly, Allahabad, Mirazapur and Varanasi, discharge
3019 MLD of wastewater directly or indirectly into the river.
Particularly, the cities of Kanpur, Allahabad and Varanasi
contribute about 598.19, 293.5 and 410.79 MLD of wastew-

ater into the river respectively (CPCB, 2013; NRSC, 2014).
Municipal sewage water is characterized by high BOD and
total coliform bacteria count. Table 9 illustrates a very high
IPI value in the BOD of Kanpur (6.67), Allahabad (2.13)
and Varanasi (2.60) in the year 2012. It has increased from
2001 to 2012. Similarly in the year 2012, IPI of total coliform
bacteria count is found in the range of minimum 3.90 (Alla-
habad) to 5.97 (Varanasi). It falls in the class of slightly pol-
luted to polluted. F, pH and turbidity are the factors mainly
affected by natural drivers. IPI is within the acceptable to
slightly polluted range in all three stations in 2012. F and
turbidity have remained in excellent and acceptable classes
over the years. Various other studies have reported that the
water quality of the Ganga River near Kanpur, Allahabad and
Varanasi cities is highly polluted (Gowd et al., 2010; Rai et
al., 2010; Sharma et al., 2014). Rapid urbanization and in-
dustrialization have highly affected the water quality of River
Ganga in these districts.

5.7 Relationship between LULC and water
quality (OIP)

Pearson’s correlation analysis between OIP and different
LULC classes in the UGRB helped in studying the strength
of association between these variables (Table 10). In all three
seasons of the year 2001, wasteland, built-up areas and agri-
cultural lands are positively correlated, showing a significant
relationship (moderate to strong association) with OIP. Water
bodies have shown very weak positive correlation, whereas
moderate to strong negative correlation is observed with for-
est class. Due to change in the LULC distribution and water
quality parameters between 2001 and 2012, variations are ob-
served in the strength of association in the year 2012. In this
year, OIP showed a very strong negative and a very weak
negative correlation with forest and water bodies classes re-
spectively. A very strong positive association is observed
with agricultural lands. Moderate to strong positive correla-
tion is observed in the built-up class. Association of OIP with
wasteland is in the broad range of a very weakly positive to
very weakly negative correlation.

This study found that an increase in forest cover can de-
crease OIP due to increased aeration of flowing river water.
High sediment load, generally from surface runoff, causes
the increase in turbidity. Forest areas control turbidity, hard-
ness (CaCO3) and pH parameters by acting as a buffer
against these parameters. Similarly, increases in the water
bodies decrease OIP by diluting the pollutants with excess
water, thus improving the water quality. In the UGRB, in-
creases in OIP, i.e., deterioration of water quality, is ob-
served with increases in the agricultural lands and built-up
areas due to introduction of pollutants from various agro-
chemicals, municipal sewage, industrial effluents and other
types of organic matter. These lower the DO level and in-
crease BOD parameter. Correlation between wasteland and
OIP are not very significant. Another study done by At-
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Table 10. Pearson’s correlation coefficients relating LULC to water quality (OIP) in the Upper Ganga River basin (premonsoon, monsoon
and postmonsoon seasons of 2001 and 2012).

Stations OIP premonsoon (2001) F % WL % WB % AG % BU %

Uttarkashi 1.42 39.3 10.3 1.4 0.6 0.2
Rishikesh 1.81 59.8 18.8 4.8 13.5 3.2
Kanpur 2.61 0.3 23.4 2.5 63.7 10.1
Allahabad 2.02 1.5 22.1 3.0 70.5 2.8
Varanasi 1.99 0.6 16.8 3.1 76.8 2.7

Pearson’s correlation coefficients −0.65 0.87 0.12 0.71 0.95

Stations OIP Monsoon (2001) F % WL % WB % AG % BU %

Uttarkashi 1.41 39.3 10.3 1.4 0.6 0.2
Rishikesh 1.80 59.8 18.8 4.8 13.5 3.2
Kanpur 2.49 0.3 23.4 2.5 63.7 10.1
Allahabad 2.50 1.5 22.1 3.0 70.5 2.8
Varanasi 2.08 0.6 16.8 3.1 76.8 2.7

Pearson’s correlation coefficients −0.77 0.93 0.15 0.87 0.69

Stations OIP postmonsoon (2001) F % WL % WB % AG % BU %

Uttarkashi 1.41 39.3 10.3 1.4 0.6 0.2
Rishikesh 1.75 59.8 18.8 4.8 13.5 3.2
Kanpur 2.54 0.3 23.4 2.5 63.7 10.1
Allahabad 2.29 1.5 22.1 3.0 70.5 2.8
Varanasi 1.92 0.6 16.8 3.1 76.8 2.7

Pearson’s correlation coefficients −0.73 0.93 0.09 0.78 0.83

Stations OIP premonsoon (2012) F % WL % WB % AG % BU %

Uttarkashi 1.49 39.7 8.3 1.5 1.4 0.6
Rishikesh 1.38 59.8 3.4 4.3 20.3 12.2
Kanpur 2.51 0.3 4.7 2.6 67.0 25.3
Allahabad 2.07 1.5 16.0 3.1 73.4 6.0
Varanasi 2.28 0.7 6.0 3.3 79.4 10.5

Pearson’s correlation coefficients −0.94 0.10 −0.09 0.88 0.63

Stations OIP monsoon (2012) F % WL % WB % AG % BU %

Uttarkashi 1.58 39.7 8.3 1.5 1.4 0.6
Rishikesh 1.55 59.8 3.4 4.3 20.3 12.2
Kanpur 2.79 0.3 4.7 2.6 67.0 25.3
Allahabad 2.23 1.5 16.0 3.1 73.4 6.0
Varanasi 2.27 0.7 6.0 3.3 79.4 10.5
Pearson’s correlation coefficients −0.89 0.08 −0.09 0.83 0.72

Stations OIP postmonsoon (2012) F % WL % WB % AG % BU %

Uttarkashi 1.42 39.7 8.3 1.5 1.4 0.6
Rishikesh 1.44 59.8 3.4 4.3 20.3 12.2
Kanpur 2.77 0.3 4.7 2.6 67.0 25.3
Allahabad 1.87 1.5 16.0 3.1 73.4 6.0
Varanasi 2.16 0.7 6.0 3.3 79.4 10.5

Pearson’s correlation coefficients −0.79 −0.14 −0.07 0.75 0.82
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Table 11. Multiple linear regression models for OIP and LULC classes in the Upper Ganga River basin.

Year Independent variable Regression model equation R2 Adjusted R2

OIP (2001) Forest, wasteland,
agricultural land and
built-up areas

OIP= 1.1354−0.6331 F+
5.08 WL− 0.0828 AG+
2.7425 BU

0.94 0.94

OIP (2012) Forest, agricultural
land and built-up areas

OIP= 2.1266−1.6296 F−
0.2756 AG+ 2.9894 BU

0.96 0.95

tua et al. (2014) reported similar results for the study con-
ducted on African rivers. Multiple linear regression analysis
can efficiently predict the OIP using one or a combination of
LULC classes (Table 11). OIP of 2001 could be predicted by
the combined coverage area of forest, wasteland, agricultural
land and built-up area (adjusted R2

= 0.94), whereas OIP of
2012 could be predicted by forest, agricultural land and built-
up areas (adjusted R2

= 0.95). High R2 and adjusted R2 val-
ues in both the years showed a strong relationship between
OIP and LULC classes of the respective models. However,
these relationships may vary for different regions or time pe-
riods.

6 Summary and conclusions

Upper Ganga River basin has been suffering from chronic
water shortages for the past few decades. Population growth
is the primary driver behind gradual urbanization and indus-
trialization in this region. In addition, infrastructure develop-
ment activities and agriculture have also intensified. Hence,
the natural resources of the UGRB are overexploited. Sus-
tainable water resources planning and management by policy
makers and planners require an understanding of the nexus
between components of population growth, LULC transfor-
mations and water quality at both regional and local scales. A
20.45 % increase in PGR leads to a 43.4 % increase in built-
up areas. It was identified as the most dynamic LULC class
in the region followed by wasteland. The Mann–Kendall
rank test revealed that water quality parameters are highly
variable in time and space, with no significant trends. Even
though gross rural population is much higher in the lower
reaches of the river basin, the PGR is higher in the urban
population of upper reaches. The water quality of the ma-
jority of the stations was the most degradable in monsoon
season. The water quality of the upper reaches (Uttarkashi
and Rishikesh) remained in the excellent to acceptable (1.38–
1.81) class from 2001 to 2012, whereas it changed from the
acceptable to slightly polluted class (1.87–2.79) in the lower
reaches (Kanpur, Allahabad and Varanasi). In the UGRB,
BOD, DO and total coliform are the parameters most influ-
enced by anthropogenic activities. Conversely, the remaining
parameters, viz. pH, F, hardness (CaCO3) and turbidity, are
mainly influenced by climatic factors. The largest increase in

built-up areas of 291.8 %, observed in the Varanasi district,
is directly related to the highest deterioration of water qual-
ity in the UGRB. But Allahabad and Kanpur were identified
as the most polluted stations in 2001 and 2012 respectively.
Sewage, industrial effluents and runoff from urban or rural
areas introduce pollutants at these stations. Future population
growth and LULC changes in the UGRB may further jeopar-
dize their nexus with water. Forests and water bodies are neg-
atively correlated with OIP. However, built-up and agricul-
tural lands are positively correlated. Wasteland is not signif-
icantly correlated to OIP. Multiple linear regression models
developed for UGRB could successfully predict OIP (water
quality) using LULC classes. The future scope of this study
comprises the understanding of hydro-ecological response of
the water quality changes across the river basin. The fol-
lowing recommendations are made for judicious regulation
and control of water quality pollution in the UGRB: (a) con-
trol of deforestation and encouraging afforestation, (b) ef-
ficient town planning for better LULC distribution in the
river basin, (c) reduction in the use of agro-chemicals in the
fields (use of organic alternatives), (d) proper waste disposal
and management system, (e) strategies to control runoff from
fields (construction of bunds/canals) and (f) spreading water
pollution awareness and strict policies on pollution control.

Data availability. URLs of the dataset used in this study are as
follows: SRTM DEM and time series Landsat data – https://lta.
cr.usgs.gov/SRTM1Arc (USGS, 2016a), https://landsat.usgs.gov/
landsat-data-access (USGS, 2016b); published thematic maps for
LULC and related reports – http://bhuvan.nrsc.gov.in/gis/thematic/
index.php (National Remote Sensing Centre, Indian Space Research
Organization, India, 2016); census records and related reports –
http://www.censusindia.gov.in (Office of the Registrar General &
Census Commissioner, Government of India, 2017); Survey of India
(SoI) topographical maps which are restricted data can be requested
from SoI, Government of India (GoI) – http://www.surveyofindia.
gov.in/ (SoI, 2015). Ganga river basin falls under the classified river
basins of the Government of India. Therefore, any data including
water quality data are restricted but can be requested through proper
channels from CWC, GoI (2016): http://cwc.gov.in/.
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