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Abstract. Data assimilation has recently been the focus of
much attention for integrated surface–subsurface hydrolog-
ical models, whereby joint assimilation of water table, soil
moisture, and river discharge measurements with the ensem-
ble Kalman filter (EnKF) has been extensively applied. Al-
though the EnKF has been specifically developed to deal
with nonlinear models, integrated hydrological models based
on the Richards equation still represent a challenge, due to
strong nonlinearities that may significantly affect the filter
performance. Thus, more studies are needed to investigate
the capabilities of the EnKF to correct the system state and
identify parameters in cases where the unsaturated zone dy-
namics are dominant, as well as to quantify possible trade-
offs associated with assimilation of multi-source data. Here,
the CATHY (CATchment HYdrology) model is applied to
reproduce the hydrological dynamics observed in an exper-
imental two-layered hillslope, equipped with tensiometers,
water content reflectometer probes, and tipping bucket flow
gages to monitor the hillslope response to a series of artificial
rainfall events. Pressure head, soil moisture, and subsurface
outflow are assimilated with the EnKF in a number of sce-
narios and the challenges and issues arising from the assimi-
lation of multi-source data in this real-world test case are dis-
cussed. Our results demonstrate that the EnKF is able to ef-
fectively correct states and parameters even in a real applica-
tion characterized by strong nonlinearities. However, multi-
source data assimilation may lead to significant tradeoffs: the
assimilation of additional variables can lead to degradation of
model predictions for other variables that are otherwise well
reproduced. Furthermore, we show that integrated observa-
tions such as outflow discharge cannot compensate for the
lack of well-distributed data in heterogeneous hillslopes.

1 Introduction

Data assimilation, i.e., the process in which observations
of a system are merged in a consistent manner with nu-
merical model predictions (e.g., Troch et al., 2003; Morad-
khani, 2008), has become increasingly popular in hydrolog-
ical modeling over the last few decades (Montzka et al.,
2012). Among the various techniques available, the ensemble
Kalman filter (EnKF) (Evensen, 2003, 2009b) is probably the
most widespread, thanks to its ease of implementation, capa-
bility to handle nonlinear models and potential to be used as
a sequential inverse modeling tool when parameters are in-
cluded in the update step. Applications in hydrology include
studies in different disciplines, such as groundwater hydrol-
ogy (e.g., Chen and Zhang, 2006; Hendricks Franssen and
Kinzelbach, 2008; Bailey and Baù, 2010; Li et al., 2012;
Zovi et al., 2017), rainfall–runoff modeling (e.g., Morad-
khani et al., 2005; Vrugt et al., 2006; Weerts and El Serafy,
2006; Clark et al., 2008; Xie and Zhang, 2010; Han and Li,
2008), and land surface modeling at multiple scales (e.g., Re-
ichle et al., 2002a, b; Crow and Wood, 2003; Francois et al.,
2003; Pan and Wood, 2006; De Lannoy et al., 2007; Cam-
malleri and Ciraolo, 2012; Flores et al., 2012; Hain et al.,
2012).

As a consequence of such popularity, the EnKF is also in-
creasingly applied with integrated surface–subsurface hydro-
logical models (IHSSMs), whereby multiple terrestrial com-
partments (e.g., snow cover, surface water, groundwater) are
solved simultaneously, in an attempt to tackle environmen-
tal problems in a holistic approach (Maxwell et al., 2014;
Kollet et al., 2017). For instance, Camporese et al. (2009a)
and Camporese et al. (2009b) combined the CATHY model
and the EnKF to assimilate pressure head, soil moisture,
and streamflow data, finding that the assimilation of pressure
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head and soil moisture is beneficial to subsurface states and
river discharge, but the assimilation of river discharge alone
does not improve the prediction of subsurface states. Similar
conclusions were drawn by Pasetto et al. (2012), who com-
pared the EnKF with a modified particle filter to assimilate
discharge and pressure head, using the CATHY model. More
recently, Pasetto et al. (2015) used the EnKF and CATHY
to investigate the impact of possible sensor failure on the
observability of flow dynamics and estimation of the model
parameters characterizing the soil properties of an artificial
hillslope. Ridler et al. (2014) assimilated soil moisture re-
mote sensing products in the MIKE SHE model and found
that surface soil moisture has correction capabilities limited
to the first 25 cm of soil. With the same model, Rasmussen
et al. (2016), Rasmussen et al. (2015), Zhang et al. (2015),
and Zhang et al. (2016) investigated in detail issues related
to uncertainty quantification and biased observations, as well
the impacts of update localization and ensemble size on the
multivariate assimilation of groundwater head and river dis-
charge at the catchment scale. Kurtz et al. (2015) first pre-
sented a data assimilation framework for the land surface–
subsurface part of the Terrestrial System Modelling Platform
(TerrSysMP), followed by Baatz et al. (2017), who assimi-
lated distributed river discharge data into the TerrSysMP to
estimate the spatially distributed Manning roughness coeffi-
cient, and Zhang et al. (2018), who tested and compared five
data assimilation methodologies for assimilating groundwa-
ter level data via the EnKF to improve root zone soil moisture
estimation. Within yet another modeling framework, Tang
et al. (2017) used the EnKF in conjunction with HydroGeo-
Sphere to study the influence of heterogeneous riverbeds on
river–aquifer exchange fluxes.

In spite of such a strong interest, several issues related to
the use of EnKF for state and parameter estimation in inte-
grated hydrological modeling remain unresolved. The sub-
surface component of many IHSSMs is based on the solu-
tion of the Richards equation in one or three dimensions and,
although recent studies with numerical experiments in syn-
thetic test cases (Erdal et al., 2014; Brandhorst et al., 2017)
have shown that the EnKF has great potential for the estima-
tion of soil hydraulic parameters in the unsaturated zone, it
is still unclear whether the method is able to cope with non-
linearities and parameter estimation in real test cases, where
multiple uncertainties on initial and boundary conditions
make the problem much more challenging (e.g., Visser et al.,
2006; De Lannoy et al., 2007; Monsivais-Huertero et al.,
2010; Shi et al., 2015; Bauser et al., 2016). Also, as more
sources of data become available at cheaper cost, it is increas-
ingly difficult to assess which data types are the most suit-
able or effective in assimilating and checking which possible
tradeoffs might occur when assimilating different variables
in a multivariate data assimilation framework. Zhang et al.
(2018), for instance, found that joint assimilation of pressure
head and soil moisture is beneficial only when pressure head
is assimilated in the saturated zone and soil moisture in the

unsaturated zone, while Zhang et al. (2016) showed that joint
assimilation of groundwater head and water content fails to
provide reasonable results if proper countermeasures to spu-
rious correlations are not adopted.

Within this context, the main goals of the present study
are (i) to assess whether the EnKF in combination with a
Richards equation-based hydrological model is able to effec-
tively improve states and parameters in a real-world test case
characterized by dominant unsaturated dynamics and (ii) to
quantify the tradeoffs associated with multi-source data as-
similation.

To pursue these goals, the EnKF is used in combination
with the CATHY (CATchment HYdrology) model (Cam-
porese et al., 2010) to assimilate real observations of pressure
head, soil moisture and subsurface outflow collected during
a controlled experiment carried out in an artificial hillslope.
The experiment is characterized by strong nonlinearities, due
to the dominant unsaturated dynamics, but the strictly con-
trolled conditions, as opposed to field studies, allow us to
minimize the effects of initial and boundary condition un-
certainty. The behavior and performance of the EnKF-based
assimilation framework in terms of its ability to retrieve the
correct hillslope response are evaluated in a number of data
assimilation scenarios, characterized by different combina-
tions of assimilated and updated variables. In each scenario,
a significant part of the simulation is devoted to the valida-
tion of the model (i.e., with no data assimilation), to assess
the impacts of parameter updating on the model predictions,
also during periods without observations.

2 The hillslope experiment

The artificial hillslope is placed inside a concrete structure of
length 6 m, width 2 m and height varying linearly from 3.5 to
0.5 m, corresponding to a slope of 32◦ (Fig. 1). A total of 50
apertures, which can be kept closed with screw cups when
needed, allow the positioning of various monitoring sensors
in properly chosen positions on each lateral wall of the struc-
ture. The hillslope toe is made with a hollow-brick porous
wall, in order to allow subsurface water to drain. The soil is
placed inside the structure to mimic a two-layered hillslope.
A uniform 60 cm thick silty fine sand is deployed on top of a
low-permeable basement made of sandy clay soil. More de-
tails on the soil properties can be found in Lora et al. (2016a)
and Schenato et al. (2017). In the following, we will refer to
the two soil types simply as sand and clay.

Six tensiometers and six water content reflectometer
(WCR) probes are used to measure pressure head and wa-
ter content in the top soil layer. All the sensors are located
in an intermediate position of the hillslope, as shown in
Fig. 1, which reports a plan view and longitudinal cross
section along with the six positions where each tensiome-
ter has been installed in front of the corresponding WCR.
Two tipping-bucket flow gages are placed at the toe of the
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Figure 1. Plan view and longitudinal cross section of the artificial
hillslope, along with the position of the monitoring instruments.
Tensiometers are indicated by the letter “P”, while WCR probes
are denoted by “W”. All dimensions are in centimeters.

hillslope to measure surface runoff and subsurface outflow,
while the rain is generated by a rainfall simulator that can
produce relatively uniform rainfall intensities varying from
50 to 150 mm h−1 (Lora et al., 2016a).

A Campbell Scientific (CR 1000) data logger is used to
collect and record all the data with a frequency of 0.5 Hz
during a 12-day experiment, carried out by generating rain-
fall events of different duration alternated with recession pe-
riods (no rainfall, evaporation only). Before the experiment,
two preliminary tests were performed to check the intensity
and the uniformity of the rainfall rate. The coefficients of
uniformity of the preliminary tests are equal to 72 %, for a
mean rate of 58.8 mm h−1 (Lora et al., 2016a). The evap-
oration rate has been measured throughout the experiment
by an atmometer. The average measured rate is quite small
(< 1 mm day−1), consistent with weather and period of the
year (November 2016).

Figure 2 reports all the data collected during the exper-
iment. Note that the tensiometers P1 and P4 were affected
by malfunctioning; therefore, their data are not reported and
were not used in the data assimilation simulations.

3 Numerical methods

3.1 The CATHY model

The CATHY model (Camporese et al., 2010) is a physics-
based hydrological model capable of simulating inte-
grated subsurface, overland and channel water flow. The
model combines a Richards equation solver for the three-
dimensional flow in variably saturated porous media with
a surface water flow module for the solution of the one-
dimensional diffusion wave approximation of the de Saint-
Venant equation. In this study, however, there is no surface
runoff. Therefore, only subsurface flow is considered, ac-
cording to the following form of the Richards equation:

SwSs
∂ψ

∂t
+φ

∂Sw

∂t
=∇[KsKr(∇ψ + ηz)] + qs. (1)

In Eq. (1), Sw = θ/φ is water saturation, θ and φ being the
volumetric soil water content and porosity (/), respectively,
Ss is the specific storage coefficient (L−1), ψ is the pressure
head (L), t is time (T ), ∇ is the gradient operator, Ks is the
saturated hydraulic conductivity tensor (L/T ), Kr is the rel-
ative hydraulic conductivity function (/), ηz = (0,0,1)T is
the vertical direction vector, z is the vertical coordinate di-
rected upward (L), and qs represents distributed source or
sink terms (L3/L3T ).

The unsaturated hydraulic properties are taken into ac-
count by means of the van Genuchten functions (e.g., Wösten
and van Genuchten, 1988) Sw(ψ) and Kr(ψ):

Sw = Swr+
1− Swr

[1+ (α|ψ |)n]m
, (2)

Kr =

(
Sw− Swr

1− Swr

)0.5{
1−

[
1−

(
Sw− Swr

1− Swr

) 1
m
]m}2

, (3)

where Swr = θr/φ is the residual water saturation, with θr the
residual water content, α is an empirical constant (L−1) re-
lated to the inverse of the air entry suction, and the dimen-
sionless shape parameters n and m are linked by the expres-
sion m= 1− 1/n. The model solves Eq. (1) by means of
Galerkin finite elements with tetrahedral elements and lin-
ear basis functions in space and weighted finite differences
for integration in time (Camporese et al., 2010).

It is worth noting that the Richards equation is strongly
nonlinear, due to the retention curves (Eqs. 2 and 3). Such
nonlinearities are enhanced in this study by the fact that the
hillslope is characterized by dominant unsaturated conditions
(Fig. 2), as opposed to many other previous applications of
data assimilation with physics-based models. This makes our
hillslope experiment particularly challenging and distinctive
from both modeling and data assimilation perspectives.

3.2 The ensemble Kalman filter

The ensemble Kalman filter (Evensen, 2003, 2009a, b) is a
sequential data assimilation scheme, in which states (and pa-
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Figure 2. Experimental data collected during the experiment: (a) rainfall rate; (b) water content as measured by the WCR probes; (c) pres-
sure head as measured by the tensiometers; (d) subsurface outflow. The black vertical dashed line marks the transition between the data
assimilation and the validation phases.

rameters) are sequentially updated based on a Monte Carlo
approximation of the covariance matrices needed in the stan-
dard Kalman filter. The process is Markovian of the first or-
der and the implementation of the EnKF does not require the
linearization of the model, making it particularly suitable for
handling nonlinear problems.

In this paper the EnKF is implemented according to the
numerical formulation proposed by Sakov et al. (2010). Let
X be an ensemble matrix of M rows and N columns, where
N is the number of realizations and M is the state dimen-
sion, i.e., the number of nodes in the finite element grid, aug-
mented by the number of parameters that are subject to up-
date. The main idea behind this type of implementation is
that the matrix X can be defined as the sum, x+A, of the
ensemble average, x,

x=
1
N

X1, (4)

and the matrix of ensemble anomalies, A,

A= X(I−
1
N

11T ), (5)

where 1 and I are a vector with all elements equal to one
and the identity matrix, respectively. As usual, superscript T
denotes matrix transposition.

Whenever observed data are available, the EnKF can com-
pute the updated matrix Xu as the sum of the updated ensem-

ble mean, xu, and the updated anomalies, Au:

Xu
= xu
+Au. (6)

In the following, the lack of a superscript u denotes that the
matrix or vector is computed at the forecast stage, i.e., at the
previous model time step.

The updated mean can be calculated as

xu
= x+βAGs, (7)

where β is a diagonal matrix of dampening factors (Hen-
dricks Franssen and Kinzelbach, 2008), whose elements vary
from 0 to 1, and s is the scaled innovation vector

s = R−1/2(D−Hx)/
√
N − 1, (8)

which depends on the measurement error covariance matrix,
R, the difference between the measurements, D, and the en-
semble mean of the simulated observations, Hx. Dampening
factors help to prevent the occurrence of unstable updates
and filter divergence (e.g., Evensen, 2009b) and were chosen
as an alternative to covariance inflation due to ease of imple-
mentation.

The matrix G is defined as

G=MST , (9)

where S is the matrix of scaled ensemble innovation anoma-
lies

S= R−1/2HA/
√
N − 1, (10)
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HA being the simulated measurement anomalies

HA=HX(I−
1
N

11T ), (11)

and M being defined as

M= (I+ST S)−1. (12)

The updated anomalies, Au, are computed as

Au
= A+βA(M1/2

− I). (13)

When updating the states only, the elements of X are the
pressure heads at each node of the finite element grid, while
the state augmentation technique is used when also updat-
ing the parameters. In this latter case, the desired parame-
ters (e.g., hydraulic conductivity, parameters of the retention
curves), transformed as described in Sect. 4.2, are added to X
and updated based on their correlation with the system states
(e.g., Erdal et al., 2015).

4 Model and data assimilation setup

4.1 CATHY setup

The artificial hillslope is discretized with a surface triangular
grid resulting from the subdivision of square cells of 10 cm
side. The triangular grid is then replicated vertically for a to-
tal of 25 layers to generate the three-dimensional tetrahedral
mesh (Fig. 3). Fifteen layers are used to represent the top
sand, while 10 layers discretize the clay. No flow boundary
conditions are assumed at each boundary, except for the sub-
surface outflow section, where seepage face boundary condi-
tions are used, and the surface, where time-variable rainfall
or evaporation rates are imposed. Finally, the soil hydraulic
parameters are assigned as reported in Table 1. The values of
saturated hydraulic conductivity and van Genuchten reten-
tion parameters are perturbed to generate the ensemble of re-
alizations as described in the following section, whereas soil
porosities and specific storages are considered deterministic,
the former being well characterized with laboratory tests and
the latter having little impact on the CATHY model response
in this case.

4.2 EnKF setup

In order to generate the ensemble of realizations needed for
the application of the EnKF, we perturb the atmospheric forc-
ing (i.e., rainfall and evaporation rates), soil properties and
initial conditions. Table 1 reports a summary of the per-
turbed variables, along with their nominal mean values as
well as the nature and statistics of the perturbations. The
uncertainties on model parameters and boundary conditions
have been assigned on the basis of previous modeling expe-
riences and preliminary characterization of the soils in the
hillslope (Camporese et al., 2009a, b; Lora et al., 2016b).

Figure 3. Three-dimensional finite element grid of the hillslope.

The ensemble of time-variable atmospheric forcing rates
was generated with a sequence of multiplicative perturba-
tions, qk, correlated in time as in Evensen (2003):

qk = γqk−1+

√
1− γ 2wk−1, (14)

where the subscript k is the time index, wk is a sequence of
white noise drawn from the standard normal distribution, and
the coefficient γ is computed as

γ = 1−
1t

τ
, (15)

1t being the assimilation interval and τ the specified time
decorrelation length, here set equal to 108 000 s, i.e., 30 h.

The initial conditions consist of a uniform value of pres-
sure head, ψ0, whose nominal ensemble mean is −0.67 m,
based on the average provided by the tensiometer measure-
ments. We opted for a uniform value of initial pressure head
because, at the beginning of the experiment, the entire hills-
lope was in a highly unsaturated condition, as derived from
the tensiometer data. This means that, even without an ini-
tially hydrostatic (i.e., equilibrium) profile, water is basically
prevented from flowing in or out of the hillslope due to the
very small values of relative hydraulic conductivity. This is
one of the peculiarities of our test case compared to simi-
lar studies. Preliminary analyses showed that the model is
not very sensitive to ψ0, because in any case the initial hy-
draulic conductivity is so small that the hillslope responds
only when the first rainfall event occurs and starts wetting
the soil. Therefore, in this study, no warm-up or spin-up was
necessary. The ensemble of ψ0 values is generated by addi-
tive perturbations normally distributed with mean equal to 0
and standard deviation equal to 0.2 m.
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Table 1. Perturbation parameters for the generation of the ensemble initial conditions, hydraulic conductivities and atmospheric forcing.

Variable Units Nominal value(s) Perturbation type Mean Standard deviation

ψ0 m −0.67 additive 0 0.2
Atmospheric forcinga mm h−1 58.8; 47.5; −0.0284 multiplicative 1 0.2

Sand

Ks m s−1 10−4 multiplicative 1.17 1.53
Ss m−1 10−3 not perturbed
φ – 0.58 not perturbed
θr – 0.065 see Sect. 4.2 0.1 or 0.25b

α cm−1 0.070 see Sect. 4.2 0.1 or 0.25b

n – 1.88 see Sect. 4.2 0.1 or 0.25b

Clay

Ks m s−1 10−7 multiplicative 1.17 1.53
Ss m−1 5× 10−3 not perturbed
φ – 0.40 not perturbed
θr – 0.067 see Sect. 4.2 0.1 or 0.25b

α cm−1 0.017 see Sect. 4.2 0.1 or 0.25b

n – 1.40 see Sect. 4.2 0.1 or 0.25b

a Rainfall (positive) and evaporation (negative) rates. b σVG as described in Sect. 4.2.

Perturbed soil parameters, for both sand and clay, include
the saturated hydraulic conductivity as well as the parame-
ters of the van Genuchten retention curves. Table 1 reports
the nominal mean values of Ks, based on soil samples an-
alyzed in the laboratory, as well as the parameters used for
generating their ensembles. The saturated hydraulic conduc-
tivities of sand and clay are perturbed independently of each
other with multiplicative perturbations sampled from a log-
normal distribution.

The parameters of the van Genuchten retention curves α,
n, and θr are perturbed taking into account their mutual cor-
relation according to Carsel and Parrish (1988), who de-
scribed their statistics and transformed them into normally
distributed variables via the Johnson system (Johnson, 1970).
Three main transformation functions are available, i.e, the
lognormal (LN), log-ratio (SB), and hyperbolic (SU):

LN :Y = ln(V ), (16)
SB :Y = ln[(V −A)/(B −V )] = ln(U), (17)

SU :Y = sinh−1(U), (18)

where V denotes the parameter before transformation,
bounded within the range [A B], and Y denotes the trans-
formed parameter with normal distribution. In this work, the
prior statistics of the van Genuchten parameters are taken
from the soil types “sandy loam” and “silt loam” in Carsel
and Parrish (1988), assumed as valid representations of our
sand and clay, respectively. In particular, the SB transforma-
tion has been used for all the parameters, except for n of the
sandy loam and α of the silt loam, for which the LN transfor-

mation has been applied. The ensemble of transformed pa-
rameters is generated by

y= u+TTz, (19)

where y is the vector containing transformed α, n, and θr, u
contains the transformed variable means, T is an upper diag-
onal matrix, obtained from the Choleski factorization of the
covariance matrix of the three parameters (see Table 2), and
z is a vector of normal deviates with mean equal to 0 and
standard deviation σVG. The transformed variables can be in-
cluded in the matrix X when updating the parameters, and
can then be back-transformed in order to obtain the updated
values of the soil retention parameters.

The EnKF algorithm implemented here is actually an en-
semble transform Kalman filter (Bishop et al., 2001) that
does not require the perturbation of observations. On the
other hand, the measurement error covariance matrix, R,
must be assumed to be known a priori. In this work, R was
estimated directly from the measurements, taking advantage
of the high time resolution of the collected data. Pressure
head and water content data were collected every 2 s and av-
eraged every 10 min over a 40 s window to obtain the obser-
vations to assimilate. Over the same time window, the data
were linearly detrended and the residuals were used to calcu-
late the correlation coefficients between all pairs of observa-
tions. The final covariance matrices were then assembled by
multiplying the correlation coefficients by the relevant stan-
dard deviations, assumed as 0.05 m and 0.025 for pressure
head and water content, respectively. The subsurface outflow
measurements are assumed to be independent of the pres-
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Table 2. Factored covariance matrices used for the perturbation of
van Genuchten parameters (from Carsel and Parrish, 1988).

θr α n

Sandy loam θr 0.538 0.017 −0.194
α 0.014 0.019
n 0.108

Silt loam θr 0.522 0.030 −0.17
α 0.082 0.234
n 0.158

sure head and water content data, with a standard deviation
equal to 8 % of the measured discharge. All measurement
error standard deviations have been estimated based on the
accuracy of the sensors and plausible positioning errors.

When assimilating multiple variables, proper normaliza-
tion of the measurement error covariance matrices, anoma-
lies of the simulated data, and innovation vectors were per-
formed, using values of 0.6 m, 0.58, and 4.17× 10−5 m3 s−1

for pressure head, water content and subsurface outflow,
respectively. The normalization ensures that in multivari-
ate assimilation scenarios the covariance matrices in the
Kalman gain are not ill-conditioned (Evensen, 2003; Cam-
porese et al., 2009b).

4.3 Data assimilation scenarios

A total of 17 data assimilation scenarios have been simu-
lated, whereby the assimilation interval, the assimilated vari-
ables, the updated variables, and the uncertainty on the van
Genuchten parameters were varied. Table 3 reports a sum-
mary of the main characteristics for each scenario. Assimi-
lated variables may include water content only or with sub-
surface outflow, pressure head only or with subsurface out-
flow, and all three variables together. With regard to the up-
dated variables, three cases have been analyzed: update of
the state variables only; update of the state variables and sat-
urated hydraulic conductivities for both sand and clay; up-
date of the state variables, hydraulic conductivities and van
Genuchten parameters, for both sand and clay. In all the data
assimilation scenarios, observations were assimilated only
during the first 5 days of simulation, leaving the final 7 days
as a validation period, during which the ensemble was left
to evolve freely. For comparison, two open loop simulations,
i.e., without data assimilation, have also been carried out (Ta-
ble 3).

The performance of the simulations has been evaluated by
means of the root mean square error (RMSE), computed for
the different variables, i.e., pressure head, water content, and
subsurface outflow. The root mean square error is calculated

Table 3. Overview of the open loop and data assimilation scenarios.

Scenario1 Assimilation Assimilated Updated σVG
interval variables2 variables3

OL1 – – – 0.1
OL2 – – – 0.25
S1 3 h WC St. var., Ks 0.1
S2 3 h PH St. var., Ks 0.1
S3 3 h WC, Q St. var., Ks 0.1
S4 3 h PH, Q St. var., Ks 0.1
S5 3 h WC, PH, Q St. var., Ks 0.1
S6 1 h WC St. var. 0.1
S7 1 h WC, Q St. var. 0.1
S8 1 h WC St. var., Ks 0.1
S9 1 h PH St. var., Ks 0.1
S10 1 h WC, Q St. var., Ks 0.1
S11 1 h PH, Q St. var., Ks 0.1
S12 1 h WC, PH, Q St. var., Ks 0.1
S13 1 h WC St. var., Ks, V.G. 0.25
S14 1 h PH St. var., Ks, V.G. 0.25
S15 1 h WC, Q St. var., Ks, V.G. 0.25
S16 1 h PH, Q St. var., Ks, V.G. 0.25
S17 1 h WC, PH, Q St. var., Ks, V.G. 0.25

1 OL1 and OL2 indicate open loop scenarios, i.e., simulations without data
assimilation. 2 WC, PH, and Q denote water content, pressure head, and subsurface
outflow, respectively. 3 St. var., Ks, and V.G. indicate state variables (in terms of
pressure head), saturated hydraulic conductivity, and van Genuchten parameters,
respectively.

as

RMSE(t)=
1
No

No∑
j=1

√√√√ 1
N

N∑
i=1

(
Si,j (t)−Oj (t)

)2

, (20)

where No is the number of observations available (six, four,
and one for water content, pressure head, and subsurface out-
flow, respectively), Si,j refers to the simulated results of the
ith realization of the ensemble at the location of the j th ob-
servation andOj is the corresponding experimental value. To
obtain a meaningful comparison between the errors of differ-
ent variables, we also compute the time-averaged normalized
root mean square error, NRMSE,

NRMSE=
1
NT

NT∑
k=1

RMSEk
NF

, (21)

where NT is the number of time steps, k is the time index,
and NF is a normalization factor equal to 0.58, 0.60 m, and
4.17× 10−5 m3 s−1 (i.e., 2.5 L min−1) for the water content,
pressure head, and subsurface discharge, respectively. The
NRMSE is computed separately for each variable and for the
assimilation (NT = 120) and validation (NT = 167) periods,
but also as a global index of performance averaged over all
the variables and the two periods.
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5 Results and discussion

5.1 Preliminary simulations

A preliminary sensitivity analysis over a number of EnKF
parameters has been performed, in order to select a final and
satisfactory setup for the subsequent data assimilation sce-
narios. First, simulations with N equal to 32, 128 and 256
have been performed, and it has been found that an ensem-
ble size of 128 ensures a good tradeoff between performance
and computational effort. Some preliminary sensitivity anal-
yses of the value of σVG have also been performed, resulting
in values of 0.1 and 0.25 for the scenarios with and without
update of van Genuchten parameters, respectively (Table 3).

Then, several dampening factor values (β in Eqs. 7 and 13)
were tested, including combinations of different values for
the update of system state and parameters. Based on this
analysis, a value of 1 has been chosen for the update of
the system state, whereas a dampening factor equal to 0.5
has been selected for the update of the soil hydraulic pa-
rameters (Ks, α, n, and θr, for both sand and clay). This
choice of dampening factors is consistent with previous stud-
ies (Brandhorst et al., 2017) and prevents abrupt changes in
the retention curve parameters that could lead to difficulties
in model convergence and hence loss of realizations.

According to these preliminary analyses, all scenarios re-
ported in Table 3 have been simulated with an ensemble size
of 128 and dampening factors of 1 and 0.5 for system state
and parameters, respectively.

5.2 Overall EnKF performance

Table 4 and Fig. 4 summarize the performance of the EnKF
in all the data assimilation scenarios, expressed in terms of
NRMSE for the three measured variables (water content,
WC, pressure head, PH, and subsurface outflow, Q), and av-
eraged separately over the assimilation and validation win-
dows. A comparison between scenarios 1–5 and 8–12 in Ta-
ble 4, characterized by the same assimilated and updated
variables but different assimilation intervals, shows that as-
similating more frequently does not always result in signif-
icant improvements of model predictions. The variable that
benefits the most from more frequent updates is subsurface
outflow, especially in the scenarios where Q is assimilated
(e.g., compare scenarios 3–5 with 10–12).

Figure 4 highlights that most of the data assimilation sce-
narios result in an improvement of model predictions for
pressure head and subsurface outflow, compared to the open
loop simulations (data pairs below the 45 ◦ reference line).
However, in some scenarios, the filter performance in pre-
dicting the water content is actually worse than in the open
loop. A close inspection of the values in Table 4 indicates
that such scenarios are those where pressure head is assim-
ilated, alone or in conjunction with water content and sub-
surface outflow. This is likely due to a combination of two

Figure 4. Normalized root mean square errors for water content,
pressure head, and subsurface outflow of the data assimilation sce-
narios versus corresponding values of the open loop. Symbols in
magenta represent values calculated over the assimilation period,
while symbols in blue represent values calculated over the valida-
tion period.

factors: (i) only four out of six tensiometers are available for
assimilation, compared to the six WCR probes available for
water content, and (ii) the pressure head measurements are
characterized by relatively poor quality. This can be appreci-
ated from the pressure head data shown in Fig. 2, where diur-
nal disturbances caused by temperature fluctuations (Warrick
et al., 1998) are apparent.

5.3 Parameter estimation capabilities

To assess the capabilities and benefits of parameter estima-
tion with the EnKF, it is useful to compare scenarios with the
same assimilated variables but different updated variables.
Figure 5a, c, and e show the ratios between RMSE in data
assimilation scenarios S6, S8, and S13 and the correspond-
ing open loop values for water content, pressure head, and
subsurface outflow, respectively. In these three scenarios, wa-
ter content alone is assimilated, but the updated variables
are system state only in S6, system state and saturated hy-
draulic conductivity in S8, and system state, the Ks and van
Genuchten parameters α, n, and θr in S13. Figure 5a high-
lights that progressively updating more parameters brings
significant improvements in water content prediction over the
validation period, with reductions of the NRMSE with re-
spect to the open loop of almost 20 % when updatingKs only
and 60 % when also updating the retention curve parameters.
Moreover, updating parameters improves significantly pres-
sure head predictions in validation and subsurface outflow in
both assimilation and validation, as shown in Fig. 5c and e.

Hydrol. Earth Syst. Sci., 22, 4251–4266, 2018 www.hydrol-earth-syst-sci.net/22/4251/2018/



A. Botto et al.: Hydrological modeling with multi-source data assimilation 4259

Table 4. Normalized root mean square errors (NRMSEs) for the 17 data assimilation scenarios under analysis and two open loop (OL)
simulations. The table reports the NRMSE for three variables, water content, pressure head and outflow discharge, for both the assimilation
and the validation periods. The last three columns report the mean values calculated over the three variables (WC, PH and Q) and the global
average between assimilation and validation. Bold values indicate exceedance of the corresponding open loop errors.

NRMSEWC NRMSEPH NRMSEQ Mean NRMSE

Scenario Assimilation Validation Assimilation Validation Assimilation Validation Assimilation Validation Global

OL1 0.16 0.14 0.45 0.36 0.72 0.64 0.44 0.38 0.41
OL2 0.16 0.13 0.46 0.36 0.71 0.63 0.44 0.38 0.41
S1 0.09 0.11 0.33 0.27 0.58 0.53 0.33 0.30 0.32
S2 0.21 0.24 0.21 0.31 0.51 0.47 0.31 0.34 0.33
S3 0.10 0.16 0.31 0.21 0.63 0.56 0.34 0.31 0.33
S4 0.24 0.26 0.25 0.39 0.82 0.73 0.44 0.46 0.45
S5 0.18 0.22 0.23 0.26 0.70 0.64 0.37 0.37 0.37
S6 0.07 0.12 0.36 0.36 0.68 0.62 0.37 0.37 0.37
S7 0.08 0.12 0.33 0.33 0.55 0.50 0.32 0.31 0.32
S8 0.08 0.11 0.32 0.27 0.55 0.49 0.32 0.29 0.30
S9 0.22 0.24 0.17 0.29 0.46 0.42 0.29 0.32 0.30
S10 0.09 0.18 0.31 0.21 0.54 0.48 0.31 0.29 0.30
S11 0.24 0.33 0.22 0.83 0.59 0.54 0.35 0.57 0.46
S12 0.19 0.31 0.20 0.68 0.62 0.55 0.34 0.51 0.43
S13 0.07 0.06 0.32 0.28 0.52 0.49 0.30 0.28 0.29
S14 0.33 0.41 0.16 0.21 0.50 0.45 0.33 0.36 0.34
S15 0.07 0.05 0.31 0.29 0.53 0.51 0.31 0.28 0.29
S16 0.42 0.48 0.18 0.19 0.60 0.57 0.40 0.41 0.41
S17 0.10 0.05 0.22 0.29 0.69 0.66 0.34 0.34 0.34

Figure 5. Ratios between RMSEs in scenarios S6, S8, and S13 (a, c, e), S7, S10, and S15 (b, d, f), and the corresponding open loop values,
for water content, WC (a, b), pressure head, PH (c, d), and subsurface outflow, Q (e, f). The magenta bars refer to the data assimilation
period, and the blue ones to the validation period.
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Figure 6. Plots of the pressure head in P2 (a, b, c), water content in W6 (d, e, f), and outflow discharge (g, h, i) for scenarios S6 (a, d, g),
S8 (b, e, h), and S13 (c, f, i). Solid green lines represent experimental data, while solid black and magenta lines indicate the ensemble mean
of the open loop and data assimilation scenarios, respectively. The simulated 90 % confidence bands are also reported (dashed black and
magenta lines). The locations of the tensiometer P2 and water content probe W6 are shown in Fig. 1.

The effect of parameter updating on model predictions
for scenarios S6, S8, and S13 can be visualized in Fig. 6,
which shows ensemble means and 90 % confidence bands
of simulated water content, pressure head, and subsurface
outflow in comparison with the experimental data and the
corresponding open loop values. In scenario S6, without pa-
rameter update, model predictions during the validation tend
to converge again to the open loop simulations in terms of
both mean and uncertainty (Fig. 6a, d, g). Updating the pa-
rameters (scenarios S8 and S13) results in decreased uncer-
tainty during validation (Fig. 6b, c, e, f, h, i), due to the re-
duced variability of saturated hydraulic conductivity and van
Genuchten parameters. Note also that the update ofKs is par-
ticularly beneficial to pressure head (panel a versus b and c,
where it can be seen that, in the validation phase, the en-
semble mean with data assimilation departs the open loop
and gets closer to the measurements) and subsurface outflow
(panel g versus h and i), whereas updating α, n, and θr im-
proved significantly the water content (panel e versus f).

5.4 Tradeoffs in multi-source data assimilation

We now focus our attention on the scenarios where multi-
source data are assimilated. The right panels in Fig. 5 show
the ratios between RMSE in data assimilation scenarios S7,
S10, and S15 and the corresponding open loop values for wa-

ter content, pressure head, and subsurface outflow. Whereas
in scenarios S6, S8, and S13 (see panels (a), (c) and (e) in
Fig. 5) water content alone was assimilated, in scenarios S7,
S10, and S15 (see panels (b), (d) and (f) in Fig. 5) water con-
tent and subsurface outflow were jointly assimilated. The up-
dated variables are system state only in S7, system state and
saturated hydraulic conductivity in S10, and system state plus
Ks and van Genuchten parameters α, n, and θr in S15. As
previously noted for the scenarios with assimilation of water
content alone, the effect of parameter updating is significant
mainly in the validation phase. However, one can now ob-
serve an increase in validation RMSE of water content when
also updatingKs, with a value that exceeds the one of the cor-
responding open loop. At the same time, there is a decrease
in pressure head RMSE of more than 40 % with respect to
the open loop, indicating that the update of Ks is beneficial
to pressure head, but not to water content. Including the up-
date of van Genuchten parameters, in scenario S15, has an
opposite effect: model predictions of water content in valida-
tion improve dramatically (RMSE of almost 60 % less than
in the open loop), whereas pressure head predictions worsen
slightly and align with RMSE values of scenario S13. This
indicates that the update of the van Genuchten parameters is
more important for predictions of water content than pressure
head, which represents an interesting example of the kinds of
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Figure 7. Relative frequency distributions of the saturated hydraulic conductivity, Ks, of sand and clay in scenario S10. Graphs in magenta
denote the prior Ks distributions, while the blue ones indicate the posterior distributions, i.e., at the end of the assimilation period.

Figure 8. Relative frequency distributions of the saturated hydraulic conductivity, Ks, and van Genucthen parameters of sand and clay
in scenario S15. Graphs in magenta denote prior distributions, while the blue ones indicate posterior distributions, i.e., at the end of the
assimilation period.

tradeoffs associated with multi-source data assimilation and
parameter updating in integrated hydrological models.

Further insights into the differences between scenar-
ios S10 and S15 can be gained from Figs. 7 and 8, which
report the prior and posterior (i.e., at the end of the assimi-
lation period) distributions of soil parameters. Fig. 7 reports
the results for scenario S10, whereKs only was updated, and
shows that the sand Ks is clearly identifiable, whereas the

clay Ks is not, with a large residual uncertainty and a mean
value that is not consistent with the actual soil type in the
hillslope. As no data are available in the clay layer, the large
residual variability should be expected, but the bias in the
mean value is probably caused by spurious correlations and,
perhaps, also by the low sensitivity of the assimilated vari-
ables to the clay permeability. This is likely the reason for
the poor model prediction of water content.
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Figure 9. Time evolution of the saturated hydraulic conductivity and van Genuchten parameters (mean values, solid line, together with
minimum and maximum values, in dashed lines, to indicate the ensemble spread) for the two types of soil, sand and clay, in scenario S17.

Figure 8 shows the prior and posterior distributions of Ks,
α, n, and θr in S15. Again, for the sand, the saturated hy-
draulic conductivity can be clearly identified, as well as the
exponent n of the van Genuchten retention function, while
parameters θr and α are more difficult to estimate. As for the
clay, posterior uncertainty is large for all the parameters and
the mean value of Ks shows again a bias with respect to the
prior value, although in this case the final value is more con-
sistent with the actual soil type and this could explain why the
water content model predictions improve significantly com-
pared to scenario S10. This can also be explained by the fact
that all the sensors are located in the sand layer, while no
experimental data from the clay layer are assimilated.

An additional perspective on parameter estimation is given
by Fig. 9, which shows the time evolution of ensemble mean
and spread of the saturated hydraulic conductivity and van
Genuchten parameters for both sand and clay in scenario S17
(one of the scenarios reported in Fig. 10). The convergence
toward stable values in the data assimilation phase is only
achieved for the parametersKs and n of the sand layer, while
the dispersion remains generally higher for θr (to which the
model is typically not very sensitive) and α, as well as for all
the parameters of the clay layer.

In summary, the results of parameter updating for the clay
show that data would be needed in all the soil layers. How-
ever, when dealing with large heterogeneous structures, it
is very expensive to have every soil zone properly probed,
which is why it is important to assess whether multivariate

data assimilation approaches are capable of compensating for
the lack of distributed observations with alternative sources
of information. Here, an integrated measurement such as the
subsurface outflow does not seem to be sufficient to compen-
sate for this lack of representativeness.

Finally, we analyze the tradeoffs in system state predic-
tions associated with multi-source data assimilation for sce-
narios S15, S16, and S17. Figure 10 shows pressure head in
P2, water content in W6, and subsurface outflow as simulated
in the data assimilation and open loop scenarios, in terms of
ensemble mean and 90 % confidence bands, compared to the
measurements. In scenario S15 (Fig. 10a, d, g), where water
content and subsurface discharge were assimilated, model re-
sults are very good for these variables but not so for pressure
head (see also NRMSE values in Table 4). On the other hand,
in scenario S16, where pressure head and subsurface outflow
were assimilated, pressure head and discharge are well sim-
ulated, but not water content (Fig. 10b, e, h, and Table 4).
Finally, in scenario S17, where all the available data were
assimilated, the model predicts well both pressure head and
water content, but at the cost of a slightly degraded predic-
tion of subsurface outflow compared to scenarios S15 and
S16 (Fig. 10c, f, i, and Table 4).

Similar issues were reported by Zhang et al. (2016), who
found that the joint assimilation of soil moisture and ground-
water head does not improve model predictions, unless up-
date localization is used. In their study, this was likely caused
by unrealistic cross-variable correlations due to limited en-
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Figure 10. Plots of the pressure head in P2, (a, b, c), water content in W6, (d, e, f) and outflow discharge (g, h, i) for scenarios S15 (a, d, g),
S16 (b, e, h), and S17 (c, f, i). Solid green lines represent experimental data, while solid black and magenta lines indicate the ensemble mean
of the open loop and data assimilation scenarios, respectively. The simulated 90 % confidence bands are also reported (dashed black and
magenta lines). The locations of the tensiometer P2 and water content probe W6 are shown in Fig. 1.

semble sizes, whereas in our case it might be that the rela-
tively poor quality of pressure head measurements, compared
to water content observations, and the lack of observations in
the clay layer do not allow us to obtain accurate estimates of
the van Genuchten parameters.

6 Summary and conclusions

In this study, a Richards equation-based hydrological model,
CATHY, has been used with the ensemble Kalman filter to
assimilate pressure head, water content, and subsurface out-
flow data in a real-world test case, represented by an exper-
imental artificial hillslope. A total of 17 data assimilation
simulations have been presented and described to provide
a comprehensive overview of possible scenarios. Univariate
scenarios with the assimilation of water content or pressure
head alone were compared to multivariate cases where wa-
ter content and pressure head were combined with outflow
discharge or where water content, pressure head and outflow
discharge were jointly assimilated. Regarding the updating
strategies, single (state variable) and joint (state variables
plus saturated hydraulic conductivity with and without van
Genuchten parameters) updating scenarios were considered.

Overall, the capabilities of the ensemble Kalman filter to
jointly correct the system states and soil parameters in phys-

ically based hydrological models were confirmed, even in a
real-world test case such as the one presented here, charac-
terized by dominant unsaturated dynamics and hence strong
nonlinearities. Updating of the saturated hydraulic conduc-
tivity brought significant improvements in the prediction of
pressure head and subsurface outflow, while updating the van
Genuchten parameters proved to be highly beneficial to the
prediction of the water content dynamics. On the other hand,
multivariate data assimilation may lead to significant trade-
offs. For instance, the assimilation of soil moisture in addi-
tion to pressure head and subsurface outflow improved water
content, but slightly degraded the prediction of the outflow
discharge. Moreover, our results suggest that high-quality
and representative data are essential for a proper and effec-
tive use of data assimilation in physically based hydrological
models, as shown by the relatively poor performance of the
EnKF in scenarios when pressure head was assimilated, due
to temperature disturbances of the data, and by biased esti-
mates of clay parameters, due to the lack of data in this soil
layer.

In future studies, more representative data, including ob-
servations in the clay, will be assimilated, and the possibility
of applying bias-aware filters will be considered to compen-
sate for the effect of temperature in the tensiometric data.
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