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Abstract. Gap-filling streamflow data is a critical step for
most hydrological studies, such as streamflow trend, flood,
and drought analysis and hydrological response variable es-
timates and predictions. However, there is a lack of quantita-
tive evaluation of the gap-filled data accuracy in most hydro-
logical studies. Here we show that when the missing data rate
is less than 10 %, the gap-filled streamflow data obtained us-
ing calibrated hydrological models perform almost the same
as the benchmark data (less than 1 % missing) when esti-
mating annual trends for 217 unregulated catchments widely
spread across Australia. Furthermore, the relative streamflow
trend bias caused by the gap filling is not very large in very
dry catchments where the hydrological model calibration is
normally poor. Our results clearly demonstrate that the gap
filling using hydrological modelling has little impact on the
estimation of annual streamflow and its trends.

1 Introduction

Streamflow is channel runoff, i.e. the flow of water in streams
and rivers and water accumulated from surface runoff from
the land surface and groundwater recharge. It is one of
the major water balance components in a catchment, where
precipitation is partially stored in surface water, soil, and
groundwater stores, and the rest is partitioned into two fluxes:
evapotranspiration and streamflow. It is almost impossible to
measure evapotranspiration dynamics at a catchment scale.
In contrast, streamflow time series can be easily measured at
a catchment outlet. Therefore, streamflow data become a fun-
damental dataset underpinning hydrological studies. Without
such a dataset, it is hard to understand catchment hydrologi-
cal processes under climate change and non-stationarity (Dai
et al., 2009; Gedney et al., 2006a; Ukkola et al., 2015; Zhang
et al., 2016b).

Unfortunately, streamflow data are not always continu-
ously available and most gauges suffer from missing stream-
flow data issues (Dai et al., 2009). Often, the missing data
rate is important when selecting streamflow gauges, espe-
cially when the data are used for annual trend analysis.
To choose qualified catchments, researchers often set up a
threshold for the missing data ratio, for instance 1 % (Petrone
et al., 2010), 5 % (Ukkola et al., 2015), 10 % (Déry et al.,
2009), 15 % (Liu and Zhang, 2017), and 20 % (Lopes et al.,
2016). Only those gauges with a missing data rate less than
a particular threshold are selected, and the rest are excluded
for further analysis because of high missing data rates.

There are many methods used for gap-filling the missing
data, including interpolation from nearby gauges (Hannaford
and Buy, 2012; Lavers et al., 2010; Lopes et al., 2016), statis-
tical methods (Gedney et al., 2006b), hydrological modelling
(Dai et al., 2009; Sanderson et al., 2012), and multiple infill-
ing methods (Harvey et al., 2012). Among them, the hydro-
logical modelling method is widely used since it fully con-
siders the spatial heterogeneity and temporal variability of
climate forcing data, and can achieve sufficient simulations
when it is calibrated against a small number of observations
(Peña-Arancibia et al., 2015; Rojas-Serna et al., 2016; Seib-
ert and Beven, 2009; Liu and Zhang, 2017). This is particu-
larly important in Australia, where hydrological modelling is
a major tool for simulating continuous streamflow at a catch-
ment scale. More recently, the Australian Bureau of Mete-
orology used a hydrological model – GR4J – to infill miss-
ing daily streamflow data for 222 Hydrologic Reference Sta-
tions (http://www.bom.gov.au/water/hrs/about.shtml, last ac-
cess on 8 August 2018). The gap-filled streamflow data are
then used for trend analysis, which provides hydrological in-
formation to all users.

One major concern for the hydrology community is to un-
derstand how reliable the gap-filled data are. Unfortunately
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there are no studies in the literature to comprehensively eval-
uate the reliability and accuracy of the gap-filled data that are
influenced by different thresholds and by patterns of missing
data. Our study aims to provide a framework to evaluate the
annual trends and annual variables obtained from gap-filled
streamflow data using two hydrological models (GR4J and
SIMHYD), together with a large streamflow dataset avail-
able across the Australian continent (Zhang et al., 2013). This
can guide researchers to more sensibly define a threshold for
catchment selection and hydrological analysis.

2 Data and methods

2.1 Data

We obtained a daily streamflow dataset from 780 unregu-
lated catchments widely spread across Australia (Zhang et
al., 2013). The dataset has undergone strict quality assurance
and quality control, including quality code check and spike
(i.e. outlier points) control, and covered the period from 1975
to 2012. This dataset has been used by modellers for var-
ious hydrological modelling and studies of extreme events
(Li and Zhang, 2017; Liu and Zhang, 2017; Ukkola et al.,
2016; Yang et al., 2017). The missing data rates for the pre-
1980 and post-2010 periods were high. To meet our study
requirements, we selected 217 catchments with a missing
data rate of less than 1 % for the period 1981–2010, and
the streamflow data for the 217 catchments are regarded as
benchmark data (Fig. 1). Out of the 780 catchments there
are 146, 91, and 61 with a missing data rate of 1 %–5 %,
5 %–10 %, and 10 %–20 % during 1981–2010, respectively
(Fig. 1), and these catchments account for 38 % of total avail-
able catchments. Table 1 summarises major catchment at-
tributes for the 217 selected catchments. The data gaps for
Australian streamflow gauges mainly include the following
issues: (i) non-sensible records; (ii) broken sensors; (iii) no
recorded data (instrumentation removed); (iv) no existing
data, and (v) no records or records lost.

Out of the 217 catchments, about half of the catch-
ments showed a significant decreasing trend, 37 % showed
a non-significant decreasing trend, and 13 % showed a non-
significant increasing trend (Fig. 2), detected using Mann–
Kendall trend analysis (see Sect. 2.3). This is because Aus-
tralia experienced the millennium drought over the period
2001–2009, which caused a dramatic streamflow reduction
in this period (van Dijk et al., 2013). Trend analysis for the
217 catchments is explained in Sect. 2.3 and trend results are
summarised in Sect. 3.

Out of the 217 catchments, about 46 % of catchments have
no missing data in 1981–2010, 12 % with a missing data rate
of < 0.1 %, 22 % with a missing data rate of 0.1 %–0.5 %,
and 20 % with a missing data rate of 0.5 %–1 % (Fig. 2).

To drive the two hydrological models, we obtained daily
meteorological time series (including minimum tempera-

Figure 1. The 780 unregulated catchments grouped by different
streamflow data gaps for the period of 1981–2010.

Figure 2. Trends and streamflow data summary for the 217 catch-
ments used in this study. The trend in annual streamflow is shown
in units of mm year−1 year−1. The chart in (a) indicates the catch-
ment percentage with different missing data rates (dark blue with
a missing data rate of 0 %, navy blue with a missing data rate
of 0 %–0.1 %, green with a missing data rate of 0.1 %–0.5 %, and
yellow with a missing data rate of 0.5 %–1.0 %). The chart in
(b) indicates the catchment percentage with different trends (dark
blue with a significant (p ≤ 0.05) decreasing trend, navy blue with
a non-significant (p > 0.05) decreasing trend, green with a non-
significant (p > 0.05) increasing trend, and yellow with a signifi-
cant (p ≤ 0.05) increasing trend).
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Table 1. Major catchment attributes for the 217 catchments.

Attribute Definition Unit Min 2.5th 25th Median 75th 97.5th Max

Area Catchment area km2 53 70 180 392 844 4562 72 902
Elevation Catchment average elevation above sea level m 46 100 278 449 753 1194 1351
Slope Catchment mean slope ◦ 0.3 0.6 2.0 3.9 7.7 12.0 13.6
P Mean annual precipitation mm year−1 256 371 703 853 1107 1966 2473
ETp Mean annual potential evapotranspiration mm year−1 906 968 1149 1235 1408 1791 1892
AI Aridity index – 0.38 0.55 1.11 1.44 1.89 4.75 6.47
Forest ratio Ratio of forest to all land cover types – 0.02 0.06 0.39 0.55 0.67 0.83 0.90

Figure 3. Missing data patterns for three groups of catchments with missing data rates of 4 %–6 %, 8 %–12 %, and 18 %–22 %, which are
represented by 5 %, 10 %, and 20 % missing data rates, respectively.

ture, maximum temperature, incoming solar radiation, ac-
tual vapour pressure, and precipitation) from 1975 to 2012
at 0.05◦ (∼ 5 km) grid resolution from the SILO Data Drill
of the Queensland Department of Natural Resources and Wa-
ter (https://silo.longpaddock.qld.gov.au/, last access on 8 Au-
gust 2018). The data quality is reasonably good, indicated
by the mean absolute error for maximum daily air temper-
ature, minimum daily air temperature, vapour pressure, and
precipitation at 1.0 ◦C, 1.4 ◦C, 0.15 kPa, and 0.40 mm day−1

(Jeffrey et al., 2001).

2.2 Gap-filling experiments

For thoroughly investigating the potential impacts of infilled
streamflow data on annual trend accuracy, we conducted
three groups of experiments to test how the missing data
rates at 5 %, 10 %, and 20 % impact streamflow trends. We
followed three steps for each missing data rate of the experi-
ments.

1. Missing data patterns were obtained using actual
streamflow data.

We selected patterns of consecutive missing days from ac-
tual data from the 780 catchments. For the 5 % group of miss-
ing data rate experiments, we selected 44 catchments with
missing rates of 4 %–6 %; for the 10 % group of missing data
rate experiments, we selected 39 catchments with missing

data rates of 8 %–12 %; and for the 20 % group of missing
data rate experiments, we selected 22 catchments with miss-
ing data rates of 18 %–22 %. Figure 3 shows the probability
distribution of consecutive missing days from each group of
catchments, which is skewed toward the low end. We there-
fore used the two-parameter Gamma distribution to simulate
probability distribution of consecutive missing days (Fig. 3).
The 0 distribution is expressed as

X ∼ 0(k,θ)= 0(k,θ), (1)

where X is the number of consecutive missing days, k is the
shape parameter, and θ is the scale parameter. The corre-
sponding probability density function in the shape-scale pa-
rameterisation is

f (x;k,θ)=
1

0(k)θk
xk−1e−

x
θ , (2)

where 0(k) is the gamma function.
As seen from Fig. 3, the two parameters are stable under

the three groups of catchments. The k parameter varies from
0.63 to 0.87 and the θ parameter changes from 62 to 81. It
is noted that we removed all times when the number of con-
secutive missing days was > 365. We did that for a number
of reasons. Firstly, gap-filling an entire year of missing data
would likely impact annual trends. Secondly, the focus of this
paper is on gap-filling short periods of missing data to be able
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Figure 4. Distribution of number of missing days across different
seasons, summarised from 39 catchments with a missing data rate
ranging from 8 % to 12 % (i.e. 10 % missing data group).

to include more catchments in streamflow analyses. Thirdly,
removing all periods of greater than 365 days allowed us to
better fit a gamma distribution to the number of missing days.

We also checked the seasonality of missing data to see if
one season were more likely to have missing data than an-
other. As seen from Fig. 4, the missing data are more or
less evenly distributed through different seasons across all
the 39 catchments (with a missing data rate of 8 % to 12 %)
within the 10 % missing data group. This indicates that the
data gaps were not skewed toward a particular season and
they occurred randomly through the year.

2. Numbers of random consecutive missing days were gen-
erated using a random number generator (sampling
without replacement) based on the gamma distribution.

The random number generation was repeated 100 times to
ensure the selected samples covered a wide range of stream-
flow time series.

3. Streamflow data were gap-filled.

The selected days were treated as missing data and the un-
selected data were used for hydrological model calibration.
The missing data were then gap-filled using the simulated
streamflow from the calibrated GR4J and SIMHYD models.

For consistent interpretation hereafter, the benchmark
streamflow data are regarded as “observed” and the experi-
ment data as “filled”. For each of the three experiments, there
are 100×217 (21 700) missing data time series, with 100 rep-
resenting sample times using the random number generator
and 217 representing the number of catchments.

2.3 Trend analysis

We used the Mann–Kendall Tau-b non-parametric test in-
cluding Sen’s slope method (Burn and Elnur, 2002) for an-
nual streamflow trend analysis and significance testing for all
three groups of experiments and benchmark data.

We used the following equation to quantify the trend bias:

Bt = Tfilled− Tobs, (3)

where Bt is the bias in the annual streamflow trend
(mm year−1 year−1), Tfilled is the annual trend for gap-filled
streamflow (mm year−1 year−1), and Tobs is the annual trend
in observed streamflow (mm year−1 year−1). It measures the
trend error between the infilled and observed runoff trends
with Bt ≈ 0, which indicates that the trend in observed an-
nual runoff is almost the same as that in the infilled annual
runoff.

We also defined relative trend bias (PBt) as

PBt =
Tfilled− Tobs

Tobs
× 100. (4)

2.4 Hydrological models

Two widely used hydrological models, SIMHYD and GR4J
(Chiew et al., 2002, 2010; Li et al., 2014; Oudin et al., 2008;
Perrin et al., 2003; Zhang and Chiew, 2009; Zhang et al.,
2016a), were used to infill daily missing streamflow data.
Both models require daily precipitation and daily potential
evaporation (Priestley and Taylor, 1972) as model inputs, and
model outputs are daily streamflow at each gauge. The daily
inputs of the maximum and minimum temperatures, incom-
ing solar radiation, and vapour pressure data were used to
calculate the Priestley–Taylor daily potential evaporation.

The two models were calibrated using a global optimiser,
consisting of a genetic algorithm (The MathWorks, 2006), at
each catchment, with the first 6 years (i.e. 1975–1980) for
spin-up and the remainder (1981–2010) for modelling exper-
iments. Since this study mainly evaluates the trends obtained
using the gap-filled streamflow from hydrological modelling,
it is crucial to predict high flow and mean flow as accu-
rately as possible. To this end, the model calibration was to
minimise the following objective function (F ) (Viney et al.,
2009; Zhang et al., 2016b):

F = (1−NSE)+ 5|ln(1+B)|2.5, (5)

B =

N∑
i=1
Qsim,i −

N∑
i=1
Qobs,i

N∑
i=1
Qobs,i

, (6)

where NSE is the Nash–Sutcliffe efficiency of daily stream-
flow, B is the model bias, Qsim and Qobs are the simulated
and observed daily runoff, i is the ith day, and N is the total
number of days sampled. The NSE gives higher streamflow
more weight, and varies between−∞ and 1, with NSE> 0.6
indicating a good agreement (Zhang and Chiew, 2009). The
B measures water balance error between the observed and
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Table 2. Summary of model calibration number carried out for benchmark data and missing data experiments.

Model Benchmark 5 % missing 10 % missing 20 % missing Sum

GR4J 217 21 700 21 700 21 700 65 317
SIMHYD 217 21 700 21 700 21 700 65 317
Sum 434 43 400 43 400 43 400 130 634

Figure 5. Comparisons between calibrated GR4J and calibrated SIMHYD for 44 catchments of the 5 % missing data experiment, 39 catch-
ments of the 10 % missing data experiment, and 22 catchments of the 20 % missing data experiment. In each catchment, there were 100
replicates carried out.

modelled daily streamflow, withB = 0 indicating that the av-
erage of modelled daily streamflow is the same as the average
of observed daily streamflow.

For each catchment, GR4J and SIMHYD were calibrated
using benchmark data and 100 time series of streamflow data
with missing data (see Sect. 2.2), respectively. For bench-
mark data without any missing data (46 % catchments), no
gap filling is required; for the benchmark data with missing
data rates less than 1 %, the calibrated continuous stream-
flow data were used to fill the gaps. For the missing data
experiments, the calibrated continuous streamflow data for
each missing replicate were used to infill the artificially made
missing data. Table 2 summarises the model calibrations car-
ried out for the benchmark and for each experiment. Finally,
130 634 model calibrations and 130 200 times of gap fill-
ing were carried out. Finally, the trends estimated from the
benchmark were used to evaluate those obtained from the
missing data experiments.

3 Results

The gap-filled data from the two hydrological models were
evaluated against the benchmark data. Overall, the two mod-
els perform well and neither significantly outperforms the
other (Fig. 5). For the three groups of gap-filling experi-
ments, these two models perform similarly (i.e. the difference
of NSE of daily runoff between the two is less than 0.02)
in 18 %–19 % catchments; the SIMHYD model outperforms

the GR4J model (NSE difference between the two is larger
than 0.02) in 30 %–31 % catchments; and the GR4J model
outperforms the SIMHYD model in 50 %–51 % catchments.

Figures 6 and 7 summarise the performance of the gap-
filled data for estimating annual trends, annual streamflow,
monthly streamflow, and daily streamflow, respectively. The
three missing data rate experiments (5 %, 10 %, and 20 %)
perform almost the same as the benchmark (Figs. 6 and 7).
The coefficient of determination (r2) between the gap-filled
trends and observed trends is more than 0.98 for the three
experiments and two hydrological models.

Since errors in gap-filled trends are likely to be different
and time steps are different when daily infilled streamflow
data are used, we further investigate how gap-filled errors
are propagated from daily to monthly and to annual scales
in the three gap-filling cases (5 %, 10 %, and 20 %) (Figs. 6
and 7). It is expected that daily gap-filled streamflow has a
larger standard deviation from the benchmark than monthly
and annual streamflow since the streamflow was gap-filled
at a daily scale. This indicates that the temporal aggregation
smooths the gap-filled error strongly, and it generates very
reasonable monthly and annual streamflow estimates with
less standard deviation. It is interesting to note that both mod-
els tend to underestimate very high flows, though they are
calibrated against the NSE of daily streamflow, which gives
larger weight to the correct representation of higher flows.

Figure 8 further summarises the catchments with trend di-
rection mismatch between the benchmark and gap-filled data
(i.e. change from negative to positive or change from pos-
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Figure 6. Comparisons between the observed streamflow (x axis) and gap-filled ones (y axis) for streamflow trend (mm year−1 year−1, left
panels), annual streamflow (mm year−1, second left panels), monthly streamflow (mm month−1, second right panels), and daily streamflow
(mm day−1, right panels). The gaps were filled using GR4J. The error bar represents standard deviation of the 100 replicates for each group
of missing data experiments.

itive to negative). For the experiments with 5 % and 10 %
missing data rates and for GR4J, fewer than 8 out of the 217
catchments show a trend mismatch, and almost all of them
show non-significant trends (p > 0.05). For the experiments
with a 20 % missing data rate for GR4J, fewer than 10 out
of the 217 catchments show a trend mismatch, and all of
them show non-significant trends. SIMHYD results are al-
most the same as GR4J results. All these indicate that there
is very marginal influence on annual streamflow trend direc-
tions when the missing data rate is less than 20 %.

Though the three groups of experiments show small trend
direction changes (Fig. 8), it is not clear how the trend
bias (Eq. 3) looks. To this end, Fig. 9 further compares
the trend bias between the experiments. It is clear that the
trend biases between 5 % and 10 % missing data experi-
ments are similar. For GR4J, both have a trend bias vary-
ing from−1 to 1 mm year−1 year−1. For SIMHYD, the trend
bias between the two is similar when it varies from −0.5 to
1 mm year−1 year−1, and the trend bias of the 5 % missing

data experiment is even larger than that of the 10 % missing
data experiment. The trend bias of the 20 % missing data ex-
periment is noticeably larger than that of the 10 % and 5 %
missing data experiments for both models, and the underper-
formance is more noticeable in the SIMHYD gap-filled data
than in the GR4J gap-filled data. This result suggests that
the trend bias is reasonable when the missing data rate is less
than 10 %, and can be large for a small number of catchments
when the missing data rate is up to 20 %.

4 Discussion and conclusions

Researchers are keen to have a comprehensive understanding
of rules for excluding catchments with gaps in the stream-
flow record. Our results indicate that when the streamflow
data gaps are up to 10 %, the gap-filled data obtained us-
ing hydrological modelling are very reasonable for annual
trend analysis and annual streamflow estimates. Choosing the
threshold of the 10 % missing data rate will allow the use of
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Figure 7. Same as Fig. 6 but using SIMHYD.

many more catchments in modelling and data analysis stud-
ies. For example, of the 780 unregulated Australian catch-
ments available for modelling studies (Zhang et al., 2013),
there are 237 catchments with a missing data rate of 1 %–
10 % during 1981–2010, accounting for 38 % of total avail-
able catchments (Fig. 1). Of these 237, 67 (∼ 28 %) also have
gaps lasting more than 1 year (which we did not consider
in this analysis), and therefore these may not be suitable for
use. With an increased number of catchments, more reliable
large-scale hydrological modelling studies can be carried out
(Beck et al., 2016; Parajka et al., 2013; Zhang et al., 2016a).

The missing rate experiments designed in this study are
based on the actual missing data patterns obtained from the
780 catchments. In most cases, the number of consecutive
missing days is less than 10, as indicated by Fig. 3, indicating
brief periods of gauge malfunctions. It is, however, interest-
ing to note that there are streamflow gaps lasting much longer
than this in many catchments, with gaps of many months in
some cases, noting that we excluded gaps lasting 1 year or
more. It is highly likely that filling a gap of 1 year or more
will result in biases larger than those presented here.

Furthermore, we also tested the quality of random gap-
filled daily streamflow. In that case, the missing data patterns
were randomly selected using a random number generator.
The results obtained from the random gap filling (not shown)
are similar to the results presented here. Thus, it is likely that
the length of the gaps (as long as it is less than 1 year) is
unlikely to impact the results of the gap-filling experiment.
We conclude from this that the use of hydrologic modelling
for filling the substantially gapped data (up to a 10 % missing
data rate) described here for Australia will not impact annual
trends of streamflow. Impacts on other streamflow character-
istics also need to be examined, as well as seeing if the results
obtained in Australia are comparable with those in other parts
of the world, where the length of observational gaps may be
quite different to those shown in Fig. 3.

It is possible that data gaps may only exist during high
flow or low flow conditions, although that is not what we ob-
served here, with the majority of missing data being more or
less evenly distributed throughout the year (Fig. 4). We did,
however, test the impact of filling streamflow data in high
flow or low flow conditions (results not shown here). In these
cases, the missing data patterns were selected using only high
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Figure 8. Trend mismatch analysis between the gap-filled and benchmark data. “Total” refers to all the mismatch catchments, “N” denotes
non-significant trends (p > 0.05), and “S” denotes significant trends (p ≤ 0.05). The bottom, middle, and top of each box show the 25th,
50th, and 75th percentiles, and the bottom and top whiskers are the 5th and 95th percentiles.

flow (> 95th percentile) or low flow (< 50th percentile) data.
The results obtained from the low flow gap filling indicates
that there is only a negligible influence on annual streamflow
trend estimates when the missing data rate is less than 50 %.
In contrast, the high flow gap-filled data show a noticeable
change in annual streamflow trend when the missing data rate
is 5 %. This is understandable since high flow is usually sev-
eral orders of magnitude higher than low flow, and errors in
filling high flow could have large impacts on annual flow and
its trends (Slater and Villarini, 2017).

To understand if the quality of gap-filled streamflow is
related to catchment attributes and calibration accuracy, we
conducted further analysis among the trend bias, model cal-
ibration efficiency (i.e. NSE), and catchment aridity index
(mean annual potential evaporation divided by mean annual
precipitation) (Fig. 10). The model calibration results in dry
catchments are normally poorer than those in wet catch-
ments. However, the trend bias (mm year−1 year−1) obtained
from dry catchments is usually smaller. The large biases are
observed from the catchments with an aridity index less than
2 and with the calibrated NSE being larger than 0.60. In part,
this is to be expected since the streamflow is also lower in
more arid catchments, meaning that the trend bias is also
likely to be lower.

Figure 11 shows the relationship between the relative trend
bias (%, Eq. 4) and aridity index. It shows that not only is the
actual trend bias lower in drier catchments, but so too is the
relative (%) trend. This result suggests that the large bias in
annual trends as a result of gap filling is observed in rela-
tively wet catchments, where model calibrations are reason-
ably good. This result seems counter-intuitive and requires
further exploration, which is beyond the scope of the current
paper.

This study focuses on evaluating annual streamflow and its
trends. Therefore, we used the Nash–Sutcliffe efficiency plus
model bias (Eqs. 5 and 6) to calibrate the two hydrological
models. If other hydrological response variables such as low
flow metrics are required, other model calibration schemes
should be used since the NSE model calibration scheme gives
more weight to the reproduction of high flows at the ex-
pense of low flows (Zhang et al., 2014). Low flow metrics
have important ecological implications (Mackay et al., 2014;
Smakhtin, 2001). In general, however, it is challenging to use
hydrological modelling for low flow simulations and pre-
dictions (Pushpalatha et al., 2012; Staudinger et al., 2011).
To obtain credible low flow gap filling, model calibrations
should use an objective function that gives more weight to
low flows, such as the NSE of daily inverse streamflow and
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Figure 9. Trend biases comparison between the three groups of gap-filling experiments (5 %, 10 % and 20 %). (a) is for GR4J and (b) is for
SIMHYD.

the direct low flow metrics. Another possible method is to
combine hydrological modelling with other methods of gap
filling, such as using nearby gauges (Lopes et al., 2016) and
statistical methods (Gedney et al., 2006b).

It is noted that the infilled data purely refer to the miss-
ing data. All streamflow gauges only measure to a certain
flow. Once the flow exceeds that level during flooding, the
results are interpolated using stage–discharge relationships
(Peña-Arancibia et al., 2015). These interpolations could be
a major source of observation error. However, investigating
high flow interpolation and data quality is beyond the scope
of this study.

The modelling experiments and findings from this study
could have important implications for other parts of the world
as well as Australia. First, to develop appropriate gap-filling
modelling experiments, it is necessary to evaluate the dis-
tribution of consecutive missing data. The probability dis-
tribution of consecutive missing data is skewed toward the
low end, which can be nicely simulated using the gamma
distribution (Eq. 1). This distribution should be very use-
ful for similar missing data patterns in other regions. Sec-
ond, hydrological modelling is a very good tool for filling
gaps since it can fully take advantage of climate forcing and
non-gap streamflow data and obtain the best possible daily
simulations. Third, the threshold of 10 % identified in this

study should be applicable to regions/catchments with simi-
lar missing data patterns. However, if the data gaps continue
for seasons or years, the threshold may not hold.

It would also be interesting to compare hydrological mod-
elling to other approaches for filling streamflow data gaps.
Hydrological modelling is a most useful method used in Aus-
tralia for predicting daily streamflow in ungauged catchments
(Chiew et al., 2009; Li and Zhang, 2017; Zhang and Chiew,
2009; Viney et al., 2009). It has been used operationally
by the Australian Bureau of Meteorology for filling daily
streamflow data gaps for many years. In the future, this oper-
ational method could further be comprehensively evaluated
against other approaches, such as interpolation or correlation
with nearby gauging sites.

In summary, our results clearly demonstrate that the gap-
filled data are most accurate when examining trends at the
annual scale, followed by the monthly scale, and with least
satisfaction at the daily scale. This gives researchers confi-
dence in annual trend analysis, a hot topic in hydrological
and climate sciences. Our results also clearly indicate that
the gap filling of Australian streamflow data using hydrolog-
ical models is very reasonable when the missing data rate
is less than 10 %, with only a small number of catchments
showing a large trend bias when the missing data rate is up
to 20 %. The results also indicate that gap-filling drier catch-
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Figure 10. Relationships among trend bias (mm year−1 year−1), model calibration Nash–Sutcliffe efficiency and aridity index for each
catchment and for the experiment of the 10 % missing data rate.

Figure 11. Relationships between relative trend bias (mm year−1 year−1) and aridity index for each catchment and for the experiment of the
10 % missing data rate.
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ments appears to be more successful than gap-filling wetter
catchments.

Data availability. Streamflow data used in this study are
available at https://doi.org/10.4225/08/58b5baad4fcc2. The
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