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Abstract. Drought is a natural hazard that occurs at many
temporal and spatial scales and has severe environmental
and socioeconomic impacts across the globe. The impacts of
drought change as drought evolves from precipitation deficits
to deficits in soil moisture or streamflow. Here, we quan-
tified the time taken for drought to propagate from mete-
orological drought to soil moisture drought and from me-
teorological drought to hydrological drought. We did this
by cross-correlating the Standardized Precipitation Index
(SPI) against standardized indices (SIs) of soil moisture,
runoff, and streamflow from an ensemble of global hydrolog-
ical models (GHMs) forced by a consistent meteorological
dataset. Drought propagation is strongly related to climate
types, occurring at sub-seasonal timescales in tropical cli-
mates and at up to multi-annual timescales in continental and
arid climates. Winter droughts are usually related to longer
SPI accumulation periods than summer droughts, especially
in continental and tropical savanna climates. The difference
between the seasons is likely due to winter snow cover in the
former and distinct wet and dry seasons in the latter. Model
structure appears to play an important role in model variabil-
ity, as drought propagation to soil moisture drought is slower
in land surface models (LSMs) than in global hydrological
models, but propagation to hydrological drought is faster in
land surface models than in global hydrological models. The
propagation time from SPI to hydrological drought in the
models was evaluated against observed data at 127 in situ
streamflow stations. On average, errors between observed
and modeled drought propagation timescales are small and
the model ensemble mean is preferred over the use of a sin-
gle model. Nevertheless, there is ample opportunity for im-

provement as substantial differences in drought propagation
are found at 10 % of the study sites. A better understand-
ing and representation of drought propagation in models may
help improve seasonal drought forecasting as well as con-
strain drought variability under future climate scenarios.

1 Introduction

Drought is a complex global phenomenon with severe en-
vironmental (Bond et al., 2005; Lewis and Sjöstrom, 2010;
Reichstein et al., 2013; Turco et al., 2017; Vicente-Serrano et
al., 2013) and socioeconomic (Horridge et al., 2005; Stanke
et al., 2013; Wegren, 2011) impacts. Data from global and
regional models are commonly used to study droughts (e.g.,
Andreadis and Lettenmaier, 2006; Sheffield et al., 2004;
Sheffield and Wood, 2008a) and water scarcity (Kummu et
al., 2016; Veldkamp et al., 2015, 2016, 2017; Wada et al.,
2011), as well as how these will change in the future (Dai,
2013; Huang et al., 2017; Sheffield and Wood, 2008b; Tren-
berth et al., 2014). However, the evolution of drought from
meteorological anomalies to deficits in soil moisture and
streamflow in these models is still poorly understood (Van
Lanen et al., 2013; Van Loon, 2015), despite the fact that
drought impacts are more closely related to these latter com-
ponents of the hydrological cycle (Van Loon, 2015).

Several types of drought can be distinguished (i.e., Van
Loon, 2015; Mishra and Singh, 2010). The first stage or type
of drought is called meteorological drought and is caused by
precipitation deficits that may or may not be combined with
above-normal potential evaporation rates. If the precipitation
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deficits and/or increased evaporation rates are sustained for a
sufficient period, they can result in lower-than-average soil
moisture availability, which may result in a soil moisture
drought. In the same way, meteorological drought can propa-
gate into lower streamflow and groundwater levels, which are
both forms of hydrological drought. Another type of drought,
socioeconomic drought, is not based on a hydrological vari-
able alone, but occurs when water availability is lower than
water demand. As drought propagates from meteorological
drought to soil moisture or hydrological drought, the char-
acteristics of droughts change. As drought moves through
components of the hydrological cycle, the onset of droughts
tends to be lagged, there tend to be fewer but longer drought
events, and the droughts are attenuated (Van Lanen et al.,
2013; Van Loon et al., 2012; Peters et al., 2003). The de-
gree to which these drought propagation characteristics are
observed depends on climate and catchment properties (Van
Lanen et al., 2013; Van Loon and Laaha, 2015).

Several drought propagation studies have been carried out
based on observational data at catchment to national scales,
mainly focusing on meteorological and streamflow drought
(e.g., Barker et al., 2016; Haslinger et al., 2014; Van Loon
and Laaha, 2015; Lorenzo-Lacruz et al., 2013). However,
the geographical extent covered by these studies is limited,
mainly due to the lack of observational data with sufficiently
long timescales needed to identify drought in many regions.
Therefore, data from regional or global models are gener-
ally used to study drought at larger spatial scales. In some
cases, studies have used data from a single large-scale model
(e.g., Van Lanen et al., 2013; Lehner et al., 2006; Lloyd-
Hughes et al., 2013; Sheffield et al., 2004). However, there
can be considerable differences between hydrological out-
puts of different large-scale models (Burke and Brown, 2008;
Gudmundsson et al., 2012a, b; Haddeland et al., 2011; Prud-
homme et al., 2014; Veldkamp et al., 2018), suggesting that
multi-model approaches (e.g., Gudmundsson et al., 2012a;
Stahl et al., 2012; Tallaksen and Stahl, 2014; Wang et al.,
2009) are more appropriate. This is supported by the fact that
studies have found that a model ensemble performs better
than individual models (Gudmundsson et al., 2012a; Stahl et
al., 2012). However, most regional or global drought studies
have focused on drought frequency and severity (van Hui-
jgevoort et al., 2013; Prudhomme et al., 2011, 2014) rather
than on drought propagation, and those that have studied
drought propagation have been limited to a single model
(Van Lanen et al., 2013) or to a small selection of contrasting
catchments (Van Loon et al., 2012).

The aim of this study is therefore to investigate drought
propagation times in an ensemble of global hydrological
models (GHMs) from meteorological drought to soil mois-
ture drought and from meteorological drought to hydrolog-
ical drought. We focus on the effect of climate on drought
propagation in particular and distinguish between summer
and winter droughts. In Sect. 2, we describe the identifica-
tion of drought, the method we use to quantify drought prop-

agation timescales, and the validation analysis. The global
models and the observational data are presented in Sect. 3.
In Sect. 4, we first describe and discuss the timescales of
drought propagation and their relationship with climate types
in the multi-model ensemble mean. Second, we briefly de-
scribe the model variability. Third, we perform a validation
exercise to gauge whether propagation from meteorological
to streamflow drought in the models resembles observational
drought propagation times. We wrap up with a brief summary
and conclusion in Sect. 5.

2 Methods

The timescales of drought propagation were determined by
relating standardized indices (SIs) of meteorological drought
to indices of soil moisture and hydrological drought. These
indices were derived from an ensemble of seven global mod-
els that were forced with a consistent meteorological dataset
in the eartH2Observe project (Schellekens et al., 2017). For
more details on the model and forcing datasets, see Sect. 3.
First, we calculated standardized indices of precipitation, soil
moisture, runoff, and streamflow as a measure of drought.
Second, we determined which timescales of meteorological
drought were most strongly correlated to the other drought
types. Finally, we evaluated the modeled drought propaga-
tion times against drought propagation times derived from
observational data.

2.1 Drought indices

Meteorological drought was quantified by the widely used
Standardized Precipitation Index (SPI; Mckee et al., 1993).
The SPI fits a predefined probability distribution to the fre-
quency distribution of precipitation. Generally, the precipi-
tation series have a monthly resolution, in which case the
fitting is done for each month separately. Examples of pos-
sible distribution functions are the gamma, Pearson type III,
or log-normal (Guttman, 1999; Lloyd-Hughes and Saunders,
2002; Mckee et al., 1993) functions, though a nonparametric
approach has also been developed (Hao and AghaKouchak,
2014). In this study, we use the gamma distribution as the
predefined probability distribution, as this is commonly con-
sidered to be the most suitable (Lloyd-Hughes and Saunders,
2002; Mckee et al., 1993; Stagge et al., 2015). Regions in
which months with zero precipitation are common are prob-
lematic for the SPI (Wu et al., 2007), so the cumulative dis-
tribution function is corrected with the probability of zero
precipitation (Naresh Kumar et al., 2009). The fitted prob-
ability distribution is then transformed to the normal distri-
bution, resulting in negative (positive) values for dry (wet)
conditions. Note that the SPI relates the precipitation amount
in a certain month to average conditions at that particular lo-
cation. In drier climates or seasons, water-limited conditions
may be the norm, while in wetter climates or seasons, water
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stress may not be relevant until severe drought thresholds are
reached.

Advantages and disadvantages of the SPI are described in
Hayes et al. (1999). A first advantage is that the SPI is rel-
atively simple, requiring only precipitation data as an input.
Secondly, the index is flexible. It can be used to compare
different timescales of drought by aggregating the input pre-
cipitation time series over a number of months, known as the
accumulation period (typically 1, 3, 6, 12, or 24 months).
Thirdly, the standardization facilitates comparisons of ex-
treme conditions in different locations, but also over different
timescales. A disadvantage is that the precipitation data used
to calculate the SPI may not be representative of surface con-
ditions. In addition, the calculation of the index requires long
time series (> 30 years) of data (Guttman, 1999; Mckee et al.,
1993; Zargar et al., 2011).

The standardization approach of the SPI is not only eas-
ily applied to different timescales, but can also be ap-
plied to other (hydrological) variables such as soil mois-
ture or streamflow. In this way, we use the same method-
ology to identify soil moisture and hydrological drought by
defining the Standardized Soil Moisture Index (SSMI) (Hao
and AghaKouchak, 2013), Standardized Runoff Index (SRI)
(Shukla and Wood, 2008), and Standardized Streamflow In-
dex (SSFI).

Soil moisture and runoff are controlled by pixel-scale pre-
cipitation and hydrological processes. Streamflow, on the
other hand, is affected by upstream pixels. Therefore, we
computed a catchment-aggregated SPI to quantify drought
propagation from meteorological to streamflow droughts.
The input for the aggregated SPI is the total precipitation
falling within each pixel and its upstream area, based on a
0.5◦ routing network (see Sect. 3). We did not include a travel
time factor in this calculation, thus assuming that precipita-
tion falling in the upper parts of each catchment will impact
streamflow at the outlet within the same month. In the rest of
the paper, meteorological drought is based on (i) the pixel-
based SPI when referring to soil moisture or runoff drought
and (ii) the catchment-based SPI when referring to stream-
flow drought.

In this study, we quantified drought propagation from
meteorological drought to soil moisture and hydrological
droughts. Therefore, we calculated the SPI using accumula-
tion periods of 1, 2, 3, 6, 9, 12, 24, and 36 months. These ac-
cumulation periods span sub-seasonal, (multi-)seasonal, and
(multi-)annual timescales. For the other standardized indices,
we used the 1-month accumulation period to identify short-
term drought conditions.

2.2 Timescales of drought propagation

Drought propagation from meteorological to soil moisture
or hydrological drought was based on correlations between
the SPI and target SI (SSMI, SRI, or SSFI). The SI time se-
ries were prepared by applying two criteria to the target SI.

First, we distinguished between drought conditions in sum-
mer and winter seasons. The summer (winter) season was
defined as June, July, and August above (below) the equa-
tor and December, January, and February below (above) the
equator. Second, we focused on months corresponding to
dry conditions, here defined as SI ≤ 0. This threshold in-
cludes near-normal and mildly dry conditions, but leaves a
larger sample size than when we limit the analysis to moder-
ate or severe drought events. Theoretically, moderate drought
events (SI≤−1) have an occurrence probability of about
16 % per year, which would correspond to about 5 drought
months in a 30-year study period, for a total of 15 drought
months considering a 3-month season. Severe drought events
(SI≤−1.5) would result in 6 drought months during a 30-
year period of 3 months based on the same reasoning, com-
pared to 45 events using SI ≤ 0 as a threshold.

After preparing the SI time series, we cross-correlated
each of the SPI time series with the SSMI, SRI, and SSFI,
without considering lag between the time series. The drought
propagation timescale was defined as the SPI accumulation
period that is most closely related to the target drought index,
which we call SPI-n. In this analysis we determine which
SPI accumulation period best represents drought propagation
timescales overall during the study period. However, drought
propagation may occur at different timescales in the same
location and season, and any specific meteorological drought
event may propagate to other droughts more quickly, or more
slowly, than suggested by SPI-n. Pixels where the final corre-
lations between SPI-n and SSMI, SRI, or SSFI are not statis-
tically significant (p = 0.05) were masked from the results.
Autocorrelation is a potential issue when correlating time se-
ries, as it reduces the degrees of freedom compared to a stan-
dard significance test. In this study, the effective degrees of
freedom are based on the modified Chelton method (Pyper
and Peterman, 1998) as in Barker et al. (2016).

The strength of the relationships between (i) the Köppen–
Geiger climate type classification (Kottek et al., 2006) shown
in Fig. 1 and (ii) certain model characteristics on SPI-n were
quantified using a variety of tests. We used the rank of SPI-n
rather than the duration of the accumulation period in months
in the calculations. This means we assumed the difference
between accumulation periods of 12 and 24 months (both on
the order of annual timescales, differing by 1 rank SPI-n)
to be equivalent to the difference between 1 and 2 months
(both on the order of sub-seasonal timescales, differing by
1 rank SPI-n) but very unlike the difference between 1 and
12 months (sub-seasonal versus annual timescales, differing
by 5 rank SPI-n). The choice of statistical tests is not straight-
forward. Rank SPI-n are essentially ordinal variables, which
are tested using metrics such as chi-squared tests. However,
chi-squared and comparable tests treat ordinal variables as
categorical variables. In our case this means that the re-
lationships between the used accumulation periods are not
taken into account. Since the chosen accumulation periods
are nearly equidistant in log space, we chose to apply sta-
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Figure 1. Map of the Köppen–Geiger climate classification and
the GRDC stations used in this study. The number of GRDC sta-
tions within each climate type is included in the legend in brackets.
TRO W: tropical wet; TRO S: tropical savanna; DRY: dry; TMP:
temperate; CON: continental; POL: polar.

tistical tests developed for interval data in addition to chi-
squared tests. Statistical significance was based on ANOVA
tests, with the Tukey’s honestly significant difference test
as a post hoc test to compare groups in a pairwise fashion.
Tukey’s test corrects for family wise errors, or the fact that
the chance of type I errors increases when comparing mul-
tiple groups. When only two groups are possible we used
paired t tests.

With large quantities of data, even very small differences
between group means can be statistically significant. Mea-
sures of effect size are more useful to investigate the magni-
tude of the differences between groups, which may be more
relevant for interpretation and policy. We use Cohen’s d to
quantify the effect size between two groups (Cohen, 1988).
This metric is defined as

d =
µ1−µ2

σpooled
, (1)

where

σpooled =

√
(n1− 1)σ 2

1 + (n2− 1)σ 2
2

n1+ n2− 2
(2)

and where µ represents the group mean, here mean rank SPI-
n; σ the standard deviation of rank SPI-n; n the number of
observations; and subscripts indicate the group, here climate
types. The outcome of the metric is thus the difference in
group means relative to the standard deviation of the groups.
A result of 1 means that the group means differ by 1 stan-
dard deviation and thus that those groups overlap by about
62 %. Previous studies tend to use fixed thresholds to inter-
pret small (0.2), medium (0.5), and large (0.8) effect sizes,
though these thresholds are considered to be rather arbitrary
(Cohen, 1988; Lenth, 2001).

2.3 Validation of drought propagation

Timescales of drought propagation from meteorological to
streamflow drought in global hydrological models are val-
idated against observational data. Sites with observational

streamflow data were matched to model pixels by selecting
the model pixel containing the in situ site. Since there may
be discrepancies between the model and actual river routing
schemes, we extracted the model streamflow data from the
selected pixel as well as from the eight surrounding pixels.
The in situ site was then assigned to the model pixel with
the lowest root mean square error (RMSE) between observed
and modeled monthly streamflow. Once the in situ sites were
matched to model pixels, the SPI-n were calculated as de-
scribed in Sect. 2.2. Since the observational time series may
have gaps within the study period, model results were also
recalculated at the in situ sites using only months for which
observational data were available.

Model discharge time series from the models used in this
study (see Sect. 3) have been evaluated in previous studies
(Beck et al., 2017; Schellekens et al., 2017), so we limit the
evaluation to drought propagation characteristics, or SPI-n.
The evaluation of SPI-n was based on the rank SPI-n rather
than the length of the accumulation period in months, for the
same reason for which rank SPI-n were used in the statistical
tests (Sect. 2.2). The performance metrics used in the eval-
uation were the mean absolute error (MAE) and Spearman
correlation coefficient.

3 Data

We assessed drought propagation in seven global models
from the eartH2Observe project (http://www.earth2observe.
eu/, last access: last access 20 June 2017), as well as in
the model ensemble mean. Three of the models are land
surface models (LSMs): HTESSEL-CaMa (Balsamo et al.,
2009; Yamazaki et al., 2011), ORCHIDEE (D’Orgeval et
al., 2008; Krinner et al., 2005; Ngo-Duc et al., 2007), and
the SURFEX-TRIP modeling platform (Decharme et al.,
2010, 2013). The other four models are global hydrologi-
cal models: LISFLOOD (Van Der Knijff et al., 2010), PCR-
GLOBWB (van Beek et al., 2011; Wada et al., 2014), W3RA
(van Dijk, 2010; Van Dijk et al., 2014), and WaterGAP3
(Döll et al., 2009; Flörke et al., 2013). Other models in
the eartH2Observe project were excluded because they did
not provide all of the variables required for this study. The
models are run with a consistent 0.5◦ meteorological forc-
ing dataset, the WATCH Forcing Data methodology applied
to ERA-Interim reanalysis (WFDEI) data (Weedon et al.,
2014). However, static fields such as land cover and soil
physical properties were not prescribed, as these tend to be
closely linked to the modeling system. Important character-
istics of the models such as runoff mechanisms and repre-
sentation of reservoirs or water use are presented in Table 1.
For more information about the model datasets and project
design, see Schellekens et al. (2016). Since we cannot disen-
tangle the effects of the differences in model structures and
parameterizations in the current experimental design, we fo-
cus on the results of the model ensemble mean rather than
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Table 1. Overview of models and relevant characteristics.

Model Model Evaporation Snow Soil layers Runoff Reservoirs Water
type use

HTESSEL-CaMa LSM Penman–Monteith Energy balance 4 Saturation excess No No

LISFLOOD GHM Penman–Monteith Degree day 2 Saturation and Yes Yes
infiltration excess

ORCHIDEE LSM Bulk method Energy balance 11 Green–Ampt No Irrigation
(Barella-Ortiz et al., infiltration only
2013)

PCR-GLOBWB GHM Hamon Temperature based 2 Saturation excess Yes No
(lakes only)

SURFEX-TRIP LSM Penman–Monteith Energy and 14 Saturation and No No
mass balance infiltration excess

W3RA GHM Penman–Monteith Degree day 3 Saturation and No No
infiltration excess

WaterGAP3 GHM Priestley–Taylor Degree day 1 Beta function Yes Yes

the individual models. The ensemble mean provides insight
into the model consensus on drought propagation timescales
and how these vary by climate. Nevertheless, we present the
individual model results in the Supplement.

In this study, we used the monthly precipitation, root-
zone soil moisture, runoff, and streamflow datasets to cal-
culate the SIs. We do not study groundwater droughts be-
cause HTESSEL-CaMa does not simulate this store, and two
of the other models have not made the data available. In ad-
dition, groundwater is defined differently between models,
complicating comparisons of this store. The common forc-
ing dataset means that the SPI time series are identical for all
models, while the SSMI, SRI, and SSFI are model specific.
The model ensemble mean was calculated as the average of
the SIs. This method deviates from the standard approach in
which the ensemble mean is the average of the original model
time series. We have chosen to average SI time series be-
cause root-zone soil moisture storage and its variability vary
considerably between models in certain regions. In this way,
models with high soil moisture (variability) have a much
larger influence on the mean time series than models with
low soil moisture (variability). In these situations averaging
SI time series better captures the overall model response than
averaging original model time series (see Fig. S1 in the Sup-
plement for an example). Though averaging SI time series
will result in a narrower range of values for the ensemble
mean than for the individual models, the outcome of the SPI-
n analysis is not greatly affected because it is based on cor-
relations. A consistent model dataset for the eartH2Observe
project is available from 1980 to 2012, though we use the
years 1983–2012 to avoid data gaps in the first years of the SI
time series caused by the 36-month accumulation period for
the SPI. In addition to the datasets used to calculate the SIs,

we used other model variables to relate these to the drought
propagation results. These are the runoff coefficient, or the
ratio of runoff to precipitation, and the ratio of surface runoff
to total runoff.

The validation of modeled drought propagation was based
on observed precipitation and streamflow time series. We
used gauge-based precipitation data from the Global Pre-
cipitation Climatology Centre’s (GPCC) Full Data Reanal-
ysis product version 7 (Schneider et al., 2015). The data are
available as monthly precipitation totals at 0.5◦ resolution for
the entire modeled period. Note that reanalysis precipitation
data, such as used for the model forcing in this study, and
the GPCC dataset are not truly independent. However, the
dependence of reanalysis precipitation on both gauge and
satellite observations inhibits the selection of a completely
independent dataset with global coverage that also has a
record long enough for drought studies. Monthly stream-
flow data were obtained from the Global Runoff Data Centre
(GRDC; Koblenz, Germany; https://www.bafg.de/GRDC/
EN/Home/homepage_node.html, last access: 15 June 2017)
database. We used only sites with a catchment area larger
than 9000 km2, where the model upstream catchment area
is within 25 % of the GRDC upstream catchment area, and
which have at least 15 years of data. In addition, we ensured
that the sites were independent by searching for the most up-
stream stations that fit the previous requirements. All stations
located downstream of these stations were excluded from the
analysis. Finally, we only report on sites where the correla-
tion between SPI-n and the SSFI was statistically significant
(p < 0.05). These criteria resulted in 127 sites (see Fig. 1),
with an average data availability of 29 years.
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4 Results and discussion

Here, we characterize and discuss the timescales of drought
propagation from meteorological to soil moisture and hydro-
logical drought at a global scale. First, we describe drought
propagation in the model ensemble mean and its relationship
to climate. This gives us an idea of the model consensus. Sec-
ond, we assess the variability between models and identify
factors that may explain these differences. Finally, we com-
pare the results of the model ensemble mean as well as the
individual models to observational data.

4.1 Model ensemble mean

Drought propagation based on SPI-n for the model ensemble
mean varies considerably in space, and all timescales from 1
to 36 months are represented in the results (Fig. 2). Summer
soil moisture droughts (based on SSMI) are best represented
by SPI-n of 1 or 2 months in wet regions such as the Ama-
zon, but by much longer SPI-n in dry climates and some bo-
real regions. Results are more mixed when focusing on runoff
droughts (based on SRI). Runoff droughts are most linked to
precipitation deficits in the same month in dry climates such
as the Sahel, southern Africa, and central Australia. Runoff
droughts in other dry regions such as the Middle East, north-
ern Africa, and the western USA, however, are related to
much longer precipitation deficits up to several years. The
patterns of drought propagation timescales from meteorolog-
ical to streamflow drought are similar to the patterns of SPI-n
for runoff droughts, though SPI-n tends to be slightly longer.
Longer SPI-n for streamflow compared to runoff can be ex-
pected as streamflow is simply routed runoff. In general, SPI-
n are also longer, and drought propagation is slower, for win-
ter droughts than for summer droughts (Fig. 2). In this study,
we focus on SPI-n rather than the strength of the relation-
ship between SPI and other SIs. However, the correlations
behind SPI-n are generally high, with median values ranging
from 0.67 to 0.74, depending on climate and season (Fig. S2).
The strength of the correlation is highest in tropical climates
(medians around 0.8) and lowest in polar climates (medians
around 0.6).

The relationship between drought propagation timescales
and climate types is further examined using the Köppen–
Geiger classification (Kottek et al., 2006). We use six cli-
mate classes that reflect the five major climate types, with
an additional distinction between tropical wet (i.e., tropical
rainforest or monsoonal climates) and tropical savanna cli-
mates (Fig. 1). The results in Fig. 3 confirm that climate type
plays an important role in the timescale of drought propaga-
tion. As in Fig. 2, droughts in tropical climates tend to re-
spond to short periods of accumulated precipitation deficits,
while continental and polar climates respond to longer peri-
ods of accumulated precipitation deficits. Overall, the vari-
ability within the tropical climate groups (both wet and sa-
vanna) is relatively low compared to dry climates, which are

represented by the entire range of SPI accumulation peri-
ods studied. Despite the large variability in drought propaga-
tion timescales in dry climates, further distinctions between
desert and savanna or between hot and cold climates within
the dry climate class did not have added value.

Winter droughts are related to longer SPI-n than summer
droughts in tropical savanna, continental, and polar climates.
Soil moisture droughts in tropical wet climates, and hydro-
logical droughts in temperate climates, on the other hand,
have similar propagation characteristics in summer and win-
ter. The seasonality of SPI-n in tropical savanna climates may
be related to the distinct wet (summer) and dry (winter) sea-
sons in these regions: SPI-n are more similar to tropical wet
climates in summer and to dry climates in winter. In con-
tinental climates, longer SPI-n may be due to snow cover
in the winter. Precipitation in the form of snow during fall
and winter will not replenish soil moisture or runoff until
temperatures rise sufficiently to melt the snow. In this way,
drought conditions in winter may be more related to precipi-
tation deficits in the previous summer. Indeed, soil moisture
droughts may be more related to the SPI accumulated over
the 3-month period before snowfall than to the longer period
starting with those 3 months and extending until the defined
winter season. Note that we used a rather simple definition of
summer and winter seasons by using the equator as divider.
However, since the climate along the equator is almost exclu-
sively tropical wet, which does not show large seasonality,
we expect that this does not significantly impact the results.

In terms of statistical significance, ANOVA and chi-
squared tests show that the differences in mean rank SPI-n
between climate types are significant (p < 0.01) for both soil
moisture and hydrological droughts. Further analysis based
on Tukey’s honestly significant difference tests shows that
pairwise differences in mean rank SPI-n of almost all cli-
mate types are statistically significant (p < 0.01) with just
one exception. The mean rank SPI-n for winter hydrologi-
cal droughts in continental and polar climates are not sig-
nificantly different. Similarly, the differences in propagation
time between summer and winter droughts for all drought
types are significantly different based on chi-squared and
paired t tests (p < 0.05), except for the paired t test for soil
moisture droughts in tropical wet climates. Despite the fact
that most group means differ significantly, they are not al-
ways substantially different in magnitude. For example, the
difference between mean summer and winter SPI-n for runoff
droughts in temperate climates is very small.

The difference between the timescales of drought propaga-
tion to soil moisture and hydrological droughts can provide
additional insights into the mechanisms of drought propa-
gation. The differences in the rank of SPI-n are shown in
Fig. 4. As explained in Sect. 2.2, we use rank SPI-n rather
than the duration in months because these are more useful
in interpreting differences between (sub-)seasonal and an-
nual timescales than the SPI-n in months. A difference of
1–2 rank SPI-n indicates that drought propagation occurs
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Figure 2. The SPI accumulation period (SPI-n) resulting in the highest correlations with model ensemble mean SSMI, SRI, and SSFI, for
summer and winter droughts. Pixels where those correlations are not statistically significant (p < 0.05) are masked.

Figure 3. Histograms of the SPI-n in months by climate type and for summer and winter droughts in SSMI, SRI, and SSFI. Circles represent
the mean rank SPI-n per climate type, and season and numbers in the upper right indicate the number of summer and winter data pairs per
climate and drought type. Abbreviations of climate types are the same as in Fig. 1.

at similar timescales (i.e., sub-seasonal, seasonal, or yearly
timescales). Differences of more than 4 rank SPI-n represent
large differences in drought propagation timescales, such as
between sub-seasonal and yearly timescales. In summer, SPI-
n for runoff are higher than for soil moisture in the Ama-
zon, eastern North America, central Africa, and parts of Eu-
rope. This means that drought propagation to soil moisture
is quicker than drought propagation to runoff, which sug-
gests that subsurface runoff or baseflow is more important
than surface runoff in these locations. The opposite is true

for most parts of Australia, large parts of central and eastern
Asia, and parts of western North America. In these locations,
drought propagation to soil moisture drought is slower than
drought propagation to runoff, which implies that surface
runoff is an important component of total runoff. The dif-
ferences can be substantial, with rank differences of five and
more, which roughly represent the difference between sub-
seasonal and annual timescales. In winter, differences tend
to be smaller, and longer drought propagation timescales for
runoff than soil moisture (i.e., positive values in Fig. 4) are
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Figure 4. The difference in the rank of SPI-n for SRI and SSMI, SSFI and SSMI, and SSFI and SRI. Pixels where the difference between
accumulation periods are not statistically significant (p < 0.05) are masked.

more common. Drought propagation timescales for stream-
flow droughts tend to be longer than for runoff drought,
which is consistent with streamflow being routed runoff.

Spearman correlation coefficients show that the difference
in rank SPI-n of summer soil moisture and runoff droughts
is negatively related to the amount of surface runoff rela-
tive to total runoff (ρ =−0.53). The relationships with aver-
age annual precipitation (ρ = 0.44) and the runoff coefficient
(ρ = 0.36) are positive but slightly weaker. Each of the corre-
lation coefficients noted here is highly significant (p < 0.01).
The amount of surface runoff relative to total runoff, annual
average precipitation, and the runoff coefficient is also re-
lated to the difference between soil moisture and streamflow
drought, though the relationships are slightly weaker (cor-
relations are up to 0.1 lower). The difference in SPI-n be-
tween drought types in winter, as well as between runoff
and streamflow droughts in summer, cannot be explained by
these variables.

Results of propagation analyses from soil moisture to
runoff and streamflow drought and from runoff to stream-
flow drought are largely consistent with the results shown in
Fig. 4. For example, regions where meteorological drought
propagates into soil moisture drought at shorter timescales
than it does to runoff or streamflow drought (i.e., red col-
ors in Fig. 4) are represented by longer timescales of SSMI-
n (Fig. S3). Regions showing negative values in Fig. 4, on
the other hand, tend to be best represented by SSMI-n of
1 month, or the shortest accumulation period. As discussed
previously, hydrological drought may not be preceded by soil
moisture drought in these regions: the negative values sug-
gest that surface flow may be more important than subsur-
face flow, thereby bypassing the soil moisture store. There-
fore, 1-month SSMI-n appear to be the most appropriate,
even though the mechanism of drought propagation through
surface flow cannot be represented when analyzing the prop-
agation from soil moisture to hydrological drought. Propaga-

tion from runoff to streamflow drought largely occurs at short
timescales of 1 to 2 months, which is consistent with the sim-
ilarity of the global patterns of SPI-n for these drought types
in Figs. 3 and 4.

In an additional analysis, we calculated SPI-n for
the model ensemble mean focusing on mild droughts
(SI≤−0.5) and moderate droughts (SI≤−1). When using
mild droughts as a threshold value, the results are largely
similar to those including near-normal conditions (SI≤ 0), as
shown in Fig. S4. Both the global patterns and the differences
between the climate types are similar to the results shown in
this section. However, the number of pixels masked due to
insignificant correlations between SPI-n and the SSMI, SRI,
or SSFI increases. When moderate droughts are used as a
threshold (Fig. S5), the proportion of pixels that are masked
increases further, resulting in 40 %–50 % less data than when
including near-normal conditions. In addition, the maps of
SPI-n become noisier and the distributions of SPI-n by cli-
mate type (as shown in Fig. 3) flatten, especially in continen-
tal and polar climates. However, the relationships between
the climate and seasonal group means remain similar.

Additional sensitivity tests were based on the number of
SPI accumulation periods studied and the method used to
calculate the ensemble mean. Global patterns of SPI-n (as
shown in Fig. 2) and the difference in rank SPI-n (as shown
in Fig. 4) are very similar when fewer SPI accumulation pe-
riods are used (1, 3, 6, 12, and 24 months). The outcomes
of the chi-squared and ANOVA tests investigating the differ-
ences in SPI-n by climate type are also statistically signifi-
cant and therefore unchanged. Similarly, calculating the en-
semble mean based on the original model time series rather
than SI time series has a limited effect on the global patterns
of soil moisture and on the average rank SPI-n per climate
type. A higher occurrence of longer SPI-n for soil moisture
droughts was associated with a substantially higher average
soil moisture content and soil moisture variability in one or
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two models. The model ensemble mean based on averaging
soil moisture time series was therefore more sensitive to soil
moisture conditions in those one or two models than in the
other models (Fig. S1).

The patterns of runoff drought propagation found in this
study are similar to a previous study that calculated cor-
relations between ensemble median runoff and precipita-
tion percentiles (van Huijgevoort et al., 2013). Specifically,
runoff is more closely related to shorter SPI (or precipi-
tation percentile) accumulation periods in tropical regions
and to longer accumulation periods in continental and po-
lar climates. However, more specific regional comparisons
between these studies are hindered by differences in the ap-
proach of the two studies. In Van Huijgevoort et al. (2013),
correlations are based on the full precipitation and runoff
time series, while in our study they are limited to below-
average runoff conditions in either summer or winter months
only. The results shown here are also in line with results
from an observational study comparing SPI and SSFI in the
United Kingdom performed by Barker et al. (2016). Barker
et al. (2016) reported that SPI-n of 1–4 months were most
closely related to SSFI, except in the southeast where some
major aquifers are located and where longer SPI-n were
found. That is just slightly shorter than the 2–6 months found
in this study. Where drought propagation occurs at very short
timescales, drought is mainly driven by precipitation deficits,
possibly in combination with temperature anomalies (though
these are not reflected in the SPI). Where drought propaga-
tion occurs at long timescales, attenuation by hydrological
stores likely plays a more important role.

4.2 Model variability

The variability of SPI-n in the models underlying the model
ensemble mean is shown in Fig. 5, while individual model re-
sults can be found in Fig. S6 (summer) and Fig. S7 (winter).
Again, the standard deviation is not shown in months, but in
the rank of SPI-n timescales studied. In summer, the stan-
dard deviation ranges from 1 to 4 rank SPI-n. Note that dif-
ferences of 1–2 rank SPI-n indicate that models tend to agree
on whether drought propagation occurs at sub-seasonal, sea-
sonal, or annual timescales. Model variability is low in tem-
perate regions such as Europe and eastern North America,
as well as in tropical regions such as the Amazon and South-
east Asia. The model variability is high in (semi-)arid regions
such as the Sahel and central Australia. The patterns of model
variability in hydrological drought propagation timescales
are largely similar to those of soil moisture drought. How-
ever, the variability is patchier, and there are some regional
differences. For example, model variability in SPI-n in trop-
ical and temperate climates is slightly higher for runoff than
for soil moisture. In addition, model variability is lower
in central Asia for runoff droughts than for soil moisture
droughts.

Attributing observed differences between models to model
characteristics is not straightforward, despite the common
meteorological forcing, because there are considerable dif-
ferences in model structures and parameterizations (Beck et
al., 2016, 2017; Döll et al., 2016). However, we examine the
relationship between drought propagation and specific model
characteristics to identify areas for further study. First, we ex-
amine the relationship between SPI-n and average soil mois-
ture storage, as previous work has suggested that water stor-
age plays an important role in drought propagation (Barker
et al., 2016; Van Loon and Laaha, 2015). In addition, we ex-
amine the effect of model structural choices on drought prop-
agation in an exploratory analysis.

Soil moisture storage in the models varies considerably be-
tween models, mainly due to differences in the definitions of
root-zone soil moisture used to calculate the SSMI. The re-
ported depths of the root zone range from 0.2 to 8 m, which
may be a fixed value for all pixels or vary by pixel and/or
land use type. Although we use standardized indices (SSMI)
and not absolute values of soil moisture, the response time
to changes in precipitation and/or evaporation will differ be-
tween soils with large and small storage volumes. We exam-
ine the relationship between average root-zone soil moisture
storage and average SPI-n for soil moisture droughts per cli-
mate type in Fig. 6. Soil moisture storage is averaged over
space and time, and SPI-n in space, resulting in a single point
for each model. The figure shows that drought propagation
from meteorological to soil moisture drought is strongly re-
lated to average soil moisture storage, with correlation coef-
ficients between 0.56 and 0.91, depending on the season and
climate type. The impact of changes in storage on drought
propagation is especially high in dry climates, where rela-
tively small differences in average soil moisture correspond
to large differences in SPI-n. In comparison, the impact of
storage on SPI-n is low in tropical wet climates. In general,
changes in SPI-n with storage are smaller in winter than in
summer. For tropical wet, continental, and polar climates the
impact of storage is less than 1 rank SPI-n over the full range
of storage volumes in winter, suggesting that storage is not
an important driver of model variability in this season.

The relationship between soil moisture storage and
drought propagation to runoff and streamflow is not included
here because the link is not as clear-cut. Runoff consists of
surface and subsurface components. The subsurface compo-
nent of runoff is related to water stored in groundwater and/or
in the lowest layer of the soil, and not to the upper soil layers
included in the root zone. Furthermore, groundwater data are
not available for three out of seven models. The surface com-
ponent, on the other hand, is only affected by soil moisture in
as much that saturated conditions near the surface will result
in a larger surface flow component. Therefore, it is impacted
by the relative saturation of the soil rather than the storage
itself.

In an exploratory analysis, we also examine the relation-
ship between four qualitative factors related to model struc-
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Figure 5. The standard deviation of the rank of SPI-n between the different hydrological models for summer and winter droughts in SSMI,
SRI, and SSFI.

Figure 6. SPI-n for the SSMI averaged over all pixels and each climate type separately plotted against mean annual root-zone soil moisture
storage averaged over the same region. Each point represents a model. Lines of best fit have been added for reference.

ture and the timescales of drought propagation. First, we
compare SPI-n in LSMs and GHMs. Second, we study the
effect of different evaporation schemes, specifically compar-
ing Penman–Monteith evaporation schemes to more empir-
ical temperature-based approaches. Third, we group models
by runoff generation mechanisms, comparing models that in-
clude infiltration excess runoff generation to those that only
represent saturation excess. In this last analysis, we exclude
ORCHIDEE and WaterGAP3 because they use alternative
methods of runoff generation: a Green–Ampt infiltration and
a beta function, respectively. Note that the limited number
of models and large number of different model parameteri-
zations and structural choices means that we cannot defini-
tively attribute observed differences between models to any
of these characteristics. Instead, this analysis is meant to be
an initial exploration of the results.

The relative importance of these model characteristics
based on Cohen’s d (see Sect. 2.2) varies considerably over

the different climates and drought types (Fig. 7). Overall,
the tested model characteristics are associated with larger ef-
fects on soil moisture droughts than on runoff and streamflow
droughts. Grouping models by model type has the largest
effect on mean soil moisture drought SPI-n for most cli-
mates, where drought propagation is slower in LSMs than in
GHMs. For runoff droughts, on the other hand, GHMs tend to
have higher SPI-n for runoff droughts than LSMs. However,
we cannot determine which underlying or associated model
characteristics are the primary sources of the difference be-
tween the groups in this analysis.

Grouping models by runoff generation mechanisms has a
smaller effect on average SPI-n for soil moisture droughts
than the other studied factors. However, it can be more rele-
vant for runoff and streamflow droughts, especially in trop-
ical and continental climates. In these climates, including
infiltration excess runoff leads to lower SPI-n and faster
drought propagation. In tropical climates, this can be ex-
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Figure 7. Effect sizes based on Cohen’s d for model structural choices by climate for summer and winter droughts in SSMI, SRI, and SSFI.
Bars represent the standard deviation of model SPI-n for each group. Abbreviations of climate types are the same as in Fig. 1.

plained by the fact that high-intensity rainfall events exceed-
ing the infiltration capacity of the soil are more common.

Note that the model characteristics tested here are not fully
independent. The number of models is small compared to the
number of differences in model structures and parameteriza-
tions. Therefore, grouping models by different characteris-
tics can result in identical groups, making it impossible to
untangle the two in the current study setup. One example is
the snow scheme. Previous studies have suggested that us-
ing energy-based or temperature-based snow schemes results
in different model behavior, both based on the same models
used in this study (Beck et al., 2017) as well as in other mod-
els (Haddeland et al., 2011). In this study, however, it is im-
possible to distinguish between model type and snow scheme
since all LSMs use an energy-based approach, while GHMs
use temperature-based approaches. Another example is sim-
ulation of reservoirs. Previous studies have recognized that
human adaptation should be taken into account in drought
studies (Van Loon et al., 2016; Veldkamp et al., 2015) and
that the simulation of reservoirs has a substantial impact on
drought propagation (Lorenzo-Lacruz et al., 2013). However,
grouping models by whether they simulate reservoirs results
in nearly identical groups as dividing them by model type. In
fact, only W3RA is classified as another group.

Insight into which factors are truly responsible for model
differences can only be gained through exhaustive experi-
ments testing different model parameterizations and struc-
tures (i.e., Medlyn et al., 2015). This type of analysis was un-
fortunately not possible within the experimental setup of this

study because model parameterizations were not consistent
between models (see Sect. 3). Nevertheless, while the effect
sizes cannot be used to confirm that a certain model char-
acteristic is the true factor underlying observed differences,
they can be used to identify directions for further study in
more comprehensive analyses.

4.3 Evaluation against observations

The timescales of drought propagation from meteorologi-
cal to streamflow drought in the models and model ensem-
ble mean have been evaluated against data from 127 in situ
streamflow stations (Fig. 8). In this way, we can investigate
whether the modeled drought propagation times presented in
Sect. 4.1 and 4.2 resemble reality. Of the individual mod-
els, W3RA performs best for summer droughts and Water-
GAP3 for winter droughts based on MAE and Spearman
correlations between modeled and observed SPI-n. The per-
formance of the model ensemble mean is similar to that of
the best-performing model in both seasons, with the high-
est correlations and (nearly) the lowest mean absolute errors
with observed SPI-n. WaterGAP3 is the only model that was
calibrated against streamflow observations, which could be
a reason for the good performance in winter, even though it
is outperformed by all other models in summer. While the
mean absolute errors of the ensemble mean and individual
models are within 1 or 2 rank SPI-n, correlations are low for
all models.

In addition to the overall performance metrics, we com-
pare the number of models for which the difference with ob-
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Figure 8. Comparison of model and observed summer (a) and winter (b) streamflow drought propagation timescales. The Spearman corre-
lation and mean absolute error based on rank are compared, where better-performing models fall in the upper right corner. A map shows the
number of models where the absolute error is ≤ 1 or ≥ 4 (right). The number of represented sites is indicated in the symbols of the legend.

served SPI-n is small (absolute error ≤ 1) and the number of
models for which this difference is large (absolute error ≥ 4)
at each site (Fig. 8). The thresholds are based on the mod-
els’ (in)ability to capture the overall timescales of drought
in terms of sub-seasonal, seasonal, or yearly timescales. At
least six out of seven models are within one step of the ob-
served SPI-n at 16 % and 19 % of the study sites in summer
and winter, respectively, and at least four models are within
one step at 45 % and 39 % of the study sites for summer
and winter, respectively. This suggests that models are well
able to capture observed drought propagation timescales at
these sites. However, the majority of models differ by at least
four steps of SPI-n at approximately 10 % of sites. At these
sites, the models show substantially different drought prop-
agation timescales. These differences in SPI-n correspond
to differences between sub-seasonal and annual timescales
of drought propagation. Models tend to do well in west-
ern North America and Europe, but poorly in central North
America and parts of South America and Australia.

We use the mean error (ME) rather than the MAE to in-
vestigate the relationship between errors in rank SPI-n and
climate type (Fig. 9). While MAE is a more suitable metric
for evaluating the overall performance of the models since it
is indifferent to the direction of the errors, ME allows us to
assess whether models are more likely to over- or underes-
timate SPI-n and thus reflects model bias. On average, most
models and the model ensemble mean tend to overestimate
summertime SPI-n in tropical wet climates, which is also the
climate for which mean errors are largest. Models tend to

underestimate SPI-n in tropical savanna climates, while re-
sults are more mixed in the other climate types (Fig. 9). The
confidence intervals of the mean are smallest in continental
and temperate climates, which is most likely because a rel-
atively large number of sites are located in these climates
compared to the tropical and dry climate types. However,
the observed differences in mean rank SPI-n error between
climate types are not always statistically significant based
on chi-squared and ANOVA tests (p < 0.05). Mean errors in
summertime rank SPI-n are significantly different between
climate types in only one model (PCR-GLOBWB) according
to chi-squared tests and in two (HTESSEL-CaMa and PCR-
GLOBWB) out of seven models, as well as the model ensem-
ble mean, according to ANOVA tests. In winter, chi-squared
tests show that the differences in mean error rank SPI-n are
statistically significant for all but one model (LISFLOOD) as
well as the ensemble mean. The results of ANOVA tests are
significant for four models (HTESSEL-CaMa, ORCHIDEE,
SURFEX-TRIP, and WaterGAP3), but not for the model en-
semble mean. Further analysis based on Spearman correla-
tions showed no relationship between errors in rank SPI-n
and catchment size.

It is important to note that some of the streamflow time
series span as little as 18 years, which is shorter than the
30 years of data recommended for the calculation of SI. This
means that the observational time series at some sites are
too short to capture the climatology of their locations. How-
ever, the average time series length (29 years) is close to the
required 30 years. Furthermore, even where time series are
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Figure 9. Mean error in rank SPI-n between model and observed
summer (a) and winter (b) streamflow droughts. Error bars indicate
the 95 % confidence intervals of the mean, and the number of sites
within each climate type group is indicated in the bottom panel.
Abbreviations of climate types are the same as in Fig. 1.

relatively short we can evaluate whether the models capture
the relationship between observed SPI and SSFI during the
available time period. Another limitation of the evaluation is
that the sites with observed data are not spread evenly across
the globe, as most sites are located in the United States or
Europe, with scarce data in Africa and Asia. Differences be-
tween the models and observations can be attributed to sev-
eral types of errors (Van Loon, 2015). The first type of error
concerns errors in the model meteorological forcing data, but
also in the GPCC precipitation data used to create the vali-
dation dataset. Then there are the errors in model structure
and parameterizations of hydrologic processes, including the
representation of anthropogenic influence on streamflow. Fi-
nally, there are errors in the (discretization of the) routing
schemes employed by the models.

Unfortunately, evaluation of soil moisture drought propa-
gation timescales is inhibited by the lack of root-zone soil
moisture data at a global scale. While satellite soil moisture
products are available, these are limited to the upper few cen-
timeters of the soil (Owe et al., 2008), which is not repre-
sentative of root-zone soil moisture. Terrestrial water storage
data from the Gravity Recovery and Climate Change mis-
sion has also been used to investigate drought propagation
(Zhao et al., 2017). However, the root-zone soil moisture sig-
nal cannot be untangled from the other terrestrial water stores
and therefore cannot be used for validation in this study.

Field-measured soil moisture is also available, for example
through the International Soil Moisture Network (Dorigo et
al., 2011). However, only a handful of sites remain after ap-
plying the same site selection procedure as for streamflow
drought validation (i.e., sufficiently long time series and a
statistically significant relationship between SPI and SSMI).

5 Conclusions

This study evaluates timescales of drought propagation from
meteorological to soil moisture and hydrological drought in
an ensemble of seven land surface and global hydrologi-
cal models. Drought propagation was quantified by cross-
correlating standardized indices of hydrological variables.
Here, we focus on soil moisture, runoff, and streamflow
droughts in summer and winter. However, the simple and
flexible approach used here can be applied to other drought
types, such as groundwater droughts, and to other months or
seasons.

Drought propagation is closely related to climate type,
with slower drought propagation in dry and continental cli-
mates and quicker drought propagation in tropical climates.
Winter season drought propagation tends to be slower than
in the summer, especially in tropical savanna and continental
climates. This may be a result of the distinct wet and dry sea-
sons in the former and of the snow cover in the latter. Faster
propagation of meteorological drought to runoff drought than
to soil moisture drought has been linked to a higher propor-
tion of surface runoff, thereby causing a larger portion of to-
tal runoff to bypass the soil moisture store.

Model variability can be quite high, especially for sum-
mer droughts and in dry climates, where the socioeconomic
impacts of drought can be severe. Since the models were
run with consistent forcing datasets, differences can be at-
tributed to model parameterization and structure. For exam-
ple, drought propagation from meteorological to soil mois-
ture drought was generally slower in models with higher av-
erage soil moisture storage, and vice versa. Although the dif-
ferences cannot be definitively attributed to specific model
characteristics in the current experiment, we identified sev-
eral directions for further study. Grouping models by model
type and runoff generation mechanisms is especially promis-
ing, as these factors are associated with significantly differ-
ent average drought propagation timescales. A true physical
interpretation of the results would require comprehensive ex-
periments in which model structural choices and parameteri-
zations are consistently changed for all participating models.
However, this was not possible in the experimental setup.

The relationship between meteorological and streamflow
drought in the global models was evaluated against obser-
vational data. Overall, the models were able to capture the
timescales of drought propagation, as errors were relatively
low on average. However, considerable model advancements
can be made since there were large discrepancies between
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model and observed drought propagation at 10 % of the study
sites.

A better understanding and representation of drought
propagation in global models may improve drought fore-
casting (Cancelliere et al., 2007), especially when combined
with the availability of accurate seasonal forecasts (Luo et
al., 2007; Luo and Wood, 2007). Drought forecasting poten-
tial is expected to be higher in regions with relatively slow
drought propagation, such as the dry and continental climates
in this study, as drought forecasting for longer SPI-n tends to
be more accurate than for shorter SPI-n (Mishra and Desai,
2005). Additional research using lagged SPI-n could assess
the potential for forecasting different types of drought based
on meteorological data. Improved representation of drought
propagation in models is also crucial to constrain the im-
pact of climate change on drought frequency and severity,
and thereby improve the reliability of projected changes.
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