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Abstract. Time series of groundwater and stream water qual-
ity often exhibit substantial temporal and spatial variabil-
ity, whereas typical existing monitoring data sets, e.g. from
environmental agencies, are usually characterized by rel-
atively low sampling frequency and irregular sampling in
space and/or time. This complicates the differentiation be-
tween anthropogenic influence and natural variability as well
as the detection of changes in water quality which indicate
changes in single drivers. We suggest the new term “domi-
nant changes” for changes in multivariate water quality data
which concern (1) multiple variables, (2) multiple sites and
(3) long-term patterns and present an exploratory framework
for the detection of such dominant changes in data sets with
irregular sampling in space and time. Firstly, a non-linear
dimension-reduction technique was used to summarize the
dominant spatiotemporal dynamics in the multivariate wa-
ter quality data set in a few components. Those were used
to derive hypotheses on the dominant drivers influencing wa-
ter quality. Secondly, different sampling sites were compared
with respect to median component values. Thirdly, time se-
ries of the components at single sites were analysed for long-
term patterns. We tested the approach with a joint stream
water and groundwater data set quality consisting of 1572
samples, each comprising sixteen variables, sampled with
a spatially and temporally irregular sampling scheme at 29
sites in northeast Germany from 1998 to 2009. The first four
components were interpreted as (1) an agriculturally induced

enhancement of the natural background level of solute con-
centration, (2) a redox sequence from reducing conditions in
deep groundwater to post-oxic conditions in shallow ground-
water and oxic conditions in stream water, (3) a mixing ra-
tio of deep and shallow groundwater to the streamflow and
(4) sporadic events of slurry application in the agricultural
practice. Dominant changes were observed for the first two
components. The changing intensity of the first component
was interpreted as response to the temporal variability of
the thickness of the unsaturated zone. A steady increase in
the second component at most stream water sites pointed to-
wards progressing depletion of the denitrification capacity of
the deep aquifer.

1 Introduction

Numerous high-frequency sampling studies unravelled the
high temporal variability of stream water quality (e.g. Kirch-
ner et al., 2004; Cassidy and Jordan, 2011; Halliday et al.,
2012; Neal et al., 2012; Wade et al., 2012; Aubert et al.,
2013; Kirchner and Neal, 2013; Tunaley et al. 2016; Rode
et al., 2016; Blaen et al., 2017). Therefore, monitoring wa-
ter quantity and quality on the timescale of the hydrological
response of the catchment is a key requirement for under-
standing water quality dynamics and its driving processes in
detail (Kirchner et al., 2004; Neal et al., 2012; Halliday et
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al., 2012). While the development of sensor technology, data
loggers and transmission technology hopefully will help to
significantly increase the number of high-frequency moni-
toring programmes in the future, most of the existing moni-
toring programmes so far applied a rather low sampling fre-
quency. Nonetheless, there is common agreement that for
short periods with high-frequency data, longer periods of
low-frequency monitoring provide invaluable context (Burt
et al., 2011; Neal et al., 2012; Halliday et al., 2012; Bieroza
et al., 2014). This is especially true for existing long-term
records which are required as reference to distinguish be-
tween natural short-term and long-term variability of the ob-
served variables and the assessment of the effects of anthro-
pogenic influence on water quality such as changes in land
use in the catchment (Burt et al., 2008; Howden et al., 2011).

The intriguing temporal and spatial variability in water
quality monitoring data sets can in most cases hardly be re-
lated to single causal factors. Instead, a variety of biogeo-
chemical processes (e.g. Stumm and Morgan, 1996; Neal,
2004; Beudert et al., 2015), climatic (e.g. Neal, 2004) and
hydrological (e.g. Molenat et al., 2008) variability and an-
thropogenic influences, for example agricultural (e.g. Basu
et al., 2010, 2011; Aubert et al., 2013) or forestal (e.g. Neal,
2004) land use, land use change (e.g. Scanlon et al., 2007;
Raymond et al., 2008) or urbanization (e.g. Kroeze et al.,
2013), interact at different scales impeding identification of
clear cause–effect relationships. Usually a single solute is af-
fected by numerous different drivers at different scales (see
e.g. Molenat et al., 2008; Lischeid et al., 2010; Schuetz et
al., 2016 for NO−3 ). Inversely, a single driver usually has an
impact on various solutes (Massmann et al., 2004; Lischeid
and Bittersohl, 2008). This suggests that trend analyses of
single variables might easily be misleading with respect to
the identification of driving factors. For this purpose tech-
niques which are able to account for the interaction of multi-
ple drivers and observed variables are preferable.

On the other hand, despite their complexity, catchments
are highly constrained systems. Usually only a few domi-
nant processes determine the main dynamics of streamflow,
groundwater head or water quality (Grayson and Blöschl,
2000; Sivakumar, 2004; Lischeid et al., 2016). Using joint in-
formation from different solutes is an established way to de-
rive hypotheses on processes or other causal factors that are
dominant in the monitored data. For this purpose, dimension-
reduction techniques, especially the linear principal compo-
nent analysis (PCA), have been used in analyses of mul-
tivariate water quality data for a long time, mostly as an
exploratory tool for descriptive process identification (e.g.
Usunoff and Guzmán-Guzmán, 1989; Haag and Westrich,
2002; Cloutier et al., 2008) or for determining mixing ratios
(e.g. Hooper et al., 1990; Capell et al., 2011). If the anal-
ysed data consist of time series of one or several variables
observed at different sites, then the temporal features of the
results of the dimension reduction can be analysed in a spa-
tially explicit way, e.g. with respect to seasonal patterns or

long-term developments at the monitored sites (Lischeid and
Bittersohl, 2008; Lischeid et al., 2010).

However, many of the methods commonly used for
analysing temporal developments in monitoring data sets re-
quire regularly sampled data. In practice the spatiotemporal
design of sampling campaigns and monitoring networks of-
ten evolves during the sampling period in an irregular way.
In order to obtain a regularly sampled data set, additional in-
formation with a different sampling design, e.g. from pilot
studies or single sampling campaigns, might not be utilized
in the analysis at all. Further irregularities in the spatiotem-
poral structure of environmental monitoring data sets arise
typically during the monitoring itself from a variety of rea-
sons such as failure of sensors or data loggers, measurement
errors, loss of samples or periods of ice or drought. Thus, in
environmental monitoring practice, data sets with gaps and
periods with corrupted measurements are more the rule rather
than the exception (see e.g. Zhang et al., 2018, for river qual-
ity data).

Lischeid et al. (2010) suggested a combination of ex-
ploratory data analysis methods to detect and analyse domi-
nant processes and their temporal development in multivari-
ate water quality data sets that is capable of dealing with
irregular time series. We built on that and extended it to-
wards the detection of “dominant changes” in time series of
multivariate water quality data that are monitored at differ-
ent sites, i.e. at different parts of a catchment or in different
catchments within a region. In analogy to the dominant pro-
cess concept (Grayson and Blöschl, 2000; Sivakumar, 2004),
we use the term “dominant changes” in a broad and descrip-
tive sense referring to systemic changes that clearly exceed
the usual range of heterogeneities in the temporal, spatial or
inter-variable structure of the observed water quality data.
The changes we considered as dominant were those that con-
cerned (1) main components of the multivariate water qual-
ity data set rather than single water quality variables (mul-
tivariate components), (2) behaviour at various sites rather
than at single sites (multiple sites), and (3) long-term be-
haviour rather than short-term fluctuations or single events
(long-term patterns).

To identify the dominant changes, we combined ex-
ploratory data analysis methods for non-linear dimension re-
duction, spectral analysis, linear and non-linear trend esti-
mation, and a monotonic trend test in one exploratory frame-
work. The suggested approach was tested with a multivariate
water quality data set that has been sampled with a spatially
and temporally irregular sampling scheme in northeast Ger-
many from 1998 to 2009. In the following, we present and
discuss the results of our case study according to the three
aspects of dominant changes: (1) multivariate components,
(2) multiple sites and (3) long-term patterns. We continue
with a discussion of (4) effects of the irregular sampling and
(5) methodological aspects of the exploratory framework.
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2 Data

2.1 Study area

The study area is the upper part of the basin of the Ucker
river located in the northeast of Germany, about 90 km north
of Berlin, which drains to the Baltic Sea another 50 km fur-
ther north. It is part of the Leibniz Centre for Agricultural
Landscape Research (ZALF) long-term monitoring region
AgroScapeLab Quillow, the LTER-D (Long Term Ecological
Research Network, Germany) and the TERENO (Terrestrial
Environmental Observatories, http://teodoor.icg.kfa-juelich.
de, last access: 8 October 2017) Northeastern German Low-
land Observatory. Water samples have been taken in the ad-
jacent catchments of Dauergraben (78.9 km2), Stierngraben
(104.8 km2), and Quillow (399.4 km2) with its subcatch-
ments Strom (235.8 km2) and Peege (25.6 km2) (Fig. 1). At
the ZALF weather station Dedelow, which is situated ap-
proximately 500 m northeast of Q_97 (Fig. 1a), a mean an-
nual precipitation of 550 mm and a mean annual tempera-
ture of 8.9 ◦C was observed for the hydrological years within
the study period (November 1997 to October 2009). The
mean annual climatic water balance for this period, calcu-
lated from daily precipitation and potential evapotranspira-
tion, was found to be −103 mm, exhibiting high interan-
nual variability with −148 mm in the summer half year and
+45 mm in the winter half year.

The topography of the region developed basically dur-
ing the Pomeranian stage and the Mecklenburgian stage of
the Weichselian ice age, i.e. 15 200 to 14 100 years before
present. Altitude varies from 20 m in the lowlands of the
Ucker river to more than 100 m above sea level in the south-
western part of the study area. During the Pleistocene, re-
peated advances and recessions of the ice sheet deposited
highly heterogeneous unconsolidated sediments of about 150
to 200 m thickness. The base consists of a thick Oligocene
clay layer which separates the upper freshwater groundwater
system from saline groundwater underneath. Based on bore-
hole surveys, up to seven aquifers divided by layers of till
have been identified within the unconsolidated Quaternary
sediments. In some parts of the region patches of halophilous
plants are found in the lowlands, indicating local upwelling
of saline groundwater from the underlying Tertiary aquifer
through windows of the Oligocene clay layer.

Loamy and sandy loamy soils that developed from the till
substrate prevail. Most of the region is intensively used as
cropland, although the fraction of arable land differs between
the catchments (Table 1). Forests comprise only a minor frac-
tion of the area (Table 1). Land cover did not change within
the study period from 1998 to 2009. The riparian zone of the
catchments is mostly used as grassland, underlain by peat and
organic and sandy fluvial deposits. The hummocky landscape
includes about 1300 closed drainage basins and small ponds
with an area of the water surface < 1 ha (Kalettka and Rudat,
2006; Lischeid et al., 2016). Many of the larger depressions

have been connected by ditches to facilitate drainage. Partly,
these ditches have later been replaced by underground pipes
for land reclamation. In addition, agricultural soils are exten-
sively drained by subsurface tile drainage systems. From the
13th century until the end of the 19th century, the energy of
the natural water courses was also occasionally used to power
mills. Today, those mills are not active any longer and have
been replaced in most cases by weirs for water management
or ramps. For more details on the study site, please see Merz
and Steidl (2015).

2.2 Sampling and analysis

The monitoring aimed to cover the spatial and temporal vari-
ability of water quality along the Quillow stream, its tribu-
taries and the adjacent streams. The main focus of the moni-
toring was the Quillow catchment. Here, eight sampling sites
were located along the main stream and another four at each
of the two tributaries Peege and Strom (Fig. 1 and Sup-
plement Table S1). At the streams Dauergraben and Stiern-
graben and at the Ucker river, stream water quality was mon-
itored at one site respectively. Stream water sampling started
in 1998 and was performed until 2009. Discharge data were
only available at sites Q_93 and S_118 (Fig. 1a). Thus, we
did not include it in the presented analysis. Groundwater
quality was monitored in the Quillow catchment only, close
to the middle reaches of the stream and close to the mouth of
the Peege tributary, from 2000 to 2008 (Fig. 1b). At this site,
an up to 15 m thick horizontal till layer separates a shallow
and very heterogeneous unconfined aquifer from a mainly
confined deep aquifer. The separating till layer crops out
further downstream (Merz and Steidl, 2015). Both aquifers
were monitored (Table S2). The deep aquifer is known to be
confined except at well Gd_204. Groundwater level in the
deep aquifer was measured daily with automatic data log-
gers at wells Gd_198, Gd_201, Gd_203 and Gd_204 (Merz
and Steidl, 2014a).

Groundwater quality (Merz and Steidl, 2014b) and stream
water quality (Kalettka and Steidl, 2014) monitoring in the
Quillow catchment covers a wide range of water quality pa-
rameters. For the multivariate analysis in this study, we con-
sidered from the joint groundwater and stream water quality
data set only the 16 variables with less than 5 % missing val-
ues, i.e. NH+4 , NO−3 , NO−2 , PO3−

4 , Na+, K+, Mg2+, Ca2+,
Cl−, O2, pH, water temperature, redox potential (Eh), elec-
tric conductivity (EC), SO2−

4 and dissolved organic carbon
(DOC) (Table S3). Each sample contained measurements of
all 16 variables. Those water samples for which more than
2 of the 16 monitored variables were missing were excluded
from the analysis, resulting in a set of 1572 samples. In total,
0.69 % of the values in the data set were missing. In addi-
tion, we considered HCO−3 and Fe2+ concentration from the
groundwater monitoring (Table S3).

The number of temporal replicates varied between one and
127 per site (Fig. 2). In general, streams were sampled at
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Figure 1. Map of the study area. Coordinates of WGS84 /UTM zone 33N are given in m. (a) Stream water monitoring sites and the location
of the study area (upper Ucker river catchment) within Germany. (b) Section with the included groundwater monitoring sites. For better
readability only the number of the ID of the monitoring sites is shown.

Table 1. Share of land use classes in the different catchments (percent of land cover) based on CORINE Land Cover 2000 data (DLR-DFD
and UBA, 2004).

Settlements and industry Arable land Grassland Lakes Others Wetland Woodland

Dauergraben 1.7 92.1 4.1 1 0.3 – 0.8
Ucker 4.6 62.3 5.6 7.7 2.2 2.4 15.2
Stierngraben 1.4 61.2 15.8 1.2 0.9 – 19.5
Strom 2.2 54 7 6.9 1.2 – 28.7
Quillow 2.3 77 9.3 1.3 1.4 – 8.7
Peege 0 78.3 5.5 – – – 16.2

approximately monthly intervals, and groundwater samples
were taken every 3 months. Median (mean) sampling inter-
vals were 29 (38.7) days for stream water and 98 (125.3)
days for groundwater. The one shorter sampling interval at
site GdQ_198 was an exceptional sample taken during main-
tenance work. In total, sampling intervals between two con-
secutive samples varied between 9 and 714 days (Fig. 2).

The sites were sampled roughly similarly across seasons
(Fig. 2a). The most important systematic deviations from this
rule were the Peege sites and the most upstream sites of the
Quillow (Figs. 2a and 1), which often fall dry in summer
(Merz and Steidl, 2015).

Further details on the data and measurement methods are
provided by Merz and Steidl (2015). The selection of water
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quality data used in this article and the groundwater level data
have been published under the CC-BY 4.0 license and can
be found in Lehr et al. (2018) and Merz and Steidl (2014a)
respectively.

3 Methods

3.1 Data preprocessing

Missing values were replaced by the median of the respec-
tive variable. This concerned at most DOC (3.44 % of the
values) and NO−2 (2.54 %), whereas the percentage of miss-
ing values was less than 2 % for each of the other 14 vari-
ables (Table S3). Values below detection limit were replaced
by 0.5 times that limit. To achieve equally weighted variables
the values were z-normalized to zero mean and unit standard
deviation for each variable separately.

3.2 Exploratory framework

To identify the dominant changes, we firstly used the non-
linear dimension-reduction technique isometric feature map-
ping (Isomap) to derive the main multivariate water quality
components. To account for the interaction of groundwater
and stream water, both groundwater and stream water sam-
ples have been analysed together in one joint analysis. Sec-
ondly, we studied differences between the sites with respect
to median component values. Thirdly, we analysed the time
series of the components at sites with more than 50 samples.
Seasonal patterns were analysed with the Lomb–Scargle ap-
proach (Lomb, 1976; Scargle, 1982„ 1989) and – if signifi-
cant – were subtracted from the series prior to trend analyses.
Please note that the term “seasonal” refers to the annual cy-
cle throughout the article. Linear trends were estimated with
the Theil–Sen estimator and tested for significance with the
Mann–Kendall test. Non-linear trends were depicted with the
locally weighted regression (LOESS) approach (Cleveland,
1979; Cleveland and Devlin, 1988). We then related resulting
low-frequency patterns to the long-term groundwater head
dynamics, likewise determined as the LOESS smooth of the
de-seasonalized series. Time series analysis at different sites
allowed us to check whether long-term patterns were consis-
tent, pointing to more general effects in the study area.

As the methods do not require regularly sampled data in
space or time, we considered every sample as additional in-
formation of the spatiotemporal variability of the observed
water quality in the study area rather than noise. Conse-
quently, irrespective of irregularities of sampling intervals at
a site or differences in sampling intervals and numbers of
samples between the different sites, we included as many
samples in the analysis as possible to increase the informa-
tive value and support the representativeness of the study in
space and time. This might lead to a bias in the determina-
tion of the components, as well as in the estimation of the
trends of the components and their significance, if deviations

from a regular sampling scheme follow a systematic pattern.
To check for that, we tested the distribution of sampling in-
tervals at all sites with N>50 (Table S1) for normality with
the Shapiro–Wilk test and the temporal development of the
lengths of the sampling intervals for the whole observation
period for monotonic trends with the Mann–Kendall test. For
all tested sites a Gaussian distribution of sampling intervals
as well as a monotonic trend of the length of sampling inter-
vals during the observation period was rejected.

3.3 Dimension reduction

Dimension-reduction methods aim to represent a data set
with a given number of dimensions (here the number of mea-
sured hydrochemical variables) in a new data space with sub-
stantially fewer dimensions. This is achieved by projecting
the data in a new ordination system which makes a more ef-
ficient use of the intrinsic structures of the data set than the
original one. The axes of the new ordination system are usu-
ally called components or dimensions. In the following, we
will use the term “components”. For the values of a compo-
nent we will use the term “scores”. The reduction of the data
set’s dimensionality is achieved by considering only some of
the new components for further analysis. The selection pro-
cess is a trade-off between reduction of the dimensionality
and minimizing the loss of potentially informative structures.
Typically only the first few components are selected as they
depict the main structures in the data set.

In the projection, different methods focus on different as-
pects of the data. For example PCA aims at maximizing
variance on the first components, classical multidimensional
scaling (CMDS) at preserving the inter-point distances of
the input data in the projection and self-organizing maps
(SOM) at preserving the neighbourhood relations (topol-
ogy) of the input data in the projection (Lee and Verleysen,
2007). In the last years, a variety of non-linear dimension-
reduction methods have been developed (Van der Maaten et
al., 2009). Although being sensitive to noisy data, isomet-
ric feature mapping (Tenenbaum et al., 2000) was one of the
best-performing approaches when applied to real-world data
(Geng et al., 2005). It has been successfully applied in envi-
ronmental research disciplines, e.g. biodiversity studies (Ma-
hecha et al., 2007), soil sciences (Schilli et al., 2010), clima-
tology (Gámez et al., 2004) and biogeochemistry (Weyer et
al., 2014).

3.3.1 Principal component analysis

In our study, the well-established linear principal component
analysis (PCA) served as benchmark for the non-linear iso-
metric feature mapping. PCA is one of the most widespread
dimension-reduction methods going back to research of
Pearson (1901) and Hotelling (1933). For a brief introduction
to PCA, please see for example Jolliffe and Cadima (2016)
and for a comprehensive one see Jolliffe (2002). PCA aims
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Figure 2. (a) Sampling dates at the sites for the whole monitoring period. (b) Box plots of the variability of sampling intervals during the
monitoring period. For better readability, the maximum of the x axis is limited to 180 days. The median (red) and mean (blue) of sampling
intervals are shown separately for the groundwater and stream water sites. Grey vertical lines mark the 1-day, 1-week and 1-month interval.
(a, b) The dashed horizontal line separates groundwater sites (bottom) from stream water sites (top). Labels: P, Peege; Q, Quillow; S, Strom;
St, Stierngraben; U, Ucker; D, Dauergraben; Gs, shallow groundwater; Gd, deep groundwater. The number of samples at each site is given
in brackets. Names of the sites with more than 50 samples are printed bold.

to successively maximize the variance of the data set on
the new calculated components. The scores of the com-
ponents are calculated as weighted linear combinations of
the original variables. The weights (loadings) of the linear
combination define the axes of the data space in which the
data are projected. The loadings are the eigenvectors de-
rived from an eigenvalue decomposition of the covariance
matrix of the analysed variables. If the analysed variables
are z-normalized, as was done here, their covariance matrix
is equivalent to the (Pearson) correlation matrix. The com-
ponents are ordered with decreasing size of their eigenval-
ues. The share of variance that is assigned to a component
is proportional to the size of its eigenvalue in relation to the
sum of all eigenvalues. Thus, the ratio of total variance that
is captured by the considered components gives a measure
of performance of the PCA. PCA was performed in R (R
Core Team, 2017) with the function “princomp” of the de-
fault package “stats”.

3.3.2 Isometric feature mapping

Isometric feature mapping (Isomap) is a non-linear extension
of CMDS. It aims to approximate the global non-linearity in

a data set by local linear fittings (Geng et al., 2005). This
is done by mapping approximated geodesic inter-point dis-
tances to an Euclidean distance matrix via a neighbourhood
graphG (Tenenbaum et al., 2000). The geodesic distance be-
tween two points is the distance along the surface of a (non-
linear) manifold, in contrast to the straight-line Euclidean
distance (Geng et al., 2005). The neighbourhood graph G
consists of segments that connect every data point to its k
nearest neighbours directly via Euclidean distances. For all
unconnected points the shortest path along the neighbour-
hood graph G is computed as the smallest sum of connected
segments via the Dijkstra algorithm (Dijkstra, 1959). This
approximation of the geodesic distances allows the adapta-
tion of G to the global non-linear structures in a data set.
The only free parameter k has to be optimized by checking
the performance of several runs. The more linear the data, the
higher the optimum k will be. If k equals the possible number
of connections of one data point to all other data points, the
approximations of the geodesic distances are equal to the Eu-
clidean distances and the Isomap results are congruent with
those of CMDS and linear PCA (Gámez et al., 2004). Finally
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the neighbourhood graph G is embedded in the Euclidean
space.

In contrast to PCA, assessing performance based on the
eigenvalues of the components is not applicable for Isomap.
Performance of the dimension reduction of the Isomap ap-
proach was assessed and compared to performance of the
PCA by the squared Pearson correlation coefficient (R2) of
the inter-point distances in the high-dimensional data space
and in the low-dimensional projection spanned by selected
components (Lischeid and Bittersohl, 2008; Lischeid et al.,
2010). A perfect fit would yield a value of 1 and a value of
0 reflects no correlation between the distance matrices of the
original data and of the projection. Please note that with this
measure the contribution of single components to the over-
all performance does not necessarily decrease monotonically
with increasing order of the components, as it is the case for
the eigenvalue-based performance measure of PCA. For the
local assessment of the representation of inter-point distances
at the individual sites, only the data points from the respec-
tive sites were used. Because the selection of data points at
a site is only a subset of the global data set for which the di-
mension reduction was performed, the performances regard-
ing the representation of inter-point distances differ between
the individual sites as well as compared to the overall perfor-
mance for the global data set. At some sites it can even hap-
pen that adding more components does not improve the rep-
resentation of inter-point distances in the low-dimensional
projection for every component. Isomap and the determina-
tion of the distance matrices were performed with the R pack-
age “vegan” (Oksanen et al., 2017).

3.3.3 Interpretation of components

The analysis focused on those components that explained a
major fraction of the total inter-point distances. The consid-
ered components were regarded to reflect dominant drivers
influencing water quality. Here, the term “driver” was used
for biogeochemical and hydrological processes as well as
for anthropogenic influences affecting water quality. Corre-
spondingly we formulated a hypothesis for each considered
component. The interpretation of the components is based
on analysing (i) the correlations between measured variables
and component scores as well as (ii) spatial and temporal
patterns of the scores.

Correlation between scores of a selected component cpx
and values of single variables might be blurred due to the
effects of other components on the same variable. We ex-
cluded those effects by analysing the relationships between
scores of the selected component cpx and the residuals of the
multiple linear regression (mlr) of the single variable vi at
hand and the remaining other considered components CP\x
(residuals):

cor(cpx, residuals
[
mlr(vi,CP\x)

]
), (1)

where CP\x is the set of m considered components, without
the selected component cpx ; and β0 and βj are the intercept
and coefficients of the regression

mlr(vi,CP\x)= β0+6j∈{CP\x}βj cpj + residuals. (2)

To assess the relationships between components and residu-
als we used bivariate scatterplots. To summarize the relation-
ships between components and residuals we used the Spear-
man rank correlation, which enables us to consider non-
linear relationships as well, as long as they are monotonic. In
addition, it is less sensitive to extreme values than the Pear-
son correlation.

3.4 Time series analysis

At sites with more than 50 samples, time series of compo-
nent scores were analysed for seasonal patterns, linear trends
and non-linear trends. The sites were compared with respect
to the identified long-term patterns to detect general patterns
in the study area. The significance level for trend and fre-
quencies in this study was set to p ≤ 0.05. At each site, the
fractions of variance of a time series that were assigned to its
seasonal pattern, linear trend or non-linear trend were deter-
mined as the R2 of the respective pattern with the component
series. In the case of significant seasonal patterns, the estima-
tions of the trends were based on the de-seasonalized series.
Accordingly, the fractions of variance assigned to the trends
were determined as the R2 of the trend pattern with the de-
seasonalized series. The decomposition of the time series in
a seasonal component and a non-linear trend derived with
LOESS was inspired by the seasonal-trend decomposition
procedure based on LOESS (STL) of Cleveland et al. (1990).

3.4.1 Lomb–Scargle method

Standard Fourier analysis requires an equidistant time se-
ries, which was not given in our study. Therefore, the esti-
mation of seasonal patterns in the time series was done with
the Lomb–Scargle method, which is an extension of Fourier
analysis to the unevenly spaced case genuinely invented in
astrophysics (Lomb, 1976; Scargle, 1982). The application of
the Lomb–Scargle method in this study follows to a large ex-
tent the workflow suggested by Glynn et al. (2006) as well as
Hocke and Kämpfer (2009). Details are given in Appendix A.
The implementation used in this paper can be accessed as an
R script at https://doi.org/10.4228/ZALF.2017.340 (Lehr et
al., 2018).

3.4.2 Theil–Sen estimator and Mann–Kendall test

The linear trend was estimated with the non-parametric
Theil–Sen estimator, which is the median of all inter-point
slopes in a time series (Theil, 1950a, b, c; Sen, 1968). The
Mann–Kendall test (Mann, 1945; Kendall, 1990) was used
to test for significant monotonic trends. Identified trends are
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not necessarily linear. Being based on rank correlation, data
do not have to obey any specific distribution. Please note that
we did not account for the effect of overestimation of the sig-
nificance of trends with the Mann–Kendall test due to short-
term autocorrelation (Yue et al., 2002). That would have re-
quired an assessment of the lag-1 autocorrelation which was
hampered by the irregular sampling. Neither did we con-
sider long-term memory and its effects on the statistical sig-
nificance of the trends (Cohn and Lins, 2005; Zhang et al.,
2018). Consequently, we did not consider the possible ef-
fects of the irregular sampling on the long-term memory
(fractal scaling) of the water quality series either (Zhang et
al., 2018). Due to the limited number of samples per year
and non-equidistant sampling, the seasonal Mann–Kendall
test was not applicable (Fig. 2). Instead, significant seasonal
patterns according to the Lomb–Scargle approach were sub-
tracted prior to trend analysis. The Mann–Kendall test was
performed with the R package “Kendall” (McLeod, 2011).

3.4.3 Locally weighted regression (LOESS)

We assessed non-linear trends and low-frequency patterns
with locally weighted regression (LOESS; Cleveland, 1979;
Cleveland and Devlin, 1988), where the smoothing is done
by local fitting of a second-order polynomial to each point
x in the data set using weighted least squares. The weights
for each value to be fitted are scaled to the range from 0
to 1 by the distance d(x) between x and its qth closest
point. The ratio of q to the number n of all data points,
i.e. the span of the local regression smoother, defines the
degree of smoothing. We used the default smoothing span,
which is a proportion of q/n= 0.75 of x’s nearest neigh-
bours. Data points further away than the qth data point do
not contribute to the regression. Within the range of the
span, the weights wi of the neighbouring points xi in the
least squares fit decrease with increasing distance of xi to
x symmetrically around x according to the tricubic weight-
ing function wi (x)= (1− [|xi − x|)/d (x) ]3)3. Again, sig-
nificant seasonal patterns according to the Lomb–Scargle ap-
proach were subtracted prior to trend analysis. For details
about choosing different LOESS parametrizations, please see
Cleveland (1979) as well as Cleveland and Devlin (1988).
Local extrema of the LOESS smooth were identified with
the R package “EMD” (Kim and Oh, 2009, 2014.).

4 Results

4.1 Multivariate components

We achieved the best performance of the Isomap dimension
reduction with k = 1300 (Table 2). In the following, results
are presented for the first four Isomap components represent-
ing 88 % of the inter-point distances of the total data set. For
single sites (with more than 15 samples), between 29 % and
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Figure 3. Spearman rank correlation of a component and the resid-
uals of the multiple linear regression of the measured variable and
the remaining three other components.

97 % of the respective inter-point distances were represented
(Table S4).

The first component depicted 42 % of the inter-point dis-
tances of the total data set. Plotting residuals of the variables
versus the first component showed strong positive correla-
tions for NO−3 , Na+, K+, Mg2+, Ca2+, Cl−, EC, SO2−

4 , DOC
and slightly weaker, but still positive, correlations for O2 and
Eh. Temperature was the only variable correlating negatively
with the first component (Fig. 3). Visualization of the compo-
nent scores versus residuals of solute concentration revealed
predominantly linear relationships (Fig. S1 in the Supple-
ment).

The second component reflected 18 % of the inter-point
distances in the data. It exhibited clear positive correlation
with O2 concentration, pH and Eh, and weaker correlation
with Na+, K+ and DOC. It was inversely correlated with
Ca2+, EC and SO2−

4 (Figs. 3 and S2). In the groundwa-
ter samples, HCO−3 and Fe2+ had been determined as well.
Both solutes were negatively correlated with this component
(Fig. 4a). NO−3 concentration in the deep groundwater sam-
ples was very low (with 27 % of the samples below detection
limit) and did not show any clear correlation with the second
component. Low component scores in the groundwater came
along with high Ca2+ and HCO−3 concentration.

The relationship of scores of component one and two in
the groundwater is shown in Fig. 4b. Except for the two shal-
low wells close to the Peege stream (Gs_200, Gs_202; see
Fig. 1b), scores of the first and second component are nega-
tively related (Fig. 4b).

The third component represented 6 % of the inter-point
distances in the data set. The residuals exhibited positive cor-
relation for Na+, Mg2+, Cl−, pH and temperature. Negative
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Figure 4. (a) Selection of variables versus scores of component 2 for the groundwater samples. Concentration in mg L−1. (b) Scores of
component 1 versus component 2 at the groundwater sites.

correlations were found for NO−3 , Ca2+, O2, Eh and DOC
(Figs. 3 and S3).

Another 22 % of the inter-point distances in the data were
assigned to the fourth component. Residuals of the compo-
nent scores showed negative correlation for NH+4 , PO3−

4 ,
K+, temperature, and DOC and positive correlation for
O2 (Figs. 3 and S4). The range of component values was
spanned mainly by single large values of NH+4 , PO3−

4 and
K+ that cannot be explained with the preceding three compo-
nents (Fig. S4). This highlights the importance of particular
events for the fourth component.

4.2 Multiple sites

Median values of scores of the first component clearly dif-
fered between streams (Fig. 5a). At the Strom sites, the me-
dian score values were considerably lower than those from
the other stream water sampling sites. The median values of
scores of the sites at the Quillow and Stierngraben showed
intermediate values followed by the Ucker site, the Peege
sites and finally the Dauergraben with the highest median
score value. Groundwater samples in general exhibited con-
sistently low scores for the first component, but without clear
differences between deep and shallow groundwater samples.
Mixing of water from different streams was visible at site
Q_93 downstream of the confluence of the Quillow (Q_95)
and of the Strom stream (S_118), as well as at site Q_100
downstream of the confluence of Q_104, Q_102 and P_107
(Figs. 1 and 5a).

Stream water samples exhibited the highest scores of
the second component, whereas low scores were limited to
deep groundwater samples, and shallow groundwater sam-

ples were in an intermediate position (Fig. 5b). Median val-
ues of the stream water sites were approximately on the same
level except for the sites Q_103, Q_106 and U_128, which
exhibited noticeably higher median values than the other
stream water sites, and the two Peege sites P_109 and P_108,
which exhibited median values on the same level as the shal-
low groundwater sites Gs_199 and G_200. The scores in the
deep groundwater clearly showed the largest absolute values,
indicating the significance of deep groundwater for this com-
ponent (Fig. 5b).

Scores of the third component in the deep groundwater
were consistently higher than in shallow groundwater, while
the stream water samples covered the whole range of val-
ues (Fig. 5c). The lowest scores of the third component were
found at the Peege sites and in the shallow groundwater, and
the highest scores were found at Ucker, Dauergraben and the
deep groundwater. At the Quillow stream, scores tended to
increase from the spring to the outlet. The effect of mixing
of tributaries with different water qualities was visible along
the course of the Peege and Quillow streams downstream of
the respective confluences at the sites P_108, Q_95 and Q_93
(Figs. 1 and 5c).

The range of values of the fourth component was strongly
biased towards negative values, caused by single events at
some sites which exhibited very low values (Fig. 5d).

4.3 Long-term patterns

Time series of scores of the components were studied at sites
with more than 50 temporal replicates. This applied for 13
stream water sites (Table S1). All dominant frequencies (for
details, please see Appendix A) interpreted as seasonal pat-
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Table 2. Cumulated R2 of the reproduction of the inter-point distances of the data in the projection by the first ten components of the best
Isomap run and linear PCA.

Component 1 2 3 4 5 6 7 8 9 10

Isomap 0.42 0.6 0.66 0.88 0.94 0.96 0.97 0.98 0.98 0.99
PCA 0.39 0.57 0.65 0.88 0.94 0.95 0.97 0.98 0.99 0.99
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Figure 5. Box plots of scores of component 1 to 4 at different sites.
Sites withN<13 are marked with “∼”, those withN<3 with “X”.
Labels: P, Peege; Q, Quillow; S, Strom; St, Stierngraben; U, Ucker;
D, Dauergraben; Gs, shallow groundwater; Gd, deep groundwater.

terns had a period length in the range between 350 and 380
days. For de-seasonalization these seasonal patterns were
subtracted from the time series prior to analysis for linear
and non-linear trends.

Most of the time series of the scores of the first compo-
nent exhibited clear seasonal patterns with maximum scores
during the winter season (Figs. 6 and 7). Between 30 % and
67 % of the variance was assigned to the seasonal pattern.
At all sites we found significant negative monotonic trends
(Fig. 6). The strongest decline was found at site D_112 and
the weakest trend at site Q_97 (not shown). The linear trend
comprised between 9 % and 48 % of the variance of the de-
seasonalized time series (Fig. 6). In contrast, the LOESS
smooth depicted 14 % to 57 % of the variance (Fig. 6). It
showed a decrease until December 2004 approximately and
an increase thereafter (Fig. 8). The de-seasonalized time se-

ries of groundwater heads showed a similar behaviour, with
the minimum water level in June 2006 (Fig. 8). Timing of the
minimum values of the scores of the first component varied
between sites, spanning a range from 17 February 2004 to 17
March 2009 (Fig. 8). As an example, Fig. 7 gives the time se-
ries of scores of the first component at site Q_93, the seasonal
pattern extracted from the series and the de-seasonalized time
series with the non-linear trend estimated with the LOESS
smoother.

Unlike for the first component, only 5 of the 13 consid-
ered time series of the second component exhibited a clear
significant seasonal pattern, accounting for 17 % to 48 % of
the variance (Fig. 6). The maxima of the seasonal patterns of
the sites at Quillow and Ucker were in spring and at Stiern-
graben and Dauergraben in summer. In contrast, significant
monotonic trends were found at most of the stream water
sampling sites. All significant trends of the second compo-
nent were positive. The linear trend comprised between 5 %
and 16 % of the variance of the time series, while the LOESS
smooth comprised between 4 % and 25 %.

Values of the third component showed a clear seasonal
pattern with maxima in summer (Fig. 6). Between 30 % and
60 % of the variance was assigned to the seasonal signal. The
only exception was site D_112 were the seasonal pattern was
distorted by strong maxima in the winters of 2003, 2004 and
2007. Only at four sites were significant linear trends found.
All of them were negative, comprising between 6 % and 13 %
of the variance. The LOESS smooth depicted between 0 %
and 21 % of the variance.

For the fourth component, significant seasonal patterns
with maxima in summer were observed at 7 of the 13 anal-
ysed series, comprising between 17 % and 61 % of the vari-
ance (Fig. 6). Five sites showed a significant monotonic
trend, comprising between 5 % and 10 % of the variance. A
negative trend was observed at site St_133 only. Four sites
showed a positive trend. The LOESS smooth depicted be-
tween 1 % and 16 % of the variance.

5 Discussion

5.1 Multivariate components

Non-linear Isomap performed in this study only slightly bet-
ter with respect to the representation of inter-point distances
than PCA (Table 2), suggesting that mainly linear relation-
ships were of importance for the overall dynamics in the data
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Figure 6. Fraction of variance of the time series of the Isomap com-
ponent scores of sites with N>50 assigned to the seasonal pattern
(dark grey) and the trend estimated by the linear Theil–Sen estima-
tor (mid-grey) as well as the non-linear LOESS smooth (light grey).
Fraction of variance is derived as the R2 of the scores of the re-
spective component with the seasonal pattern or the estimated trend.
Only significant seasonal patterns and linear trends are shown. The
sign of the linear Theil–Sen estimator is given in the respective line.
The number of samples at each site is given in brackets.

set. As there were only minor differences, we will present in
the following the results of Isomap only.

For PCA and Isomap, the first component represents by
definition the correlation structure that predominantly can be
extracted from the set of variables as a whole. If all the load-
ings of the first component of a PCA have the same sign, it
is a weighted average of all the analysed variables (Jolliffe,
2002; Jolliffe and Cadima, 2016). The stronger the analysed
variables are linearly correlated, the more the first compo-
nent approximates the arithmetic mean of all variables (for
examples with hydrometric data see Lischeid, et al., 2010;
Lehr et al., 2015). Furthermore, the first component serves as
reference for all the subsequent components.

In this study each sample of the multivariate water quality
data set is uniquely defined by a sampling site and a sampling
date. Thus, the first component depicted (a) for each sam-
pling site the pattern that was most prominent in the time se-
ries of the variables correlating with the first component and
(b) between the sampling sites the difference in concentration
level of those variables. High values of the first component
indicate synchronous appearance of relatively high Eh and
EC together with relatively high concentration of NO−3 , Cl−,
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Figure 7. (a) Time series of scores of the first component at site
Q_93 (N = 126) in black and the seasonal pattern estimated with
Lomb–Scargle in grey. (b) The de-seasonalized series in black and
the non-linear trend estimated with LOESS in grey.
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Figure 8. Left y axis: LOESS smooth of time series of the first
component at sites with N>50 in grey. If a significant seasonal
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axis: LOESS smooth of the de-seasonalized groundwater level at
four sites in black. The black dots mark the minima of the LOESS-
smoothed series.
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SO2−
4 , Na+, K+, Mg2+, Ca2+, DOC and O2 accompanied

with relatively low temperature (Fig. 3).
The whole study region is characterized by relatively in-

tense agriculture (Table 1). Thus, in addition to the natural
background, we assume a general effect of the agricultural
practice on the solute concentration level and the dynamics
of the water quality series in the area. Enhanced concentra-
tion of NO−3 , Cl−, SO2−

4 and Ca2+ is typical for ground-
water and stream water in regions with intense agriculture
compared to forested areas (Broers and van der Grift, 2004;
Fitzpatrick et al., 2007; Lischeid and Kalettka, 2012). Nitro-
gen and potassium are the main ingredients of mineral fer-
tilizers. Cl− and SO2−

4 are the dominating anions in potas-
sium fertilizers. SO2−

4 is a major ingredient of phosphorus
fertilizers and in some nitrogen fertilizers. Calcite is present
in some nitrogen fertilizers or is applied separately via lim-
ing. DOC might be leached from slurry application or via
tile drains after mechanical destruction of topsoil aggregates
during tillage (Graeber et al., 2012). In addition, cations from
the soil matrix might be leached by an enhanced anion con-
centration (mainly NO−3 ) (Jessen et al., 2017). Overall the
application of fertilizers and other agricultural practices like
tillage tend to enhance the solute concentration of seepage
water (Pierson-Wickmann et al., 2009). Thus, we interpreted
the first component as the enhancement of the natural back-
ground level of solute concentration due to agricultural prac-
tices.

Compared to the first component, the relationships of the
second component with Eh, pH and O2 concentration were
more clearly expressed (Figs. 3 and S2). The range of the
scores of the second component was spanned by the lowest
values in the deep groundwater and the highest values in the
stream water (Fig. 5b), whereas shallow groundwater exhib-
ited intermediate scores. This sequence corresponds to redox
conditions expected in those water categories. Thus, we in-
terpreted the second component as a redox-controlled com-
ponent covering a sequence from reducing conditions in deep
groundwater to post-oxic conditions in shallow groundwater
and oxic conditions in stream water. O2 and NO−3 concentra-
tion in deep groundwater samples usually was below the de-
tection limit, which is a common feature in this region (Merz
et al., 2009). NO−3 in seepage and groundwater can be deni-
trified by microorganisms which use the oxidation of sulfides
to sulfate as electron donor for denitrification (Massmann et
al., 2003; Jørgensen et al., 2009). We ascribed the high SO2−

4
and Fe2+ concentration to the oxidation of pyrite (Figs. 4a
and S2). Pyrite and other sulfides are abundant in the Pleis-
tocenic sediments of northern Germany (e.g. Weymann et al.,
2010). Consequently, the pH decreases, calcite gets dissolved
and the HCO−3 concentration increases. Part of the released
Ca2+ replaces Na+ and K+ being sorbed to clay minerals.

We interpreted the clear separation in the third compo-
nent between relatively low scores for the shallow aquifer
and relatively high scores for the deep aquifer as a reflection

of two opposing gradients (Fig. 5c). High concentration of
NO−3 , O2 and DOC and relatively high Eh values being nega-
tively related to the third component (Fig. 3) are indicative of
groundwater close to the surface, whereas enhanced concen-
tration of the positively related solutes Na+, Mg2+ and Cl− is
characteristic for local upwelling of saline groundwater from
the underlying Tertiary aquifers at greater depth (Hannemann
and Schirrmeister, 1998; Tesmer et al., 2007). The scores of
the stream water samples, in turn, reflect the mixing ratio of
groundwater from the two aquifers to the streamflow. We ex-
pect the baseflow maintained from the deep aquifer to be rel-
atively enriched with geogenic solutes compared to the wa-
ter that stems from the shallow aquifer or faster-responding
flow components like tile drain discharge and surface runoff.
Water from the shallow aquifer is expected to be relatively
enriched with solutes originating from the surface compared
to water that stems from the deep aquifer.

The range of values of the fourth component was domi-
nated by single extremely low scores, reflecting samples with
high concentration of NH+4 , PO3−

4 and K+ (Fig. S4). The
catchments of the analysed streams are only sparsely popu-
lated and mainly characterized by intensive agriculture (Ta-
ble 1). In agricultural landscapes slurry is a typical source in
which those nutrients occur in high concentration (Hooda et
al., 2000). We are not aware of any other high-concentration
sources of this combination of nutrients in the region. The
small number of scores with very low scores implied that
there were merely single events occurring at some of the sites
only. This fits the finding that the timing of slurry applica-
tion is crucial for the amount of nutrient loss to the streams
(Hooda et al., 2000; Cherobim et al., 2017). Thus, we inter-
preted the negative peaks of the fourth component as spo-
radic events of slurry application, being either unintention-
ally directly applied to the stream during the spreading of
the slurry or being leached via surface runoff and tile drain
discharge after application.

5.2 Multiple sites

The interpretation of the first component as an agricultur-
ally induced enhancement of the natural background level of
most of the water quality variables is consistent with the spa-
tial pattern of median component scores at the different sites.
The highest scores were found in the Dauergraben stream and
in the Peege stream (Fig. 5a). Both catchments are character-
ized by intense agriculture, a relatively dense network of tile
drains and hardly any buffer strips along the streams lead-
ing to a rapid transmission of solute-enriched waters from
the fields to the streams. In contrast, the Strom stream exhib-
ited the lowest scores among all streams. Compared to the
other streams, the valley of the Strom stream is clearly deep
cut. Therefore, the Strom stream is expected to receive along
its whole length continuous and substantial groundwater in-
flow from the deep aquifer. In addition, the valley slopes are
covered with forest and are not in agricultural use, acting as a
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buffer strip for the agricultural impact. Furthermore, the frac-
tion of arable land in the Strom catchment is smallest and the
fraction of woodland is largest compared to the other catch-
ments (Table 1). Main parts of the Strom catchment are situ-
ated within a nature conservation area, furthermore limiting
the agricultural impact in its riparian zone.

Deep groundwater, shallow groundwater and the stream
water were well separated by the second component
(Fig. 5b). Exceptions were the sites at the Peege stream,
which are mainly supplied with water from tile drainage
and the shallow aquifer and consequently yield median val-
ues similar to the shallow groundwater. The largest positive
median values of the second component, being higher than
those of the other stream water sites, were observed at sites
with less than 13 samples (Q_103 and Q_106) and at the site
U_128, which received at least partly waters from a differ-
ent region than the other stream water sites (Figs. 1 and 5b).
Thus, for the purpose of this study, we restricted our analysis
on the spatial variability of the redox component to the cate-
gories of deep groundwater, shallow groundwater and stream
water.

However, we took a closer look at the non-linear struc-
ture that became apparent for the deep groundwater sam-
ples in some of the residual plots of the second component
(Fig. S2). In addition, we related the groundwater values of
the second component to the first component and the HCO−3
and Fe2+ concentration (Fig. 4). The negative relationship
between the second component and the first component in
the deep groundwater suggests that the agricultural load rep-
resented by the first component acts as a driver for the sul-
fide oxidation represented by the second component. Among
all deep groundwater wells, the deepest groundwater well
Gd_198 exhibited the lowest scores of the first component
(Fig. 5a) and the highest scores of the second component
(Fig. 4b and Fig. 5b). This suggests that due to the rela-
tively low agricultural load the oxidation of sulfides was the
least pronounced among all deeper wells. Similar relation-
ships between the extent of sulfate oxidation in the aquifer
and agricultural NO−3 input have been found in other studies
(e.g. Zhang et al., 2009; Jessen et al., 2017, and references
therein).

We expected the ratio of groundwater from the deep
aquifer contributing to the streamflow to increase in general
with increasing catchment size. The Peege stream is mainly
fed by the shallow aquifer and yielded consequently median
values of the third component similar to the shallow ground-
water sites (Fig. 5c). In comparison the streams of Quillow,
Strom and Stierngraben exhibited higher median values, in-
dicating a larger proportion of groundwater from the deep
aquifer contributing to runoff in comparison to the Peege
stream. The sites U_128 and D_112 showed the highest me-
dian values of the third component among the stream wa-
ter sites, being equal or even higher than those of the deep
groundwater sites (Fig. 5c). Both sites have subsurface catch-
ments that do not include the deep groundwater sampling

sites in this study. Site D_112 is on the eastern side of the
river Ucker, while all groundwater sampling sites are on the
western side of it (Fig. 1a). In addition, its higher median
value of the third component was partly due to several peaks
during the winter time. Those coincide with high values of
Cl−. These might indicate road salt application, but we did
not investigate this further, as the winter peaks considered
only this single site. Site U_128 is situated at the outlet of the
lake Unteruckersee upstream of the confluence of the Quil-
low stream (Fig. 1a). There, we did not expect a contribution
of the groundwater sampled in the Quillow catchment either.

All the stream water sampling sites with negative peaks
of the fourth component are located near arable fields which
are known to get fertilized by slurry (Fig. 5d). For example
the two most affected sites Q_102 and Q_103 receive slurry
input from a large pig farm close by (Gernot Verch, per-
sonal communication, 2018). Overall, only a few slurry input
events accounted for 22 % of the representation of the inter-
point distances of all the water quality samples of the water
quality data set in the Isomap projection (Fig. 5d). However,
the performance of the representation of the inter-point dis-
tances after adding the fourth component differed substan-
tially between the different sites (Table S4). In the case of site
S_121 the representation of inter-point distances with four
components (R2

= 0.68) was even slightly worse than with
three components (R2

= 0.66) (Table S4). This indicated an
anomaly at this specific site compared to all other sites with
respect to the fourth component, i.e. the solutes which mainly
determine the fourth component. We traced this phenomenon
back to one single sample from 25 May 2004 which com-
prised relatively high DOC values and at the same time rela-
tively low values of K+, which is opposite the relationships
indicative of the fourth component (Fig. 3). The deterioration
of the representation of the inter-point distances after adding
the fourth component at this site vanished in an Isomap anal-
ysis which was performed without this sample. We were not
able to find an explanation for this exceptional sample. How-
ever, it underlined that by applying a dimension-reduction
method every single sample is put into the perspective of the
global features of the data set as depicted by the components.
Overall, the fourth component underlines the necessity of de-
veloping and using methods in environmental data analysis,
which enable us to consider non-linear processes as well as
singular and site-specific events.

5.3 Long-term patterns

Dominant changes were observed for the first two compo-
nents (Fig. 6). We interpreted the non-linear long-term trend
of the first component at most stream water sites (Fig. 8) as
the response of stream water quality to the interannual vari-
ability of depth to groundwater. An increase in the thickness
of the unsaturated zone leads in general to longer residence
time of seepage water, increasing retardation and buffering
of topsoil seepage water, which reduces the solute concen-
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tration originating from the surface in the seepage water and
consequently reduces the values of the first component.

Trends similarly shaped to the non-linear trend of the first
component of stream water quality were observed for the
water level in the deep groundwater. In general, the turning
points of the deep groundwater head time series lag behind
those of the scores of the first component of the stream water
sites by approximately 1.5 years (Fig. 8). The earlier date of
the turning point at groundwater gauge Gd_204 in October
2005 is most probably an artefact, caused by the effect of the
large time gaps in 2006 and 2007 on the de-seasonalizing at
this site and has to be considered with care.

We suggest that the time lag between stream water chem-
istry and water level in the deep aquifer is due to different
response times to changes in the moisture conditions of the
unsaturated zone. Compared to the relatively fast response of
the stream water quality, the groundwater level in the deep
aquifer reacts slower. In general, the overall trend of ground-
water recharge reflects a relatively slow response to changes
in the regional water balance. The velocity of seepage in the
sediments of the upstream region of the Quillow catchment
is estimated to be roughly 1 m per year.

The seasonal patterns, i.e. the annual variability, in the
time series of the scores of the first component in the streams
were ascribed to transient hydraulic decoupling of the mostly
affected topsoils from the streams in summer. Usually there
is hardly any seepage during the dry summer months at all.
This leads often to drought in the uppermost stream reaches
(Fig. 2a and Merz and Steidl, 2015). Thus, shallow ground-
water and tile drain discharge, both sources with relatively
high agricultural load, did not contribute to stream discharge
during these periods and larger areas of the catchment got
hydraulically decoupled from the stream network (Merz and
Steidl, 2015). Similar effects of the seasonal variability of
the hydrological connectivity of streams, groundwater and
tile drainage in agricultural catchments on the concentration
level of solutes originating from agriculture in the stream
water have been reported, e.g. for NO−3 in the Schaugraben
study catchment in the north of Germany (Wriedt et al.,
2007) and for NO−3 and Cl− in the Kervidy-Naizin catch-
ment in western France (Molenat et al., 2008; Aubert et al.,
2013).

The other dominant change in stream water chemistry ob-
served in this study was the continuous increase in the sec-
ond component at most stream water sites (Fig. 6). All of the
sampling sites with very low values of the second compo-
nent were in the deep aquifer (Fig. 5b). The positive trends
of the second component at most stream water sites were as-
cribed to changes in the chemistry of the baseflow originat-
ing from groundwater. Considering the interpretation of the
second component, this translates into enhanced oxidation of
geogenic sulfides in the deeper aquifer due to the continuous
input of NO−3 and DOC originating from agriculture and sub-
sequent calcite dissolution. Geogenic sulfides, such as pyrite,
serve as electron donors for denitrification. The consumption

of the geogenic sulfides is irreversible and might lead to the
depletion of the denitrification capacity in the deep aquifer
in the long run (Merz et al., 2009; Zhang et al., 2009; Merz
and Steidl, 2015). Consequently, buffering of NO−3 surplus
from agricultural land use is expected to decrease and NO−3
concentration in the groundwater and the stream water is ex-
pected to increase. The hypothesized long-term development
should be of concern for the water resources and environ-
mental protection agencies with respect to future water qual-
ity and related international commitments, such as the Wa-
ter Framework Directive (EU, 2000), the Groundwater Di-
rective (EU, 2006) and the Nitrates Directive (EU, 1991) of
the European Union. Substantial time lags have to be con-
sidered for the response of groundwater quality to measures
that reduce leaching of NO−3 (e.g. Pierson-Wickmann et al.,
2009; Meals et al., 2010). In the Quillow catchment, we ex-
pect travel times in the order of magnitude of decades for the
seepage water to reach the deep aquifer.

We did not observe dominant changes for the other two
water quality components during the course of the observa-
tion period. The main temporal feature of the third compo-
nent was a very distinct and steady seasonal pattern, as could
be expected for the mixing ratio of groundwater from the
deep aquifer. All stream water sites with n>50, except for
D_112, showed a distinct seasonal pattern with maximum
scores in the summer, which is consistent with the assump-
tion that the fraction of deep groundwater in the streams is
highest during this period (Fig. 6). The seasonal pattern at
site D_112 was disturbed by the winter peaks we ascribed to
road salt application (Sect. 5.2).

Because of its strong dependence from single events
(Fig. 5d), the results of the estimation of the seasonal patterns
and the trends of the fourth component have to be considered
with care. The maxima of the seasonal pattern in summer at
some sites were interpreted as reduced nutrient inputs to the
stream due to nutrient uptake of plants and maximum buffer-
ing capacity of the unsaturated zone in summer. There were
no indications for any effects of those events that we ascribed
to the direct effect of slurry application on samples taken on
the subsequent sampling dates at the affected sites. This is
presumably due to the width of the sampling interval (Fig. 2).

In the case of dependence of a component from single
events, change might be also related to clustering of those
events during certain parts of the series, either for series at
single sites or sets of series. Most of the extreme events of
the fourth component appeared during the first half of the ob-
servation period (not shown). However, because of the small
number of clearly outstanding events, we did not investigate
this further (Fig. 5d).

In this study, the presented analysis of changes in water
quality was limited by the temporal resolution of the data.
Aspects such as long-term memory effects, as indicated by
fractal scaling of solute series (Kirchner et al., 2000) and the
observed scale-crossing non-self-averaging behaviour of so-
lute series (Kirchner and Neal, 2013), were not considered.
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However, we assume that the suggested use of multivariate
components gives some robustness to the detected changes
compared to the analysis of single solutes.

5.4 Effects of the irregular sampling

There was an obvious spatial bias with a focus on the Quil-
low catchment itself, conditioned by the focus of the mon-
itoring (Sect. 2.2, Fig. 1). Stream sampling sites were only
partly independent from each other, as the same streams had
been sampled along different reaches. This needs to be con-
sidered in the interpretation of the components. In our ex-
ploratory approach, differences between subsequent stream
reaches helped to identify the effects of tributaries or ground-
water that recharged between the respective sampling sites.
In that way, the stream was used as a measurement device
for biogeochemical processes and water-borne solute trans-
port in different parts of the catchment and the interlinkages
of groundwater and stream water.

It is important to note that our approach does not require
the same number of samples per site (Fig. 2). The derived
components constitute a frame in which all samples are inte-
grated independent of the number of samples per site. Thus,
in our application we get the information of how those sites
with very few samples group or behave in relation to the oth-
ers. Even a few samples might indicate for example that the
respective site behaves similar to other sites with respect to
some components and very different with respect to other
components. The influence of single samples for the inte-
gration of the different sites into the global pattern of the
water quality relationships summarized by the fourth com-
ponent is an illustrative example for that (Sect. 5.2). Thus,
even occasional sampling at some sites helps in assessing the
strength of effects of the respective drivers at these sites and
might support or contradict hypotheses on spatial variability
and related long-term patterns of those influences. This in-
formation would be lost if those samples would be excluded
beforehand.

In addition, the approach followed here does not require
identical temporal sampling resolution at all sites or syn-
chronous sampling dates. Thus, a strictly regular sampling
design, which is hardly feasible, is no prerequisite. Corre-
spondingly, data from different monitoring programs could
be used for a joint analysis. Sampling intervals at the sam-
pling sites with N>50 were not normally distributed and
biased towards deviations that are longer than the median
(Fig. 2b). Several series exhibited large time gaps. However,
as sampling intervals did not change systematically through-
out the monitoring period we assume that the effects on the
results of the significance test with Mann–Kendall were neg-
ligible (Sect. 3.2). In comparison, the trend estimations with
the Theil–Sen estimator and LOESS are more robust, as they
incorporate the exact sampling dates explicitly in the calcu-
lations. Thus, we do not expect major effects on the sign of

the Theil–Sen estimator or the general shape of the LOESS
smooth at the given temporal resolution.

In general, the interpretation of the components should
consider the temporal structure of the data set. For example
in this study the drying out of the streams at the Peege sites
and the most upstream sites of the Quillow in summer was
the most important systematic deviation from an otherwise
roughly similar sampling across seasons (Fig. 2a). This infor-
mation was included in the interpretation of the first compo-
nent (Sect. 5.3). If the monitoring would in general not have
been performed roughly similarly across seasons, e.g. if one
or more seasons would in general be missing, the estimation
of the seasonality would not be applicable. If the monitoring
would be such that there would be different seasons sampled
in different years, this would have to be considered in the
estimation of the trend.

5.5 Exploratory framework

The application of a dimension-reduction approach was mo-
tivated by the assumption that drivers influencing water qual-
ity usually affect more than one solute and that single solutes
are affected by more than one driver. Like in preceding stud-
ies (e.g. Lischeid and Bittersohl, 2008; Lischeid et al., 2010),
the representation of water quality data in low-dimensional
space required only a few components to capture the main
features of the data set.

Whether the relationships in the data set are mainly linear
ones, as in this study, or whether there are considerably non-
linear relationships as well is usually not known in advance.
Thus, if the aim is to consider and check for possible non-
linear relationships in the analysis we recommend using PCA
as a linear benchmark for Isomap (demonstrated by Lischeid
and Bittersohl, 2008). In a straightforward way this allows
for (1) assessing whether the dominant correlation structures
in the data set are mainly linear or non-linear and (2) identi-
fying those components, samples, sites and periods deviating
from the linear behaviour as captured by the PCA.

Based on the correlation of component scores and residu-
als, we formulated for each considered component a hypoth-
esis on a dominant driver influencing water quality. Again,
whether the relationships are linear, as they were for most of
the global relationships in this study (Figs. S1–S4), is usu-
ally not known beforehand. Summarizing the relationships
between residuals and components with Spearman rank cor-
relation enables us to consider non-linear relationships be-
tween residuals and components as well, as long as they are
monotonic. However, the main benefit in this study was that
the Spearman rank correlation is less sensitive to extreme val-
ues compared to the Pearson correlation. This concerned es-
pecially the assessment of the relationships of the residuals
of SO2−

4 and Cl− with the second component and the resid-
uals of PO3−

4 and NH+4 with the fourth component (Figs. S2
and S4), which were more strongly expressed with Pearson
correlation due to a few single extreme values. The derived
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correlations differ from default loadings of PCA, which are
defined as the coefficients of the linear combination of the
analysed variables which is used to calculate the principal
component scores. Those coefficients, scaled by the square
root of the eigenvalue of the respective component, are equiv-
alent to the Pearson correlation of PCA component scores
and analysed variables. It is important to note that the differ-
ences in the evaluation of the correlations of components and
the measured variables might lead to different interpretations
of the components.

The treatment of censored values can substantially affect
the derived components and the subsequent interpretation of
the results and has to be considered carefully (Helsel, 2012,
and references therein). For the application of Isomap, it is
required to provide numerical values for the values below the
detection limit. For simplicity, we here used half the detec-
tion limit as a maker for values below the detection limit.
We checked for the effect of this substitution by compar-
ing the Isomap results of the presented analysis with an-
other Isomap analysis in which we excluded the two most
affected variables, NO−2 and PO3−

4 (Fig. S4). The correlation
of the Isomap scores of the interpreted components 1 to 4
of version 1 (with NO−2 and PO3−

4 ) versus version 2 (with-
out NO−2 and PO3−

4 ) yielded R2 values of 0.99 for the first
component, 0.98 for the second component, 0.97 for the third
component and 0.64 for the fourth component. The compar-
ison of the two versions with respect to the Spearman rank
correlations of Isomap scores of the first four components
and the residuals (please see Fig. 3 for the respective values
of version 1) yielded R2 values of 0.98 for the first com-
ponent, 0.99 for the second component, 0.99 for the third
component and 0.88 for the fourth component. Thus, the first
three components are virtually identical. The fourth compo-
nent is affected, because PO3−

4 is one of the important vari-
ables for this component (Fig. 3). Nevertheless, the similarity
of the correlations of Isomap scores and the fourth compo-
nent of both versions suggests that the characteristics of the
fourth component were not merely introduced by the substi-
tution of the values below the detection limit for PO3−

4 . Thus,
overall, the substitution did not substantially affect the in-
terpretation of the considered components; however, we ac-
knowledge that the replacement of censored data with some
fraction of the reporting limit is not generally appropriate
for dealing with censored data (Gilliom and Helsel, 1986;
Singh and Nocerino, 2002; Helsel, 2005, 2006, 2012). For
data sets which are more heavily affected by censored values,
other dimension-reduction methods such as the rank-based
approaches suggested by Helsel (2012) should be preferred.

For data sets in which the number of measured variables
differs between the sites there is a trade-off between the num-
ber of considered variables versus the number of considered
sites. Depending on the focus of the study different selections
of the data set can be used. For example if the main focus of
the study is to analyse the multivariate water quality dynam-

ics in detail it might be worthwhile to disregard some sites
to be able to include more variables. If the focus is to main-
tain the spatial coverage of the monitoring, like in this study,
more sites might be of more value than additional variables.
Depending on the available resources a third option would
be to perform two analyses, one focusing on more variables,
one on more sites and comparing the results. If it is possible
to link the considered components, like we did in the pre-
ceding paragraph, this proceeding can be used for spatial ex-
trapolation of the hypotheses derived from the version which
included more variables. However, in our case the sketched
trade-off was not dramatic. Thus, we excluded only the vari-
ables with more than 5 % missing values (Sect. 2.2) to keep
the possible effect of any method of replacement rather low.

To prevent adding variables with little information gain it
is recommendable to perform a correlation analysis before-
hand and rule out highly correlated variables. For this pur-
pose we recommend not to rely only on a numerical measure
of correlation, but to visually examine the scatterplots of the
respective variables to check for systematic deviations from
the global relationship. There might be for example some
sites or seasons in which the otherwise tight relationship gets
weaker, pointing to local or temporal phenomena.

Technically it is possible to combine other data than so-
lutes (e.g. sediment data and biological indicators) together
with the solutes in one joined data set for the derivation of the
components. However, the multivariate components derived
by the dimension-reduction approach are the basis of the sub-
sequent interpretation of the results. It has to be considered
as well that all included variables are equally weighted due to
the z scaling prior to the dimension reduction. Thus, includ-
ing other types of data might in some cases complicate the in-
terpretation. In general, we recommend not mixing variables
with different scales of measures (e.g. nominal variables and
ratio scaled variables) in the database for the derivation of
the components.

Instead, data which were not used in the derivation of the
components can be used as additional information for their
interpretation. For example in this study we used in addition
to the spatiotemporal features of the components other vari-
ables like groundwater level series, Fe+2 and HCO−3 concen-
tration from the groundwater samples, the spatial distribution
of land use and expert knowledge on the study area for the
derivation of the hypotheses. A thorough testing of the hy-
potheses, for example through hydrochemical modelling or
numerical experiments with virtual catchments, was out of
the scope of this study.

However, an interpretation of the components as distinct
drivers is no prerequisite for the further analysis of the com-
ponents. In any case, the components constitute, and can
simply be used as, a condensed representation of similar be-
haviour among the analysed variables according to the con-
straints of the used dimension-reduction method.

For PCA and Isomap each component describes subse-
quently the correlation structure that is most prominent in
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the remainder of what has not already been assigned to the
higher-ranked components. This implies that each compo-
nent has to be interpreted with respect to the higher-ranked
components. Also, the consideration of the respective other
components in the interpretation of a component can be help-
ful to carve out its characteristics as it was done here with
the residuals of the multiple linear regression of the respec-
tive three other components and the measured variables (e.g.
Fig. S1). Beyond that, it can be helpful to elucidate the inter-
action of the components as it was done here for example for
scores of the first and second component (Fig. 4b).

The sites differed substantially with respect to the median
values of the four analysed multivariate components (Fig. 5).
However, these components comprised the largest fraction of
the inter-point distances at any single site with more than 18
samples (Table S4). We conclude that our results identified
major regional phenomena rather than site-specific peculiar-
ities. This is consistent with the prior assumption that there
are a few dominant drivers which determine the main stream
water and groundwater quality dynamics in the region. This
provides some confidence to hypothesize that these drivers
presumably play a major role even in adjacent catchments
that have not been sampled so far.

To detect and characterize the dominant changes in the
multivariate water quality data we explored whether there
were shifts in time in specific components, whether they were
linear or non-linear in nature and whether trends occurred
at many or only at single sites. For example for the scores
of the first component, the Mann–Kendall approach identi-
fied monotonic trends at various stream water sampling sites
(Fig. 6). However, the linear trend estimation failed to de-
tect the non-linear trend that was observed at many series
(Fig. 8). This reflects the well-known sensitivity of global
linear trend estimation to low-frequency patterns that are not
entirely covered by the observation period (Koutsoyiannis,
2006; Milliman et al., 2008; Lins and Cohn, 2011).

The LOESS smooths of the de-seasonalized series, on
the other hand, did clearly reveal the similarity between the
long-term behaviour of groundwater level in the deep aquifer
and the series of the first component. In our exploratory
approach, the LOESS smooth of the de-seasonalized series
served as a descriptive tool for illustrating rather than for
proving non-linear long-term patterns. No significance test
was applied. The outcome of the LOESS smoother highly
depends on the parameterization of the approach (i.e. the de-
gree of smoothness) that would have to be justified prior to
the testing of significance.

6 Conclusions

We suggested and tested an exploratory approach for the de-
tection of dominant changes in multivariate water quality
data sets with irregular sampling in space and time. The com-
bination of the selected methods aimed to provide a broadly

applicable exploratory framework for typical existing mon-
itoring data sets, e.g. from environmental agencies, which
are often characterized by relatively low sampling frequency
and irregularities of the sampling in space and/or time. In
the approach, we applied a dimension-reduction method to
derive multivariate water quality components and analysed
their spatiotemporal features with respect to changes that
concerned more than single sites, short-term fluctuations or
single events.

The components can be used irrespective of an interpre-
tation as drivers influencing water quality. By definition, the
components are a compact description of the common dy-
namics among the water quality variables. Thus, similar be-
haviour in space and time among the water quality variables
as well as systematic changes in the multivariate water qual-
ity data can be addressed in a purely descriptive manner. This
can be used for example to test the often implicit assump-
tion of constant boundary conditions of scientific process and
modelling studies. Furthermore, the components and their
spatiotemporal features per se can serve as reference for fur-
ther studies, e.g. detailed process studies with higher tempo-
ral resolution, and the assessment of future developments of
water quality in an area. In this study, the components were
used to develop hypotheses on dominant drivers influencing
water quality and to analyse the temporal and spatial vari-
ability of those influences.

It is emphasized that the presented approach is readily ap-
plicable with data from common monitoring programs with-
out specific requirements concerning sampling frequency or
regular distribution of sampling sites, sampling dates and
sampling intervals, except that there should be no systematic
bias in the respective distribution. Even variables which have
to be excluded from the derivation of the components, for
example because of the amount of missing values or because
they have been monitored only at subsets of the sampling
sites, can be related to the components as additional infor-
mation for their interpretation. For example in this study we
used the concentration of Fe2+ and HCO−3 in the ground-
water as additional information for the interpretation of the
second component. Thus, the approach allows an efficient
use of existing monitoring data as well as the consideration
of often neglected irregular pieces of data from for exam-
ple pilot studies or single sampling campaigns. Irregulari-
ties in the structure of a data set are not seen as a funda-
mental hindrance, but as an additional source of information.
We see this as a major advantage for the analysis of com-
prehensive water quality monitoring programs, both from a
scientific perspective and from a more applied point of view
of for example water resources and environmental agencies.
Therefore, we recommend the approach especially for the
exploratory assessment of existing long-term low-frequency
multivariate water quality monitoring data sets.
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Data availability. A selection of R scripts that covers the
main steps of the exploratory framework is provided at
https://doi.org/10.4228/ZALF.2017.340 (Lehr et al., 2018) un-
der the CC-BY 4.0 licence. The selection of R scripts comes
together with the water quality data used in this paper and
some examples of exploratory plots not included in this paper.
The groundwater level data used in this paper are provided at
https://doi.org/10.4228/ZALF.2000.272 (Merz and Steidl, 2014a).
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Appendix A: Lomb–Scargle

A given discrete time series Y (ti) with i = 1, . . . , N and cen-
tred around zero can be described as a superposition from
sin and cos terms with amplitudes a and b, time ti , angular
frequency ω = 2πf and a noise term ni .

Y (ti)= a cosωti + b sinωti + ni (A1)

Lomb (1976) introduced an additional factor τ to consider
deviations from the evenly spaced case.

τj =
1

2ωj

×arctan2

(
N∑
i

sin2ωj (ti − tave) ,

N∑
i

cos2ωj (ti − tave)

)
(A2)

The constant tave = (t1+ tN )/2 scales the term to the centre
of the period covered by the series for every frequency j . If
the starting point of the series is set to zero, tave enables us to
correct for offsets between the spectral components and thus
allows us to correctly reconstruct the original series out of
its spectral components (Hocke, 1998; Hocke and Kämpfer,
2009).

With these two extensions of the time term, Eq. (A1) can
be rewritten as

Y (ti)= Acos(ω(ti − τ − tave)+φ)+ ni, (A3)

with amplitude A=
√
a2+ b2 and phase φ = arctan(b/a).

The Lomb–Scargle periodogram PN (ω) (Eq. A4) normal-
ized with the total variance of the data σ 2 equals the linear
least squares fit of the time series model in Eqs. (A1) and
(A3) for a certain frequency (Lomb, 1976; Press et al., 2007).

PN (ω)=
1

2σ 2



(
N∑
i

Y (ti)cos
[
ωj (ti − τ − tave)

])2

N∑
i

cos2
[
ωj (ti − τ − tave)

]

+

(
N∑
i

Y (ti)sin
[
ωj (ti − τ − tave)

])2

N∑
i

sin2 [ωj (ti − τ − tave)
]

 (A4)

The amplitudes a and b can be computed out of the square
root of the corresponding sin and cos terms of the normal-
ized Lomb–Scargle periodogram, which yields the normal-
ized power spectral density at certain frequencies (Hocke and

Kämpfer, 2009).

a =

√
2
N

N∑
i

Y (ti)cos
[
ωj (ti − τ − tave)

]
√
N∑
i

cos2
[
ωj (ti − τ − tave)

] ,

b =

√
2
N

N∑
i

Y (ti)sin
[
ωj (ti − τ − tave)

]
√
N∑
i

sin2 [ωj (ti − τ − tave)
] (A5)

Different modified series can be reconstructed out of any set
of spectral components. So the method might be used for
example for band-pass filtering or gap filling of the analysed
series (Hocke and Kämpfer, 2009).

The number of frequencies in which the series is decom-
posed is calculated with the empirical formula derived out
of Monte Carlo simulations by Horne and Baliunas (1986)
(Glynn et al., 2006; Press et al., 2007).

Nindep ≈−6.362+ 1.193N + 0.00098N2 (A6)

The false-alarm probability or statistical significance level
p of the PN (ω) value at a certain frequency is calculated
with equation (Scargle, 1982; Glynn et al., 2006; Press et al.,
2007)

p = 1− (1− e−z)M . (A7)

M is the number of test frequencies, which is here set to
Nindep; and z is the tested value of PN (ω) at a certain fre-
quency. To diminish aliasing, the highest test frequency is set
to the Nyquist rate fmax = fNyquist = 1/(21t). Because of
the irregular sampling, the sampling rate1t is approximated
here by the average sampling interval1t = (tN− t1)/N . The
lowest test frequency is the inverse of the sampling range
fmin = 1/(tN − t1) (Scargle, 1982; Press et al., 2007).

Although Nindep should be the number of independent
frequencies in the signal it is possible that frequencies ly-
ing close to each other share the same underlying trigger.
This leakage of power is promoted by the uneven sampling
and oversampling of the frequency domainM >N (Scargle,
1989; Horne and Baliunas, 1986). In addition, the effect may
be enhanced because of local high sampling density, autocor-
relation in the data or very strong momentum of the underly-
ing trigger.

With regard to these circumstances, which apply espe-
cially for the groundwater level series in this study, only
the dominant frequencies were used to identify seasonal
patterns. The term “dominant frequency” is used here for
the peaks in between groups of significant frequencies. If
such groups build “significance plateaus”, the median of this
plateau is taken as dominant frequency.
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