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Abstract. Soil moisture affects the partitioning of water and
energy and is recognized as an essential climate variable. Soil
moisture estimates derived from passive microwave remote
sensing can improve model estimates through data assimi-
lation, but the relative effectiveness of microwave retrievals
in different frequencies is unclear. Land Parameter Retrieval
Model (LPRM) satellite soil moisture derived from L-, C-,
and X-band frequency remote sensing were assimilated in the
Australian Water Resources Assessment landscape hydrol-
ogy model (AWRA-L) using an ensemble Kalman filter ap-
proach. Two sets of experiments were performed. First, each
retrieval was assimilated individually for comparison. Sec-
ond, each possible combination of two retrievals was assim-
ilated jointly. Results were evaluated against field-measured
top-layer and root-zone soil moisture at 24 sites across Aus-
tralia. Assimilation generally improved the coefficient of cor-
relation (r) between modeled and field-measured soil mois-
ture. L- and X-band retrievals were more informative than
C-band retrievals, improving » by an average of 0.11 and
0.08 compared to 0.04, respectively. Although L-band re-
trievals were more informative for top-layer soil moisture in
most cases, there were exceptions, and L- and X-band were
equally informative for root-zone soil moisture. The consis-
tency between L- and X-band retrievals suggests that they
can substitute for each other, for example when transitioning
between sensors and missions. Furthermore, joint assimila-

tion of retrievals resulted in a model performance that was
similar to or better than assimilating either retrieval individ-
ually. Comparison of model estimates obtained with global
precipitation data and with higher-quality, higher-resolution
regional data, respectively, demonstrated that precipitation
data quality does determine the overall benefit that can be
expected from assimilation. Further work is needed to assess
the potentially complementary spatial information that can
be derived from retrievals from different frequencies.

1 Introduction

Soil moisture plays an important role in the water and energy
cycles, as it controls the partitioning of rainfall into evap-
oration, infiltration, and runoff (Seneviratne et al., 2010).
For this reason, soil moisture observations have great po-
tential to improve the performance of land surface models.
There are various ways that soil moisture observations can be
used to improve models, including in model calibration (e.g.
Wooldridge et al., 2003; Wanders et al., 2014) and by con-
straining initial conditions (e.g. Jacobs et al., 2003; Massari
et al., 2014). One of the most popular techniques to merge
observational and model data is through data assimilation,
which has been shown to improve model state estimates of
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surface and root-zone soil moisture (Renzullo et al., 2014;
Draper et al., 2012; Reichle and Koster, 2005), evaporation
(Tian et al., 2017), and runoff (Brocca et al., 2010; Lépez
Loépez et al., 2016).

A variety of observation-based soil moisture estimates
have been used in data assimilation, including field- (Aubert
et al., 2003; Lee et al., 2011), airborne- (Margulis et al.,
2002), and space-borne (e.g. Reichle et al., 2007; Pauwels
et al., 2001) measurements. Soil moisture datasets based on
microwave remote sensing are of particular interest because
of their global coverage, near-daily resolution and low sensi-
tivity to atmospheric interferences. Several studies have as-
similated satellite soil moisture retrievals derived from active
(e.g. Pauwels et al., 2001; Brocca et al., 2011; Draper et al.,
2011) and passive (e.g. Reichle et al., 2007; Q. Liu et al.,
2011; Gao et al., 2007; L6pez Lépez et al., 2016) microwave
sensors, as well as a combination of passive and active sen-
sors (Draper et al., 2012; Renzullo et al., 2014).

Aside from the distinction between active and passive mi-
crowave sensors, soil moisture retrievals can be retrieved
from different frequencies. Common frequencies are L band
(1.4 GHz), C band (6 GHz), and X band (10 GHz). Of these,
L band is often assumed to be optimal for soil moisture re-
trieval because it is less sensitive to vegetation cover and the
atmosphere than the higher frequency retrievals, as well as
having a deeper signal depth (e.g. Schmugge, 1978; Ulaby
et al., 1986). At the same time, the lower emission intensity
means that the observation footprint increases with decreas-
ing frequency, creating a trade-off between spatial detail on
the one hand, and observation depth and interference from
vegetation and the atmosphere on the other. Studies evaluat-
ing and comparing satellite soil moisture retrievals have em-
pirically confirmed that errors in soil moisture retrievals tend
to increase with increasing frequency (Dorigo et al., 2010).
Also, L-band retrievals tend to outperform C-band retrievals
over the more moderate vegetated regions (e.g. Holgate et al.,
2016; Al-Yaari et al., 2014; van der Schalie et al., 2016). It
may be expected that this higher accuracy leads to higher
benefits of data assimilation, but this is yet to be demon-
strated.

Ultimately, the benefit of assimilation depends on the rel-
ative magnitude of errors in the retrievals and in the model.
Holgate et al. (2016) and Renzullo et al. (2016) found that
model estimates of soil moisture already had better accuracy
than those from remote sensing for some Australian sites,
in which case there may be little benefit from assimilation.
However, this may have been a function of the high-quality
precipitation estimates due to a relatively dense station mea-
surement network. Precipitation estimates can be expected to
be of considerably lower quality for many parts of the world,
and there is a need to understand whether satellite data assim-
ilation may be more beneficial under those circumstances.

Here, we assimilate passive microwave retrievals derived
from three different frequencies, but using a common radia-
tive transfer model. Our main objective is to understand dif-
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ferences between the retrievals in terms of their performance
in data assimilation experiments and to investigate whether
there is added value in their joint assimilation. In addition, we
evaluate to what extent the benefit of assimilation depends on
the quality of precipitation estimates used in modeling.

2 Soil moisture data
2.1 Satellite data

Soil moisture data were derived from brightness temper-
atures from two space-borne sensors. The Advanced Mi-
crowave Scanning Radiometer 2 (AMSR-2) provides data for
the C- (6.9 GHz) and X-band (10.65 GHz) frequencies. These
data have spatial resolutions of approximately 50 (C band)
and 38km (X band), respectively, and are sensitive to the
top 1-2 cm soil layer (Owe et al., 2008). The Soil Moisture
Ocean Salinity (SMOS) provides L-band (1.4 GHz) bright-
ness temperatures. These observations have a spatial resolu-
tion of 43 km and are expected to be sensitive to the upper-
most 5cm of the soil. We focus on retrievals based on the
nighttime overpasses (i.e., descending for AMSR-2, ascend-
ing for SMOS) because at night the assumption of equal veg-
etation and surface temperature is better met (de Jeu, 2003;
Y. Y. Liu et al., 2011). It has also been shown empirically
to produce better results (Holgate et al., 2016). Soil mois-
ture data were derived from the C-, L-, and X-band bright-
ness temperatures using the Land Parameter Retrieval Model
(LPRM, Owe et al., 2008) v6 with the parameterizations
described in Parinussa et al. (2015) and van der Schalie et
al. (2016). Despite the common retrieval models, the param-
eterizations vary with the frequency of the brightness temper-
atures. Lastly, all three datasets were resampled to a regular
0.25° grid.

2.2 Field-measured data

Field-measured top-layer and root-zone soil moisture data
obtained from two networks, OzNet and OzFlux, are used
as a benchmark. The OzNet network consists of 63 sites in
southeastern Australia that measure soil moisture in the up-
per 5 or 8 cm of the soil up to 90 cm depth every 20 to 30 min
(Smith et al., 2012). OzFlux (http://www.ozflux.org.au, last
access: 15 February 2017) consists of 36 sites in Australia
and New Zealand where carbon, energy, and water fluxes are
measured. Three main criteria were applied for selecting suit-
able OzNet and OzFlux sites. First, only sites with at least
100 observations of top-layer soil moisture during the assim-
ilation period were included. Second, only sites meeting the
minimum number of triples for the triple collocation analy-
sis were used. Finally, the data must be publicly available.
Out of the 99 sites, 24 sites were selected. The sites consist
of 12 OzNet sites and 12 OzFlux sites and cover a range of
climate types based on a modified K&ppen classification sys-
tem developed by the Bureau of Meteorology (Fig. 1, details
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of sites in Table S1 in the Supplement). The sensor measure-
ments were converted to root-zone values based on weighted
averages of the observed values, where weights correspond
to the portion of the 90 cm root-zone layer closest to each
sensor. Six OzFlux sites were excluded from the root-zone
analysis because they had no sensors below 50 cm depth.

3 Methods
3.1 Hydrological model

The landscape hydrology component of the Australian Wa-
ter Resources Assessment system (AWRA-L) simulates the
dynamics of hydrological states and fluxes at a continental
scale (van Dijk, 2010) and is the model underpinning Aus-
tralia’s water resources assessments and accounts (Hafeez et
al., 2015). The grid-based model has a 0.05° resolution and
is run at a daily time step. It is important to note that each
grid cell is modeled independently, meaning that there is no
lateral exchange of water between neighboring cells.

AWRA-L consists of three soil layers that, in contrast to
most land surface models, do not have a predefined depth
(Fig. 2). Instead, each soil layer has a prescribed maximum
water storage capacity. Soil wetness outputs are water stor-
ages relative to the available soil water, or the difference be-
tween wilting point and field capacity, and therefore range
from O to 1. The water storage can be converted to volu-
metric water content when combined with soil texture data
(Renzullo et al., 2014). Precipitation, reduced by intercep-
tion and direct runoff, enters the soil column by the first soil
layer. This top layer generally corresponds to a thickness of
5-10cm and is also where soil evaporation occurs. The sec-
ond layer is the shallow root layer and has a thickness of
10-20 cm. Conceptually, this layer is where shallow-rooted
vegetation withdraws water for transpiration. The third soil
layer, or deep root layer, has a thickness of 6-8 m and is ac-
cessed by deep-rooted vegetation only. Finally, there is an
underlying groundwater store which can transfer water to the
deep root layer by means of capillary rise. Runoff from the
grid cell consists of the direct runoff from the surface and
drainage from the groundwater store. The runoff can be used
as an input for a routing model to calculate river discharge,
but this is part of another AWRA model system component
(Hafeez et al., 2015).

AWRA-L was run at a point scale, at locations where field-
measured soil moisture data were available. The model was
forced with radiation, daily minimum, and maximum tem-
perature from Australian Gridded Climate Data (AGCD) pro-
vided by the Bureau of Meteorology (Jones et al., 2009).
These data have a 0.05° resolution. Two datasets with differ-
ent spatial resolutions and quality were used to prescribe pre-
cipitation on a daily basis. Tropical Rainfall Measuring Mis-
sion (TRMM) 3B42 Real Time (GES DISC, 2016) daily pre-
cipitation data with a 0.25° resolution were used for the main

www.hydrol-earth-syst-sci.net/22/4605/2018/

4607

experiments. In an additional analysis, we use the model
forced with higher-resolution gridded AGCD precipitation
dataset as a benchmark. In this way, we assess whether pre-
cipitation data quality affects the potential for data assimila-
tion to improve model performance. The assimilation experi-
ments cover the period from July 2012 until April 2015, with
model simulations starting in January 2005 to avoid errors
in the initial conditions. The model version and parameteri-
zation (v0.5; van Dijk, 2010) have not been calibrated with
either satellite or field-measured soil moisture data.

3.2 Data pre-processing

Satellite soil moisture data were prepared for assimilation in
several steps. First, satellite data were assigned to the model
pixels using a nearest-neighbor approach. Next, the data were
scaled to the model range to reduce bias. Previous studies
have used a variety of methods for bias correction, such as
linear rescaling between the minimum and maximum values
(Broccaetal., 2011) or between model wilting point and field
capacity (Lopez Lopez et al., 2016), first and second mo-
ment matching (Draper et al., 2009; Brocca et al., 2010), and
cumulative density function matching (Reichle and Koster,
2004; Draper et al., 2012). Each approach has its strengths
and weaknesses. In this study, we apply a linear rescaling
method matching the 5th and 95th percentiles of the observed
dataset to the model data. We chose this approach because it
retains the temporal distribution and scales it to the model
dynamic range in a manner that avoids undue influence from
outliers.

The errors for the three datasets were estimated using
triple-collocation analysis (Dorigo et al., 2010; Scipal et al.,
2008; Stoffelen, 1998). This analysis uses three datasets to
quantify the error in each and operates under the assumption
that the error structures are independent. One of the three
datasets is chosen as a reference, and the other two datasets
are rescaled to this dataset using linear rescaling factors pro-
vided by the triple collocation analysis. The errors are then
produced in the data space of the reference dataset. Advanced
Scatterometer (ASCAT) soil moisture was used to complete
the required triplet with the AWRA-L open loop (i.e. no as-
similation) and each of the passive microwave estimates in
turn. ASCAT soil moisture data are derived from C-band
(5.3 GHz) radar observations using a change detection algo-
rithm (Wagner et al., 1999; Naeimi et al., 2009). The data
have a near-daily temporal resolution and a spatial resolu-
tion of 0.25°. Before applying the triple collocation analy-
sis, the ASCAT data were rescaled using the same 5th-95th
percentile scaling method that was applied to the passive mi-
crowave data. The choice of reference dataset is arbitrary in
triple collocation analysis, but by using AWRA-L as the ref-
erence dataset all errors were expressed in model wetness
units.
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Figure 1. Field-measured soil moisture stations from the OzNet and OzFlux networks plotted against the major Koppen—Geiger climate
zones. Stations indicated by crosses provide top-layer soil moisture data individually; sites indicated by a circle also provide root-zone data.

In the joint assimilation experiments, we need to account
for the difference in observation frequency of the SMOS
and AMSR-2 soil moisture retrievals. On average, SMOS
retrievals are available on 40 % of the days in the assim-
ilation period, compared to nearly 75 % for AMSR-2 re-
trievals. Instead of subjectively adjusting the error estimates
or weighting factors, we aggregated the time series with a
higher observation frequency to the measurement intervals
of the time series with fewer observations. In other words,
for each day with a measurement in the SMOS time series,
we averaged all observations in the AMSR-2 time series that
occurred between the previous SMOS observation and the
current observation. We limited the aggregation period to a
maximum of 7 days and assigned equal weights to all obser-
vations falling within the aggregation period. Alternatively,
more recent observations could be given more weight, but
as there are usually only one or two AMSR-2 observations
between SMOS observations, we consider a simple average
to be suitable. The errors assigned to the resulting concur-
rent observation time series were recalculated using the triple
collocation method to use as weights in the joint assimilation
experiments.

3.3 Assimilation procedure

Soil moisture data were assimilated using an ensemble
Kalman filter (EnKF) approach. This is a relatively simple
and common method for assimilating observations into a va-
riety of models (e.g. Draper et al., 2012; Reichle et al., 2002;
Renzullo et al., 2014; Lépez Lopez et al., 2016) and consists
of two steps. In the forecast step, ensembles are generated by
perturbing the meteorological forcing data and propagating
the model to the next time step. The ensembles are used to
characterize the model error variances. In the analysis time
step, the model states are adjusted towards the observations.
The analysis time step is calculated as

X = xl+ KLy — Hi(x])], M
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where x! is the model forecast, x? the model analysis, K;
the Kalman gain, y, the observation, and H, the observation
model, which relates the model state to the observations, all
at time 7. The Kalman gain expresses the relative weighting
of the observations with respect to the model and is defined
as

K,=P.H (R, +HP H)™, 2)

where R; is the observation error variance for a certain loca-
tion, H; P, HtT is the model error variance matrix, and P; HtT
is the covariance matrix between the model states and model
observations. Observational error is site-specific, but fixed in
time. Model error variance is based on ensemble spread and
varies over space and time (see below). If the model error
is much lower than the observation error, K; will approach
zero and the observation will not impact the model analysis.
Alternatively, if the observation error is much lower than the
model error variance, the model analysis will be dominated
by the observation. This assimilation updating procedure was
applied to the first two soil layers of the AWRA-L model: the
top layer and the shallow root layer.

In ensemble-based assimilation techniques, the ensemble
spread must accurately represent the model error (Reichle et
al., 2008; Turner et al., 2008). Especially after long periods
with no rainfall, ensemble collapse can occur, which essen-
tially prevents the observations from having any impact. One
way to counter this is by applying a covariance inflation fac-
tor to the model ensembles (Anderson and Anderson, 1999).
Here, we applied a variable inflation factor to ensure a mini-
mum model error of 2 %. The variable inflation factor is ap-
plied only at time steps when the model error of the top layer
falls below this value, and its magnitude is determined by
the ratio between the desired and calculated model variance
(H; Py H,T) at that time step. Since soil moisture storage is
a bounded variable, applying an inflation factor to ensem-
ble members near the lower and upper limits of the variable
may result in values that are not physically real. When ap-
plying the inflation factor resulted in negative values or val-
ues larger than the storage capacity of the layer, the values
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Figure 2. Schematization of the structure of AWRA-L showing the
three soil layers, groundwater store, and the relevant hydrological
fluxes. Net precipitation refers to the precipitation reduced by inter-
ception.

were adjusted to zero and the maximum value, respectively.
This adjustment is necessary for the physical realism of the
model, but may introduce bias. However, since the inflation
factor is only used to ensure a model error of 2 %, the bias
should be small even when the ensemble members approach
the boundaries.

A total of 100 ensembles were generated by perturbing the
rainfall, radiation, and temperature data in following Ren-
zullo et al. (2014). Precipitation errors were multiplicative
and drawn from a uniform distribution ranging +60 % of
(i.e. 0.4-1.6 times) the forcing value. This error was based
on spatial error estimates for the AGCD precipitation dataset
(Jones et al., 2009), but was also applied to the TRMM
precipitation data. Radiation and temperature perturbations
were additive, with assumed standard deviations of 2K and
50 W m™~2, respectively. A correlation structure was enforced
to minimize unlikely combinations of the radiation, temper-
ature, and rainfall perturbations (in that order), specified by
Renzullo et al. (2014):

1 07 -08
c=( 07 1 -o05]. 3)
-08 —-05 1

The observations were perturbed according to a Gaussian
distribution with the triple collocation error estimates as stan-
dard deviations. Similar to the variable inflation factor, per-
turbing soil moisture observations near the boundaries of the
variables may result in values that are not physically real. The
values falling outside the boundaries are therefore adjusted to
the nearest limit. However, this process may introduce bias,
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especially where soil moisture observations are near its upper
and lower boundaries.

3.4 Model evaluation

Model performance was based on the agreement between
model soil moisture and field-measured data. Specifically, we
based model performance on Pearson’s r between the model
ensemble mean and daily averages of the field-measured time
series during the assimilation period. The impact of data as-
similation on model performance is defined as the difference
between r for the open loop and data assimilation scenarios,
Ar. Other methods of evaluation, such as root mean square
error and bias, were not included because AWRA-L simu-
lates water storage in the soil layers rather than volumetric
water content. The correlations were calculated using the ac-
tual time series as well as anomaly values, i.e. the deviations
from the climatology. The climatology was calculated as the
average of all days in the assimilation period (June 2012 to
April 2015) falling within a 31-day window centered on a
given day of the year. Correlations based on actual values re-
flect the ability of the modeled time series to capture the sea-
sonal pattern of soil moisture, while r for anomalies reflect
the ability to capture deviations from the seasonal pattern.
Significance levels of Ar are based on the Steiger test for
dependent correlations (Steiger, 1980), using a significance
level of p < 0.05.

The strong differences in the spatial representativeness is a
complicating factor in the evaluation; for field measurements
it is on the order of centimeters, the model has a grid res-
olution of approximately 5km, and the satellite data have a
footprint of tens of kilometers diameter. Nevertheless, higher
agreement with field-measured soil moisture increases confi-
dence in model and satellite soil moisture estimates.

3.5 Experimental setup

Our main goal is to assess and compare the ability for soil
moisture retrievals based on multiple passive microwave fre-
quencies to improve the performance of the AWRA-L model.
For reference, we compare model and satellite-based soil
moisture to field-measured data as an indicator of the relative
performance of the retrievals and of the potential for data as-
similation to improve model estimates. Then, we address the
main goal through three sets of experiments.

First, each of the three datasets was assimilated individu-
ally. The impact of data assimilation (Ar) was used to com-
pare the results of the experiments, thus comparing model
performance against field-measured data for the data assim-
ilation scenarios using the open-loop model performance as
a reference. The model simulations were evaluated over the
entire study period as well as split into the wet and dry sea-
sons, as well as transitional periods in between the wet and
dry seasons. The wet and dry seasons were defined as the 6-
month periods with the highest and lowest average top-layer
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soil moisture content, respectively, based on the open-loop
model simulation for each site. The transitional periods con-
sist of the remaining months. The results of this experiment
are used to evaluate and compare the ability of each of the
retrievals to improve model performance.

Second, we assimilated each set of two soil moisture
datasets (i.e. L-band and C-band, L-band and X-band, C-
band and X-band retrievals) jointly. In this experiment, the
impact of assimilation was again assessed based on r. How-
ever, the performance of the single-retrieval assimilation ex-
periments was used as a reference rather than the open-loop
simulation. In this way, we evaluate the added value of joint
assimilation with respect to assimilating the retrievals indi-
vidually.

Third, we repeated the single and joint assimilation exper-
iments forcing the model with higher-resolution and higher-
quality AGCD precipitation instead of TRMM precipita-
tion. This experiment aimed to assess whether the quality
of the precipitation data affects the impact of data assim-
ilation on model performance. By using the real-time ver-
sion of TRMM, which is not gauge-corrected, we can as-
sess the added value of soil moisture assimilation in regions
where there are fewer rain gauges and precipitation data qual-
ity is therefore relatively poor. For reference, we compared
open-loop model performance using the two precipitation
datasets as an indicator of the difference in precipitation qual-
ity. Then, we compared the impact of data assimilation for
the two datasets, based on the change in model performance
after data assimilation (Ar).

All three experiments were designed from an empirical
rather than theoretical point of view. We compare the ef-
fect of assimilating soil moisture retrievals based on multiple
microwave frequencies, but additional factors would need to
be taken into account to truly isolate the effect of frequency.
First, despite the common retrieval model, parameterization
of the model such as surface roughness and single scattering
albedo differ. In addition, AMSR-2 retrievals use simultane-
ously retrieved passive microwave observations to derive the
soil temperature, while SMOS retrievals use model tempera-
ture (van der Schalie et al., 2016). Second, we did not correct
for differences in the characteristics of the sensors and plat-
forms, such as viewing angle, overpass time, and observation
depth. Third, the error characteristics of the soil moisture re-
trievals used to determine the weights of the observations in
the assimilation scheme were allowed to vary between re-
trievals. This choice was deliberate, as applying a single er-
ror value to all retrievals may create a mismatch between the
assigned error value and the quality of the observations. As
a result, the difference in assimilation results reflects many
characteristics of the retrievals and not only the frequency
itself.
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A. 1. Gevaert et al.: Joint assimilation of soil moisture

4 Results

We first assessed the potential for satellite soil moisture as-
similation to improve the model based on a comparison
against field observations. The model skill is variable, with
r between field-measured and top-layer soil moisture as high
as 0.8 and as low as 0.3. The skill of the model is gener-
ally higher for actual values (Fig. 3a) than for anomalies
(Fig. 3b). At most sites, L-band retrievals have the highest
agreement with field-measured data, followed by the X- and
C-band retrievals, respectively (Fig. 3a). For anomaly time
series, however, L- and X-band retrievals perform similarly
well (Fig. 3b). The results of the triple collocation analysis
independently confirm these patterns, with lower errors for
L- and X-band soil moisture and higher errors for C-band
soil moisture (Fig. 3c).

4.1 Evaluation against soil moisture

Data assimilation generally improved the agreement between
modeled and field-measured top-layer soil moisture, increas-
ing r by up to 0.3 compared to the open-loop scenario
(Fig. 4a). Based on Steiger tests (see Sect. 3.4), the improve-
ments in model performance are statistically significant at
75-90 % of the sites, depending on the assimilated retrieval.
Assimilating L-band soil moisture has the largest impact
overall (average Ar is 0.11), followed by the X-band (0.08)
and C-band (0.04) retrievals, respectively. On a site-by-site
basis, however, L-band soil moisture is not always the most
informative. At 5 out of 24 sites (21 %), X-band retrievals
are the most informative, and at 1 site C-band retrievals are
the most informative (see Table S1). Modeled root-zone soil
moisture also tends to improve after data assimilation, though
model performance degrades slightly at about a quarter of the
sites. The L-band and X-band retrievals have comparable re-
sults overall, though there is a slight advantage for L-band
soil moisture on a site-by-site basis (most informative at 11
out of 24 sites, compared to 9 for X-band). Based on Steiger
tests, about 90 % of the differences in r between these assim-
ilation experiments are statistically significant.

We examined the effect of season on the effectiveness of
soil moisture assimilation by dividing the assimilation period
into a wet and dry season, as well as transitional periods in
between these seasons (see Sect. 3.5). For all three datasets,
assimilation has a more positive effect on model performance
of top-layer soil moisture in the wet season than in the dry
season, though the difference for C-band assimilation is very
small (Fig. 4a). The impact of data assimilation in the tran-
sitional periods between the wet and dry seasons depends
on the retrieval. On average, the impact of data assimilation
is highest in the transitional period for the L-band experi-
ment, but lowest for the C-band experiment. For X-band re-
trievals, the impact of assimilation in the transitional periods
falls in between the wet and dry seasons. The difference be-
tween the seasons in terms of the effect of data assimilation
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Figure 3. Evaluation of top-layer open-loop model soil mois-
ture (OL) and satellite soil moisture observations against field
measurements based on correlations (r) between July 2012 and
April 2015 (a) and the same using anomaly time series (b). Cor-
relations (r) between root-zone open-loop model and root-zone
field measurements are also shown. The triple collocation errors for
the satellite soil moisture retrievals in AWRA-L wetness units are
shown in (c). Box plots show the inter-quartile range (box), outliers
(4+), the median (thick line), and the mean (o). Outliers are based
on points at a distance larger than 1.5 times the inter-quartile range
from the first and third quartiles.

on root-zone soil moisture is larger than for top-layer soil
moisture. On average, data assimilation is informative in the
wet season, while there is no change in model performance
after assimilation in the dry season. However, the variability
between sites is considerable.

The effect of assimilation is also evaluated for anomaly
time series, which reflects the model performance at subsea-
sonal timescales. Similarly to the analysis based on actual
time series, data assimilation tends to improve model perfor-
mance against field-measured data (Fig. 4b). However, the
magnitude of the changes is somewhat smaller and degra-
dations in the agreement between model and field-measured
root-zone soil moisture can be more substantial. For top-
layer soil moisture, assimilating L-band retrievals leads to
higher model performance than the other two datasets over-
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all, and it is also the most informative at 13 out of 24 sites
(54 %). In contrast to the evaluation of actual values, the C-
band retrievals are the most informative at more sites than
X-band retrievals (at 8 compared to 3 out of 24 sites, respec-
tively). On average, however, the changes in correlation are
similar for both datasets (Fig. 4b). For root-zone soil mois-
ture, the effectiveness of assimilation is similar between ex-
periments. In contrast to the results for actual values, assim-
ilation tends to be most effective for anomaly time series in
the dry season instead of the wet season, especially for root-
zone soil moisture. Assimilation during transitional periods
between the wet and dry seasons is informative for the top
layer, but not for the root zone.

Time series plots of modeled top-layer soil moisture at
three sites (see Fig. 1 for their locations) illustrate the con-
trasting effect of assimilation in the wet and dry seasons. In
wetter months, the model tends to overestimate soil moisture
in the open-loop scenario (Fig. 5). Data assimilation results
in lower soil moisture content in this period, more closely
matching the field-measured data. This is particularly true
for the end of the wet season, as the transitional period be-
tween wet and dry seasons starts sooner in the field-measured
data than in the open-loop data. Periods where data assimi-
lation leads to lower soil wetness also show lower evapora-
tion rates. In drier months, however, the open-loop simula-
tion more closely matches the field-measured data, leaving
little opportunity to improve the model. Sites where there is
little to no rainfall in the dry season are particularly affected,
as the assimilation tends to add noise to the otherwise smooth
recession curves, as displayed by AU-Whr in Fig. 5. Further-
more, the time series show that the model error variance is
reduced through the data assimilation.

It is noted that there is a considerable difference in the
number of observations in the soil moisture retrievals, with
more observations in the C- and X-band datasets (662-830
observations in 3 years) than in the L-band dataset (225-
500 observations). This difference in the number of observa-
tions could affect the impact of data assimilation, especially
when evaluating the anomaly time series. However, correct-
ing for the number and timing of observations by assimilat-
ing the concurrent retrievals also used in joint assimilation
has a limited effect on results. The relative impact of the soil
moisture retrievals is unchanged, though model improvement
after data assimilation is slightly lower. The lower impact
of data assimilation is most likely because satellite observa-
tions, and thus model updates, are more infrequent. Fewer
updates can result in a lower impact of data assimilation over
a particular study period.

4.2 Added value of joint assimilation
Each combination of retrievals was assimilated simultane-
ously to assess whether there is complementary information

in passive microwave bands of multiple frequencies. Joint
assimilation of L- and C-band (or X-band) retrievals was
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Figure 4. The change in correlation (Ar) between modeled and field-measured top-layer (N = 24) and root-zone (N = 19) soil moisture
(July 2012 to April 2015) after soil moisture assimilation, where Ar is calculated over the entire time period, the wet season, the dry season,
and transitional periods (a). In (b), the same is shown for anomaly time series. Box plots are defined as in Fig. 3.

superior to assimilating C-band (or X-band) retrievals indi-
vidually, but performed similarly to assimilating L-band re-
trievals individually (Fig. 6a). On average, joint assimilation
improved model performance compared to assimilating C-
band (or X-band) individually by 0.07 (0.03), but on aver-
age, the difference between joint assimilation and assimilat-
ing L-band retrievals individually was 0.00. Joint assimila-
tion of C- and X-band retrievals improved performance com-
pared to assimilating C-band retrievals individually, but over-
all slightly degraded model performance compared to assim-
ilating X band individually. As a result, the sets including L-
band retrievals as one of the two assimilated datasets outper-
form the joint assimilation of C-band and X-band retrievals.
The difference between the combinations including L-band
retrievals and the C- and X-band combination is statistically
significant at nearly 90 % of the sites. When considering root-
zone soil moisture, the main difference was that the added
value of joint assimilation of L- and C-band (or X-band) re-
trievals was smaller when compared to assimilating C-band
(or X-band) retrievals individually.

Joint assimilation shows similar results when evaluating
the anomaly time series. Again, joint assimilation of L-band
soil moisture along with another dataset improved model per-
formance compared to assimilating C- or X-band individu-
ally, but was not significantly different from assimilating L-
band soil moisture individually (Fig. 6b). The joint assimi-
lation of C- and X-band retrievals further improved model
agreement with field-measured data at nearly half of the sites,

Hydrol. Earth Syst. Sci., 22, 4605-4619, 2018

but the difference between joint assimilation and single as-
similation of either dataset for this set is not statistically sig-
nificant.

Overall, joint assimilation resulted in higher model perfor-
mance than assimilating the less informative of the two re-
trievals, but did not substantially change model performance
compared to the more informative retrieval. We use the effect
of joint assimilation of L- and X-band retrievals on model
top-layer soil moisture as an example. In the single-retrieval
assimilation experiments (Sect. 4.1), the L-band retrievals
were more informative than X-band retrievals at 18 sites, X-
band retrievals were more informative at 5 sites, and they
were equally informative at 1 site (Table S1). On average,
model performance of the joint assimilation experiment was
the same as assimilating the more informative retrieval in-
dividually (average change in correlation was 0.00). How-
ever, model performance improved compared to assimilat-
ing the less informative retrieval (i.e. X-band retrievals at 18
sites and L-band retrievals at 5 sites) individually by an av-
erage of 0.05. This change in model performance is higher
than when we use X-band assimilation as a reference (like
in Fig. 6), which showed an average improvement of 0.03.
Over all joint assimilation experiments, model performance
improved compared to assimilating the less informative re-
trieval individually by 0.02-0.07 on average. Model perfor-
mance did not change substantially compared to assimilating
the more informative retrieval (—0.02-0.00).
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Figure 5. Time series of precipitation forcing and modeled evaporation and top-layer model soil moisture in the open loop (grey line and
shading) and after assimilating L-band retrievals (blue line and shading) at sites Y10 (a), AU-Whr (b), and AU-DaS (c). Time series of
rescaled L-band retrievals (circles) and field-measured soil moisture (green line) are included for reference. These sites are classified as a
grassland, savanna, and evergreen broadleaf forest, respectively. Shaded areas represent the 10th-90th percentiles of the model ensemble.

4.3 Influence of precipitation data quality

We repeated the assimilation experiments using a higher-
resolution and better-quality precipitation dataset to evaluate
the importance of the quality of the prior model estimates. At
all but three sites, forcing AWRA-L with AGCD precipita-
tion leads to better open-loop model performance than when
TRMM precipitation is used (Fig. 7a). The r between model
and field-measured soil moisture differs by up to 0.3. The
three sites where AGCD precipitation leads to lower model
performance are located in northern Australia, where the
density of precipitation gauges used to create the AGCD pre-
cipitation dataset is relatively low. The largest improvements
in model performance when using AGCD instead of TRMM
precipitation are found in southeastern Australia, where the
gauge density is relatively high.

The impact of data assimilation was generally higher when
the model was forced with lower-quality TRMM precipita-
tion data. In other words, the change in model performance
after data assimilation (Ar) was larger for the TRMM ex-
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periments than for the AGCD experiments (Fig. 7b). The
difference was relatively large for X- and L-band retrievals,
and relatively small when assimilating C-band retrievals. On
average, data assimilation improved correlations with field-
measured by 0.01-0.05 more when the model was forced
with TRMM precipitation than when forced with AGCD pre-
cipitation, depending on which retrievals were assimilated
(0.01-0.04 for root-zone data). Despite the fact that data as-
similation is less informative when AGCD precipitation is
used, it generally still has a positive impact on model perfor-
mance. Correlations between model and field-measured soil
moisture increased by an average of 0.02-0.07 for top-layer
soil moisture and 0.01-0.04 for top-layer soil moisture, de-
pending on the assimilated retrieval(s).

Precipitation quality had a larger effect on model open-
loop performance based on anomaly time series (Fig. 7¢)
than based on actual time series. On average, the difference in
the impact of data assimilation between precipitation datasets
is similar for both precipitation datasets (Fig. 7d). However,
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Figure 6. The difference in model performance between the joint
assimilation and single-retrieval assimilation for surface (N = 24)
and root-zone (N = 19) soil moisture (a), where model perfor-
mance is based on the correlation (r) between modeled and field-
measured soil moisture (July 2012 to April 2015). The legend in-
dicates which single-assimilation experiment is used as a reference
to evaluate the joint assimilation experiments. In (b), the same is
shown for anomaly time series. Box plots are defined as in Fig. 3.

the variability in the difference in the impact of data assimi-
lation was higher for anomaly time series.

If we use the difference in open-loop model performance
as a proxy for precipitation quality, we can quantify the re-
lationship between the difference in precipitation quality of
the TRMM and AGCD datasets (i.e. data in Fig. 7a and c)
and the corresponding difference in the impact of data as-
similation (i.e. data in Fig. 7b and d). Pearson’s r between
precipitation data quality and impact of data assimilation
experiments vary between —0.83 and —0.57 for top-layer
soil moisture, except when assimilating C-band retrievals in-
dividually (r = —0.22). The relationship for root-zone soil
moisture is slightly weaker, with r between —0.79 and —0.32
(except r = —0.16 for C band). This means that, on the
one hand, where using AGCD and TRMM precipitation re-
sulted in similar model performance, the impact of data as-
similation on model performance was also similar. Where
using AGCD precipitation resulted in higher model perfor-
mance than TRMM, on the other hand, data assimilation had
a smaller impact than when TRMM precipitation was used.
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5 Discussion

We approached this study of the impact of assimilating satel-
lite soil moisture retrievals based on different microwave
frequencies from an empirical perspective. As discussed in
Sect. 3.5, differences in the results of the assimilation exper-
iments are affected not only by frequency, but also by differ-
ences in the characteristics of the sensors and platforms, in
the parameterization of the common retrieval model, and in
the error characteristics of the retrievals. A more theoretical
approach is needed to untangle these confounding factors.

Another important choice in the experimental setup was
the rescaling technique. We chose a relatively simple lin-
ear rescaling technique to transform satellite observations to
model space. Previous studies have suggested that more so-
phisticated bias correction techniques are more suitable (i.e.
Yilmaz and Crow, 2013), but these techniques usually as-
sume that there is no consistent bias between the model and
observations. Here, we found that the model was clearly bi-
ased in the wet season, especially for AU-DaS (Fig. 5). In
those conditions, observations have considerable potential
to improve model results, and that potential would be di-
minished by forcing the observations to match the incorrect
model dynamics.

Overall, L-band soil moisture retrievals showed the best
agreement with field-measured data over the study sites
(Fig. 3), which is consistent with previous studies (Al-Yaari
et al., 2014; Holgate et al., 2016). Interestingly, errors did
not increase with increasing frequency, and the X-band re-
trievals performed better than C-band retrievals. This may
be typical of the sites studied here or of the AMSR-2 sen-
sor, as previous studies have found that LPRM C-band re-
trievals from AMSR-2’s predecessor, AMSR-E, slightly out-
perform X-band retrievals (Gruhier et al., 2010; Parinussa et
al., 2011). As expected, datasets with smaller errors were
generally more informative in assimilation, especially for
top-layer soil moisture. This can be attributed in part to the
differences in the magnitude of the errors, as this affects the
weight given to the observations in the assimilation proce-
dure. On average, triple collocation errors for C-band re-
trievals were 0.24 (AWRA-L wetness units), compared to
0.18 for the other retrievals. Further research is needed to
evaluate whether these differences in errors are due to the
trade-off between spatial resolution and sensitivity to vege-
tation and/or the atmosphere or whether they are the result
of other factors. For the root zone, differences between the
assimilation experiments are much less pronounced (Fig. 4).
The similar information content in L- and X-band retrievals,
especially, implies that data assimilation systems can substi-
tute one retrieval for the other without substantially affecting
model performance. This is especially important for model-
ing systems that cover a relatively long time period that need
to transition between microwave sensors and missions.

Joint assimilation of two passive microwave soil moisture
retrievals usually resulted in model performance that was
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plots are defined as in Fig. 3.

similar to assimilating the more informative of the two re-
trievals individually, and improved model performance com-
pared to assimilating the less informative retrieval alone (by
0.02-0.07 on average, Fig. 6 and Sect. 4.3). Therefore, joint
assimilation appears especially useful to take advantage of
the superior information in whichever retrieval is the most
informative in a particular location, without substantially de-
grading model performance by the retrievals that are less
informative. This means that joint assimilation is of added
value when no single retrieval is the most informative in the
study area, as was the case in this study. However, joint as-
similation may not be of added value in studies where one
soil moisture retrieval is the most informative. Based on the
results of this study, combining L-band retrievals (SMOS)
with either the C- or X-band retrievals (AMSR-2) is the most
informative. However, the joint assimilation of C- and X-
band retrievals performs surprisingly well considering the
fact that errors between these retrievals, derived from the
same AMSR-2 sensor, might not be expected to be fully in-
dependent. Theoretically, this would compound errors in data
assimilation, and degrade performance, but this was not usu-
ally observed. Since we corrected for the number and timing
of observations, this added value of joint assimilation can be
attributed to other factors, which may include error character-
istics, and characteristics of the sensors and microwave fre-
quencies such as observation depth, spatial resolution, and
viewing angle.

Though we are not aware of other studies jointly assimi-
lating passive soil moisture retrievals, our results are in line
with studies jointly assimilating active and passive soil mois-
ture retrievals. Two studies, in particular, also use Australian
study sites to evaluate the impact of (joint) soil moisture as-
similation into land surface models. Draper et al. (2012) eval-
uated soil moisture assimilation at sites in the United States
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and southeastern Australia, while Renzullo et al. (2014) fo-
cused on sites spread around Australia as in this study. The
active and passive soil moisture retrievals were based on C-
bane microwave data in both studies and therefore focus on
complementary information in retrieval method, while in this
study we focus on added value between microwave frequen-
cies. Nevertheless, the conclusion of Draper et al. (2012) is
very similar to that of this study, namely that joint assimila-
tion leads to similar or better model performance than assim-
ilating either retrieval individually. In contrast, Renzullo et
al. (2014) stated that joint assimilation resulted in a compro-
mise between the two retrievals. However, where reported,
the correlations of the joint assimilation experiments were at
most 0.02 lower than when assimilating the more informative
soil moisture product individually in that study (Renzullo et
al., 2014), suggesting that model performance is in fact sim-
ilar.

Finally, the quality of meteorological data, and precipita-
tion, in particular, is an important driver of the performance
of hydrological models. Top-layer soil moisture was more
sensitive to using different quality precipitation datasets than
root-zone soil moisture (Fig. 7), which may indicate that
errors between precipitation datasets are attenuated in the
root zone. Data assimilation is more informative when the
quality of precipitation datasets is relatively low, suggesting
that assimilation is able to (partly) correct errors between
low- and high-quality precipitation datasets. However, data
assimilation is still worthwhile when high-quality precipita-
tion datasets are used (Sect. 4.3). This is despite the fact that
the soil moisture retrievals have relatively coarse resolutions
compared to the resolution of the model and AGCD forc-
ing datasets. These results are in line with a flood forecasting
study which also found that assimilating a soil moisture prod-
uct based on active microwaves was more informative when
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precipitation data quality was relatively poor (Massari et al.,
2018).

This study only examined the temporal aspect of differ-
ences and complementary information between the different
datasets. The model was run for each site independently and
did not consider spatial covariance. It is conceivable that in-
cluding this spatial dimension could change the results, for
example improving the added value of joint assimilation. The
complementary spatial information in passive microwave re-
trievals could stem from the differences in the native foot-
print sizes of the different microwave frequencies, or from
using sharpened soil moisture retrievals (i.e. Merlin et al.,
2013; Piles et al., 2011; Kim and Hogue, 2012; Gevaert et
al., 2015). The spatial information could improve the spatial
patterns of soil moisture in models, which could propagate
into improved simulations of runoff and streamflow.

6 Summary and conclusions

Passive microwave soil moisture retrievals based on differ-
ent frequencies but derived by a common retrieval algorithm
were assimilated into the AWRA-L model. Model results
were evaluated against field-measured soil moisture at 24
sites spread over the Australian continent to compare the
ability. This evaluation compares the ability of the datasets to
improve model soil moisture through data assimilation and
assesses whether there is added value in joint assimilation.
The study sites cover a range of climate and land cover types,
but the evaluation is complicated by the differences in the
representative area of the model and field-measured data.
Data assimilation generally has a positive impact on the
performance of model top-layer and root-zone soil moisture,
increasing r with field-measured data by up to 0.3. Assimi-
lation improves model performance more in the wet season,
when the model skill is relatively low, than in the dry sea-
son, when the model skill is relatively high. When anomaly
time series are evaluated instead of the actual values, how-
ever, assimilation is more informative in the dry season. The
impact of data assimilation is also higher when the model is
forced with global precipitation data than when it is forced
with higher-quality, higher-resolution precipitation data.
Overall, assimilating L- and X-band retrievals had a more
positive impact on model performance than assimilating C-
band retrievals. L-band retrievals are slightly more informa-
tive than X-band retrievals when evaluating top-layer soil
moisture, but these differences are not statistically significant
and the advantage disappears when root-zone soil moisture
is considered. The large overall consistency between assimi-
lating L- or X-band retrievals, and even C-band retrievals in
the root zone, implies that assimilation studies can temporar-
ily or permanently switch between these retrievals with little
to no effect on model performance. This is particularly ad-
vantageous for studies and applications which assimilate soil

Hydrol. Earth Syst. Sci., 22, 4605-4619, 2018

A. 1. Gevaert et al.: Joint assimilation of soil moisture

moisture over long periods of time and are thus obliged to
use retrievals from different sensors and platforms.

When two passive microwave retrievals are assimilated si-
multaneously, model performance is similar to or better than
assimilating either of the bands individually, especially when
combining an AMSR-2 retrieval (C- or X-band) with SMOS
retrievals (L-band). This means that joint assimilation can
be of added value when different soil moisture retrievals are
more informative in different locations. It is likely that in-
cluding spatial aspects would increase the added value of
joint assimilation due to the trade-off in passive microwave
soil moisture retrievals between footprint size on the one
hand and observation depth and sensitivity to vegetation and
the atmosphere on the other. Additional studies focusing on
spatial patterns of soil moisture are needed to quantify the
complementary spatial information in passive microwave re-
trievals, whether at their native resolution or making use of
sharpened soil moisture datasets.
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tion data can be downloaded from the EOSDIS EarthData website
(https://earthdata.nasa.gov/). Australian gridded climate data can be
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