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Abstract. High-resolution climate dataO(1 km) at the catch-
ment scale can be of great value to both hydrological
modellers and end users, in particular for the study of
extreme precipitation. While dynamical downscaling with
convection-permitting models is a valuable approach for pro-
ducing quality high-resolution O(1 km) data, its added value
can often not be realized due to the prohibitive computational
expense. Here we present a novel and flexible classification
algorithm for discriminating between days with an elevated
potential for extreme precipitation over a catchment and
days without, so that dynamical downscaling to convection-
permitting resolution can be selectively performed on high-
risk days only, drastically reducing total computational ex-
pense compared to continuous simulations; the classifica-
tion method can be applied to climate model data or re-
analyses. Using observed precipitation and the correspond-
ing synoptic-scale circulation patterns from reanalysis, char-
acteristic extremal circulation patterns are identified for the
catchment via a clustering algorithm. These extremal pat-
terns serve as references against which days can be classified
as potentially extreme, subject to additional tests of relevant
meteorological predictors in the vicinity of the catchment.
Applying the classification algorithm to reanalysis, the set
of potential extreme days (PEDs) contains well below 10 %
of all days, though it includes essentially all extreme days;
applying the algorithm to reanalysis-driven regional climate
simulations over Europe (12 km resolution) shows similar
performance, and the subsequently dynamically downscaled
simulations (2 km resolution) well reproduce the observed
precipitation statistics of the PEDs from the training pe-
riod. Additional tests on continuous 12 km resolution histor-
ical and future (RCP8.5) climate simulations, downscaled in
2 km resolution time slices, show the algorithm again reduc-

ing the number of days to simulate by over 90 % and per-
forming consistently across climate regimes. The downscal-
ing framework we propose represents a computationally in-
expensive means of producing high-resolution climate data,
focused on extreme precipitation, at the catchment scale,
while still retaining the advantages of convection-permitting
dynamical downscaling.

1 Introduction

Hydrological modellers and regional decision-makers bene-
fit greatly from high spatialO(1 km) and temporal resolution
climate data to both drive their catchment-scale hydrological
models and design regional planning strategies. These high-
resolution data are necessary as standard-resolution model
data O(10–100 km) suffer from many deficiencies, most
noticeably both “averaging” and “scale-interaction” effects
whereby (i) area averaging over large grid cell areas smooths
out fine-scale detail and (ii) feedbacks from small to large
scales are not represented (Volosciuk et al., 2015); these dele-
terious effects are amplified towards the tails of the distribu-
tion (Volosciuk et al., 2015). Despite their desirability, suit-
ably high-resolution datasets are rarely available, either due
to the computational expenses associated with running cli-
mate models at such high spatial resolutions or, in the case of
observations, due to insufficiently dense observational net-
works. To bridge this gap, both statistical and dynamical
downscaling techniques have been developed for precipita-
tion (Maraun et al., 2010) and other variables.

Statistical downscaling, encompassing a range of ap-
proaches (Wilby and Wigley, 1997) in which empiri-
cal relationships between large scales and local weather
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(i.e. observations) are developed, allows large ensembles of
high-resolution climate data to be produced from coarse-
resolution models at minimal computational expense and tai-
lored to specific end-user needs. Such relationships can, how-
ever, only be developed in the presence of both appropriate
local weather data (typically observations) and correspond-
ing large-scale data (reanalysis or observational data), which
are often unavailable at sub-daily and sub-hourly temporal
resolutions and/or are spatially too sparse. Dynamical down-
scaling with regional climate models (RCMs), O(10 km),
provides an alternative to the statistical approach, which
is, however, computationally far more expensive. Issues of
computational expense aside, both methods have their own
strengths and (sometimes common) weaknesses. The rep-
resentation of large scales in the parent general circulation
model (GCM) can be a limiting factor, the so-called “garbage
in, garbage out” problem (Rummukainen, 2010). If the large
scales are not skilfully represented, then downscaling tech-
niques cannot add value (Benestad et al., 2008) as errors in
the large scales will not be corrected; isolated examples of
value being added via RCMs correcting large-scale errors
have, however, been reported (e.g. Veljovic et al., 2010). The
assumption of stationarity – that predictor–predictand rela-
tionships will remain unchanged in a future climate – in
RCM parametrizations and statistical downscaling methods
may also not be valid (Takayabu et al., 2016), lowering con-
fidence in projections. Statistical and dynamical downscal-
ing both produce climate change signals that are, to varying
degrees, influenced by the climate change signal of the par-
ent GCM. If the GCM has an incorrect climate-change sig-
nal this may be inherited without meaningful modification.
Takayabu et al. (2016) further discuss different facets of the
statistical and dynamical downscaling approaches, addition-
ally explaining that the approaches are complementary and
can be combined, rather than being treated as mutually ex-
clusive alternatives.

In general, high-resolution RCMs (∼ 10 km) add value
to coarser GCMs for multiple variables (Feser et al., 2011).
This added value (AV) is primarily achieved through better
representation of surface forcings and mesoscale processes
and is thus most evident in the presence of complex topog-
raphy (Heikkilä et al., 2011; Torma et al., 2015) or strong
land–sea contrasts (Feser et al., 2011). For example, recent
studies have shown cases in which high-resolution RCMs
can not only modify but even reverse the mean-precipitation
climate-change signal in their parent GCM (Torma et al.,
2015), which is attributable to their representation of com-
plex topography and ability to hence simulate increased con-
vective activity at higher elevations in a warmer climate. Pre-
cipitation, due to its high spatial and temporal variability, is
perhaps the variable for which high-resolution RCMs exhibit
the most AV. The strongest manifestations of AV for pre-
cipitation are found at short temporal scales, in the warm
season, and in regions of complex topography regardless
of temporal scale and season (Di Luca et al., 2012); AV is

most evident for the extremes (Heikkilä et al., 2011). Impor-
tantly, this AV should not simply be understood as represent-
ing increased small-scale detail, but rather AV at the spatial
scale of the driving GCM due to more processes being repre-
sented (Torma et al., 2015). As input for impact and hydro-
logical models, dynamical downscaling can provide a large
set of physically consistent variables (Rummukainen, 2010),
meaning that, for example, changes in cloud cover will be
reflected in appropriate knock-on effects on other input vari-
ables such as radiation, temperature, humidity, surface pres-
sure, etc.

Despite their relatively high resolution, typical RCMs
O(10 km) still cannot resolve many precipitation-causing
processes such as convection, which must instead be
parametrized. As a result, models with parametrized convec-
tion tend to misrepresent heavy precipitation events, causing
them to be too temporally persistent, too spatially widespread
and not intense enough locally (Kendon et al., 2012); fur-
ther issues are too much drizzle (Boberg et al., 2009) and
a temporally displaced diurnal convective cycle (Hoheneg-
ger et al., 2008). Increasing horizontal resolution below
about 4 km, convection-permitting models (CPMs) can ex-
plicitly simulate deep-convective processes and improve on
many of these shortcomings (Prein et al., 2015). The ex-
plicit representation of convective dynamics in CPMs pro-
duces more realistic convective features (Weisman et al.,
2008), more accurate local precipitation intensities (Lean
et al., 2008), and an improved representation of the diur-
nal convective cycle (Prein et al., 2013). With respect to the
accuracy of precipitation totals, the main AV of CPMs can
be expected to be found in area averages over, for exam-
ple, a river catchment (Roberts, 2008). Importantly, the AV
of CPMs is not restricted to improved present-climate pre-
cipitation statistics (e.g. Ban et al., 2014), but may also ex-
tend to the climate change signal. Recent studies show that
sub-daily convective extremes in CPMs exhibit an amplified
response to enhanced boundary forcings compared to that
found in their coarser parametrized-convection parent mod-
els (Kendon et al., 2014), which can be highly non-linear
(Meredith et al., 2015). The explicit simulation of physical
process chains in CPMs, which can be highly localized, gives
more confidence in their projections than those derived from
models using convective parametrizations.

CPMs provide a reliable and state-of-the-art means
of downscaling coarse-model output to the high spatial-
resolutions (with fine-scale variability) needed by hydrolo-
gists and end users for many applications, particularly the
study of extremes. A serious limitation of CPMs, however, is
the considerable computational expense incurred when car-
rying out convection-permitting simulations on multi-year
timescales, making them an infeasible option for many; an
approach for limiting these costs must be sought. For users
interested in studying the impact of heavy or extreme precip-
itation events on their catchment, at least 90 % of the days in
any continuous simulation will be of little interest and could
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Figure 1. Coarse-resolution model extreme precipitation is a poor predictor of extreme precipitation in both observations and high-resolution
simulations. Plots show the rate at which extreme precipitation events in a coarse model are temporally and spatially coincident with extreme
precipitation events in (a, b) observations and (c, d) further downscaled high-resolution simulations. (a) For summer extreme precipita-
tion (1979–2015), the percentage of 99th percentile days in ERA-Interim (Dee et al., 2011) for which the corresponding day in observations
(REGNIE; Rauthe et al., 2013) exceeds the observed 99th percentile; percentiles are over all days. A value of 100 % would mean that,
for a given grid cell, all “extreme” dates in ERA-Interim were also “extreme” dates in REGNIE. (b) As in (a), except for winter (1980–
2015). (c, d) As in (a), except between the 0.11 and 0.02◦ CLM simulations discussed in Sect. 2 for the (c) historical (1970–1999) and
(d) RCP8.5 (2070–2099) periods. Values in the bottom-left of each panel show the area average over all data points, while values in the
bottom right show area averages over the Wupper catchment in western Germany (marked; see also Sect. 2).

be viewed as wasted computational time. In an ideal proce-
dure, dynamically downscaling to convection-permitting res-
olution might be skipped on these redundant days and only
be carried out when there is a significant chance of the catch-
ment experiencing heavy precipitation. Similarly, some users
are more interested in assessing the catchment-scale impacts
of a selection of physically plausible extremes from a present
or future climate, without being focused on precise probabil-
ities derived from continuous CPM simulations (Hazeleger
et al., 2015); examples of this include design situations for
hydraulic infrastructure, process-oriented case studies, and
stress testing. The identification of which days to downscale,
however, is a non-trivial task. Coarse model precipitation on
its own is a poor predictor of extreme precipitation events in
both observations and CPMs, especially in the summer, when

precipitation extremes tend to be of short duration and of a
convective nature (Fig. 1).

With the aim of slashing computational time and expense,
we develop a transferable methodology to discriminate be-
tween days with an increased likelihood of extreme precipita-
tion – potential extreme days (PEDs) – and redundant days so
that dynamical downscaling to convection-permitting resolu-
tion can be performed over a catchment only when a day has
been identified as a PED. In Sect. 2 we set out in detail our
methodology and validation approach, with the subsequent
sections containing results, discussion and conclusions.

2 Methodology and data

To identify for dynamical downscaling days with an in-
creased likelihood of extreme precipitation – “potential ex-
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treme days” (PEDs) – over the region of interest, we develop
a two-step classification method based on (1) the synoptic-
scale circulation pattern and (2) local-scale (modelled) mete-
orological predictors in the coarser-resolution parent model.
This requires the identification of synoptic-scale circula-
tion patterns that typically accompany extreme precipitation
events in our catchment and the careful selection of meteoro-
logical predictors that, when a defined threshold is exceeded
in the vicinity of the catchment, are conducive to the devel-
opment of intense precipitation.

Our study catchment is that of the River Wupper in west-
ern Germany (Fig. 2). The Wupper catchment, home to some
950 000 inhabitants, has an area of 813 km2, contains about
2300 km of streams and rivers, and drains into the River
Rhine. The Wupper basin is vulnerable to winter flooding
and summertime flash-flooding from mesoscale convective
events; we thus focus on these two seasons.

2.1 Identification of synoptic-scale extremal circulation
patterns

The REGNIE gridded daily precipitation dataset (Rauthe
et al., 2013), developed by the German weather service
specifically for hydrological applications and with a grid
spacing of roughly 1 km, is used to compute separate time
series of observed daily precipitation area-averaged over the
Wupper catchment (Fig. 2) for each full winter and summer
in the period 1979–2015. From these time series the 99th pre-
cipitation percentiles of all days are computed separately for
each season, and all days above their seasonal 99th percentile
are defined as “extreme”. The areal extent of the Wupper
catchment contains 753 REGNIE grid cells; precipitation-
recording stations of the German weather service are marked
in Fig. 2. An advantage of the REGNIE dataset is that mea-
sured totals are conserved, so that observed events (dry or
wet) can be found preserved in the gridded field, which is
in contrast to other methods on coarser grids, which use
smoothing (Rauthe et al., 2013). Despite this, the usual warn-
ings about using gridded observations to study heavy precipi-
tation events must be recalled. In the absence of a sufficiently
dense rain-gauge network in and around the catchment, the
spatial variability and local intensity maxima of heavy pre-
cipitation events will not be captured in the gridded prod-
uct, leading to precipitation extremes that are both underesti-
mated and too spatially homogeneous, in particular in areas
of complex topography and for convective events (e.g. Hofs-
tra et al., 2010; Ly et al., 2011). The rain-gauge network un-
derlying the gridded dataset must thus be sufficiently dense
so that catchment-relevant extremes are acceptably captured.
Alternatively, individual station(s) known to be broadly rep-
resentative could be used for small- to medium-sized catch-
ments.

To identify the large-scale circulation patterns associated
with the heavy rainfall days, the corresponding 500 hPa
geopotential height (Z500) anomalies are extracted from the

Figure 2. The Wupper catchment (black outline) with main
tributaries and lakes, and the River Rhine running north-
northwestwards. Shading represents the regional orography as
represented in the 0.02◦ CCLM model used in the simulations
(see Sect. 2.3). Note that this is not the full 0.02◦ simulation
domain, but rather a close-up of the Wupper catchment; the full
spatial extent of the CPM domain and the exact region covered
by this map are marked in the inner box of the top-left panels in
Figs. 3 and 4. Magenta-coloured circles mark the precipitation-
recording stations of the German weather service, as listed
here https://www.dwd.de/DE/leistungen/klimadatendeutschland/
statliste/statlex_html.html?view=nasPublication&nn=16102.html
(last access: 25 July 2018). Note that some stations do not cover
the entire 1979–2015 period.

ERA-Interim reanalysis (Dee et al., 2011). REGNIE precip-
itation has a measurement period of 07:30–07:30 LT (local
time), equating to 05:30–05:30 UTC in summer and 06:30–
06:30 UTC in winter. Z500 anomalies are thus averaged over
the timesteps 12:00, 18:00 and 00:00 UTC, i.e. the middle
of the accumulation period, and are relative to their 1979–
2015 seasonal means.

The extracted Z500 anomaly patterns next undergo a clus-
ter analysis via the simulated annealing and diversified ran-
domization (SANDRA) method (Philipp et al., 2007). SAN-
DRA has been shown to overcome many of the limitations
of standard k-means clustering algorithms, greatly reducing
the role of stochastic effects in the final cluster partitions and
thus providing clusters much closer to the “global optimum”
(Philipp et al., 2007). It is also less numerically costly than
model-based clustering algorithms such as Gaussian mix-
ture models (e.g. Rust et al., 2010). Relevant software for
meteorological applications has been developed in the EU
COST Action 733 (Philipp et al., 2016), and we use this soft-
ware in our study. Geopotential height is a standard variable
for cluster analyses of atmospheric circulation patterns (e.g.
Hidalgo-Muñoz et al., 2011; Merino et al., 2016; Romero
et al., 1999). Following Brigode et al. (2013), the spatial ex-
tent of the clustering domain is subjectively chosen such that
the typical synoptic patterns associated with extreme precip-
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Figure 3. 500 hPa geopotential height anomalies (shading) of extremal circulation patterns identified for the Wupper catchment in winter,
via the clustering algorithm, and one outlier; the zero line is marked in black. White contours represent the accompanying sea level pressure
patterns. The grey box centred over western Germany is the 0.02◦ simulation domain (Sect. 2.3).

itation in the Wupper catchment can be captured within the
domain when present (Figs. 3 and 4), which is easily identi-
fiable from historical extremes. Prior to the cluster analyses,
outliers that would have little chance of being assigned to
an appropriate cluster are removed from the datasets. Out-
liers are identified by computing, for each day, the Pearson
pattern correlation of each Z500 anomaly pattern with that
on all other extreme days; any day whose maximum pattern
correlation (i.e. across all days) is more than 2 standard devi-
ations below the sample mean of the same is excluded from
the cluster analysis. In our case, this results in just 1 day
being removed from each of the winter and summer input
data, leaving 31 and 33 days respectively. As a stability crite-
rion, the number of clustersK is increased until the minimum
intra-cluster pattern correlation – that is, the Z500-anomaly
pattern correlation between each cluster member and its own
cluster mean – is not less than 0.5. This way all days are as-
signed to a cluster with which they have genuine similarities,
rather than simply the error-minimized “least bad” cluster, as

is typically the case in clustering large datasets of meteoro-
logical variables.

The resulting Z500 anomaly clusters and any outliers
are considered as “reference” extremal circulation patterns
against which candidate days from a given dataset can be
classified as PEDs, based on their similarity to these refer-
ences. To this end, the area-weighted Pearson pattern cor-
relation ρi,j (uncentred) between the Z500 anomaly fields
of the candidate day i and the cluster centroid j is used;
for our clustering domain (Figs. 3 and 4) this encompasses
1935 data points (i.e. grid cells). A perfect ρi,j would have
a value of 1. With the guiding aim of correctly classifying as
many extreme days (i.e. P ≥ P99D) and rejecting as many
non-extreme days as possible, a ρ threshold (ρj t) is cho-
sen for each cluster centroid j and days with a ρi,j below
this threshold are rejected. ρj t for each cluster is simply the
minimum intra-cluster pattern correlation, reduced by 10 %
so that days with a ρ comparable to the lowest intra-cluster
ρ are not rejected. To account for clusters with a particularly
high ρj t due to few members, ρj t is capped at two-thirds.
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Figure 4. As in Fig. 3, except for summer.

2.2 Assessment of local-scale meteorological predictors

All remaining days not rejected based on their ρi,j are next
assessed in terms of relevant meteorological predictors at the
local-scale, i.e. in the vicinity of the catchment. The choice
of meteorological predictor and the area around the catch-
ment in which it is assessed are flexible. In general, they
may depend on the catchment, season and variables avail-
able from the coarser parent model. Chan et al. (2018) advise
choosing predictors that are easy to diagnose from coarse-
resolution models and consistent with meteorological knowl-

edge of precipitation extremes, e.g. circulation and stability
metrics. Guidance may also be sought from statistical down-
scaling techniques that have been successfully applied in the
region.

For the Wupper catchment in summer (JJA) and win-
ter (DJF) we select daily maxima (06:00–05:59 UTC) of rel-
ative humidity (700 hPa JJA, 300 hPa DJF) as an indicator of
(near-)saturated air masses in the troposphere, 500 hPa hori-
zontal divergence (JJA, DJF) as an indicator of tropospheric
vertical ascent (of a frontal or convective nature), convective
available potential energy (CAPE; JJA) as an indicator of at-
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Table 1. Predictor variables, thresholds and region. Note that these thresholds are relative to the model’s and reanalysis’ own climatology,
so that the absolute values of the anomalies and percentiles will vary depending on the model and reanalysis on which the classification
algorithm is being applied. On the Gaussian N128 grid, one cell has a width of roughly 75 km. These predictors and thresholds could be
used as a starting point if applying the method to other catchments, though they should not be directly transferred without first considering
meteorological characteristics specific to heavy rainfall events in the new catchment.

Variable Threshold DJF Threshold JJA Time method Cells

Horizontal divergence (500 hPa) 90th percentile 90th percentile Daily maximum 7× 7
Relative humidity 97.5 % (300 hPa) 86 % (700 hPa) Daily maximum 7× 7
CAPE n/a 90th percentile Daily maximum 7× 7
Model precipitation 95th percentile (all days) 95th percentile (all days) Daily sum 3× 3

n/a= not applicable.

mospheric instability, and daily accumulated coarse-model
precipitation (JJA, DJF). As with the Z500 data, variables
are extracted from ERA-Interim on a Gaussian N128 grid
(∼ 0.7◦). To account for the transient nature of many ex-
treme weather systems and the often low temporal resolu-
tion of reanalysis or model data (e.g. 6-hourly in the case
of ERA-Interim), it is not only the nearest ERA-Interim grid
cell to the catchment centre that is considered, but an en-
tire area of 7× 7 grid cells around it (3× 3 in the case of
coarse-model precipitation). With the guiding aim of “catch-
ing” the highest number of observed precipitation extremes
(i.e. P ≥ P99D) while excluding as many other days as possi-
ble, exceedance thresholds for each variable are empirically
chosen, either as exceedances of a given percentile (diver-
gence, CAPE, coarse-model precipitation) or as absolute val-
ues (relative humidity). The thresholds used for the Wupper
catchment are summarized in Table 1. To account for dif-
ferent model climatologies and thus facilitate transferabil-
ity to other models, the (absolute) relative humidity thresh-
old (RHthresh) determined from the training data can be rede-
fined as a function of the model’s climatological mean (RH),
i.e. RHthresh = A·RH, withA a constant; this function can be
applied to another model’s RH to get RHthresh for that model.

In order to be classified as a PED, each threshold must
be exceeded at any one of the grid cells (not necessarily the
same cell) around the catchment. A schematic summarizes
the full two-step selection algorithm (Algorithm 1). Extremal
patterns identified for the Wupper catchment are presented in
Sect. 3.1.

2.3 Validation and simulation

The combination of variables, thresholds and clusters for de-
tecting observed precipitation extremes and excluding non-
extreme days is, as discussed above, empirically determined
on the basis of the ERA-Interim and REGNIE datasets.
Once this has been achieved, the method is applied identi-
cally to 0.11◦ (∼ 12.2 km) evaluation simulations over the
pan-European EURO-CORDEX domain (Jacob et al., 2014),
roughly 25–72◦ N, 20◦W–50◦ E, covering the period 1979–
2015. Simulations were performed with the regional cli-

mate model COSMO-CLM (CCLM; Rockel et al., 2008) ver-
sion 4.8, with ERA-Interim reanalysis (Dee et al., 2011) as
lateral boundary forcing. CCLM is the community model of
the German regional climate research community jointly fur-
ther developed by the CLM-Community. The years 1989–
2008 were simulated by the CLM-Community as part of the
EURO-CORDEX experiment (Kotlarski et al., 2014). The
years 1979–1988 and 2009–2015 (up to 31 July 2015) were
simulated by the present authors using identical model ver-
sion and settings.

Z500 CCLM data are interpolated to the clustering domain
and the selected meteorological variables are conservatively
regridded to a grid of similar spatial resolution to that used in
the training stage, i.e. 0.7◦, and centred on the Wupper catch-
ment. All winter and summer days are then either classified
as PEDs for further dynamical downscaling with CCLM to
a convection-permitting resolution of 0.02◦ (∼ 2.2 km) or re-
jected; the nesting ratio of 5.5 : 1 is in line with that recom-
mended in the literature (Denis et al., 2003). The enhanced
performance of CCLM at convection-permitting resolution
(relative to coarser resolutions) in reproducing precipitation
statistics, particularly extreme statistics, over central Europe
has been extensively documented (Ban et al., 2014; Fosser
et al., 2015; Brisson et al., 2016b).

The additional downscaling step is performed using the
same version of CCLM with a 221× 221 grid cell domain
centred on the Wupper catchment (Figs. 3 and 4), giving
sufficient spatial spin-up (Brisson et al., 2016a) upstream.
A total of 161 of the CCLM grid cells fit inside the catch-
ment. The simulations are carried out in “weather forecast
mode”, i.e. initialized with interpolated values from the par-
ent model. The multi-year simulations of the parent model
ensure that soil moisture and temperature are spun-up at the
12 km scale, though not necessarily at the scale of the CPM.
The soil moisture climatology tends to be drier in CPMs due
to the sparser nature of their precipitation events (Kendon
et al., 2017). While studies suggest that the transient bound-
ary conditions are of first-order importance for the occur-
rence of precipitation (e.g. Pan et al., 1999), precipitation ex-
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tremes highly sensitive to localized soil-moisture anomalies
may be inadequately represented under such a procedure.

Lateral boundary conditions are updated every 3 h and
50 unevenly spaced terrain-following vertical levels are used.
For each identified PED, the 0.02◦ simulation is initialized
at 12:00 UTC the preceding day to allow abundant precip-
itation spin-up time; as little as 3–6 h are typically suffi-
cient in CPMs though (Sun et al., 2012). PEDs on consec-
utive days are downscaled continuously to save resources.
For validation, the precipitation statistics of the dynamically
downscaled PEDs from the CCLM evaluation runs are com-
pared with those of the observed PEDs identified from ERA-
Interim. Area averages of daily precipitation over the Wupper
catchment are considered, using REGNIE and 0.02◦ model
output. The REGNIE and CCLM grids are of similar spa-
tial resolution (1 and 2.2 km, respectively). Users should
nonetheless be cognizant that datasets of different resolu-
tion may exhibit differing statistical characteristics simply
because of their different resolutions, e.g. for the area mean.
The evaluation and validation of the identified PEDs is pre-
sented in Sect. 3.2.

2.4 Verification via seasonal time-slice simulations

To provide a sterner test of the method, we additionally per-
form two sets of 30-season convection-permitting time-slice
simulations over the Wupper catchment so that the method
can also be assessed in reverse – of the actually simulated
0.02◦ extreme days (P ≥ P99D), how many would have been
identified as PEDs from the 0.11◦ coarse model?

A different GCM – the Max Planck Institute’s Earth Sys-
tem Model (MPI-ESM-LR) – at the start of the modelling
chain provides a new challenge for the method from the pre-
vious ERA-Interim-driven simulations. The MPI-ESM-LR
runs are continuous transient simulations performed as part
of the CMIP5 project (Taylor et al., 2012), using observed
greenhouse gas concentrations from 1949–2005 (historical)
and Representative Concentration Pathway 8.5 (RCP8.5;
Van Vuuren et al., 2011) from 2006 to 2100. One MPI-ESM-
LR member (1949–2100) has been continuously downscaled
with CCLM over the EURO-CORDEX domain to 0.11◦ res-
olution by the CLM-Community (Keuler et al., 2016); model
settings are as in the previously discussed ERA-Interim-
driven evaluation runs, greenhouse gas concentrations ex-
cepted.

For the present study, we have dynamically downscaled
the aforementioned 0.11◦ CCLM transient simulations to
0.02◦ over 30 summers from the historical and RCP8.5 pe-
riods, 1970–1999 and 2070–2099 respectively. The 0.02◦

model domain and set-up are the same as in Sect. 2.3 (green-
house gas concentrations aside); simulations are initialized in
April and run continuously until the end of August each year,
with analysis restricted to JJA. Summertime extreme precip-
itation in the Wupper basin tends to be of a convective and
more catchment-scale nature than its wintertime counterpart,

with small-scale variability and chaotic processes playing an
enhanced role in event intensity. In addition to this, poten-
tial differences in large-scale circulation found in a future
climate pose an additional challenge for the classification al-
gorithm. The choice of 30 summers, historical and future,
is thus intended to ensure a robust testing of our method.
The performance testing via seasonal time-slice simulations
is presented in Sect. 3.3.

3 Results and discussion

3.1 Extremal circulation patterns for the Wupper
catchment

The greater diversity of synoptic patterns that can lead to
extreme precipitation in the Wupper catchment in summer,
compared to winter, can be seen in the number of clus-
ters K necessary before our stability criterion (see Sect. 2.1)
is reached (Figs. 3 and 4). The higher K also hints at the
generally more challenging nature of forecasting summer-
time intense precipitation, when synoptic forcing tends to be
weaker and small-scale chaotic processes play an increased
role. In winter (Fig. 3), precipitation extremes in the Wupper
catchment are most often associated with a dipole-like struc-
ture characteristic of a strong positive phase of the North At-
lantic Oscillation (Hurrell, 1995), with various shifts of the
dipole centres (clusters 1–3). Such a synoptic pattern gives
a strong zonal forcing, sweeping deep low-pressure systems
and associated frontal precipitation across the catchment;
similar clusters have previously been identified for north-
eastern Switzerland (Giannakaki and Martius, 2016). For the
remaining cluster (cluster 4) and the outlier, shallower de-
pressions become embedded in a relatively weak zonal flow,
depositing their albeit less intense precipitation over a more
prolonged period; these patterns account for less than one-
sixth of all extreme days (P ≥ P99D) though. In summer, a
dipole-like pattern can also be seen on some extreme days
(cluster 1), though accounting for just over one-seventh of
all extremes; such events in summer can also be expected to
include enhanced frontal convection. The remainder of the
summertime extremes are associated with a weaker zonal
forcing. High pressure over eastern Europe often advects
warm, moist air from the Mediterranean into central Europe
(clusters 2 and 4), enhancing instability and increasing the
chance of deep convection; Bárdossy (2010) also identified
such a pattern as bringing intense precipitation to south-west
Germany during summer. Another common pattern is that of
a front, often with a small embedded low, extending across
the catchment (clusters 3 and 8) in the wake of an east-
ward moving ridge and triggering frontal lifting as it passes.
Quasi-stationary mid-tropospheric cut-off lows (clusters 5–
7) are the most common cause of summertime extremes in
our catchment, allowing slow-moving surface lows to advect
a persistent moisture stream, within which intense convec-
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coarser parent model. Chan et al. (2018) advise choosing predictors that are easy to diagnose from coarse-resolution models

and consistent with meteorological knowledge of precipitation extremes, e.g. circulation and stability metrics. Guidance may

also be sought from statistical downscaling techniques which have been successfully applied in the region. For the Wupper

catchment in summer (JJA) and winter (DJF) we select daily maxima (0600-0559 UTC) of relative humidity (700 hPa JJA,

300 hPa DJF) as an indicator of (near-)saturated air masses in the troposphere, 500 hPa horizontal divergence (JJA, DJF) as5

an indicator of tropospheric vertical ascent (of a frontal or convective nature), convective available potential energy (CAPE;

JJA) as an indicator of atmospheric instability, and daily accumulated coarse-model precipitation (JJA, DJF). As with the

Z500 data, variables are extracted from ERA-Interim on a Gaussian N128 grid (∼0.7◦). To account for the transient nature

of many extreme weather systems and the often low temporal resolution of reanalysis/model data (e.g. 6-hourly in the case

of ERA-Interim), it is not only the nearest ERA-Interim grid cell to the catchment centre which is considered, but an entire10

7x7 cells around it (3x3 in the case of coarse-model precipitation). With the guiding aim of ‘catching’ the highest number of

observed precipitation extremes (i.e. P ≥ P99D) while excluding as many other days as possible, exceedance thresholds for each

variable are empirically chosen, either as exceedances of a given percentile (divergence, CAPE, coarse-model precipitation) or

as absolute values (relative humidity). The thresholds used for the Wupper catchment are summarized in Table 1. To account

for different model climatologies and thus facilitate transferability to other models, the (absolute) relative humidity threshold15

(RHthresh) determined from the training data can be redefined as a function of the model’s climatological mean (RH), i.e.

RHthresh = A·RH , with A a constant; this function can be applied to another model’s RH to get RHthresh for that model.

In order to be classified as a PED, each threshold must be exceeded at any one of the grid cells (not necessarily the same

cell) around the catchment. A schematic summarizes the full two-step selection algorithm (Algorithm 1). Extremal patterns

identified for the Wupper catchment are presented in Sect. 3.1.20

Algorithm 1 Schematic of the classification algorithm for identifying PEDs in summer. Example for a single day i.

ρi,j is the Pearson pattern correlation between day i and extremal pattern j, RH700 is relative humidity at 700 hPa,
DIV500 is horizontal divergence at 500 hPa, CAPE is convective available potential energy, P is accumulated daily precip-
itation. ρjt (i.e. ρ thresholds) are determined as described in Sect. 2.1. if tests of local-scale meteorological variables are
performed using the thresholds and grids described in Table 1. If any of the cells in the grid pass the test, then the next test is
applied. For winter the algorithm is the same, except that CAPE is excluded and relative humidity is at 300 hPa.

for j in (1, . . .,K) do // Extremal patterns 1 to K
if (ρi,j ≥ ρjt) then // Synoptic-scale tests

if (RH700i ≥RH700thresh) then // Local-scale tests
if (DIV 500i ≥DIV 500thresh .OR. CAPEi ≥ CAPEthresh) then

if (Pi ≥ P95D) then
DAYi classified as PED

end if
end if

end if
end if

end for

6

Algorithm 1.

tive cells can develop, across the catchment. A not dissimilar
pattern was also identified by Brigode et al. (2013) in their
study of extreme precipitation in Austria.

3.2 Evaluation and validation of identified PEDs

While still capturing more or less all observed extreme days,
the constraints derived from ERA-Interim variables enable
the classification algorithm to reduce the number of PEDs
to well below 10 % of all days (Table 2). In the process, the
number of “redundant days” (i.e. P < P90D) falls from about
3000 to 48 in winter and 126 in summer. The “redundant
days” thus occupy a much smaller fraction in the PEDs than
in the set of all days. Such a good performance in the training
dataset is, however, no surprise.

Applying the same methodology to the 0.11◦ CCLM eval-
uation runs (ERA-Interim driven) over the same period, a
similar number of PEDs are identified for dynamical down-
scaling to 0.02◦ (Table 2). The PEDs again represent well
below 10 % of all days, slashing the computational expense
against a continuous simulation of the whole period by an or-
der of magnitude. Of note is that although the 0.11◦ CCLM
simulations are forced at the lateral boundaries by ERA-
Interim, only 123 of the 320 dates identified as PEDs in
CCLM in summer are also found amongst the ERA-Interim
PEDs. This is attributable to the fact that RCMs without in-
terior constraints (i.e. some form of internal nudging) can-
not synchronously reproduce the local-scale day-to-day vari-
ability of their parent model (Maraun and Widmann, 2015).
RCMs of sufficiently large domain size thus often generate
large internal variability (e.g. Lucas-Picher et al., 2008), of-
ten comparable to that found in GCMs (Christensen et al.,

2001), which can cause the local RCM solution to signif-
icantly deviate from that of its parent model. In the pres-
ence of a strong zonal throughflow, e.g. in winter, the growth
of differing internal solutions is limited due to small-scale
perturbations being more rapidly swept out of the domain
(Giorgi and Bi, 2000). This explains the higher fraction of
common days that we find in winter (150 / 220).

Comparing the empirical cumulative distribution func-
tions (ECDFs) for catchment-averaged precipitation (ob-
served) of all days and PEDs from the training dataset (ERA-
Interim), the greatly increased probability of heavy precipi-
tation on a randomly selected PED becomes apparent (Fig. 5,
blue curve): in the set of PEDs, the probability of exceeding
the climatological winter (a) 99th (90th) percentile is about
20 % (80 %), whereas in the set of all days it is only 1 %
(10 %). For summer (b), the situation is less pronounced but
the climatological (JJA) 99th (90th) percentile is exceeded
on about 15 % (60 %) of the days in the PED set. Taking all
days, the ECDF can be well described by a typical gamma
distribution; the gamma distribution is known to represent
the bulk of the daily precipitation distribution well, though it
performs less well for the tails (Rust et al., 2013). The form
of the ECDF of the observed PEDs (blue curve), however, is
far removed from that of the set of all days (red curve), as the
probability is shifted towards more intense precipitation. The
change in form of the ECDF – from one dominated by dry to
light-rain days, to one dominated by heavy- to extreme-rain
days – results from the classification algorithm’s removal of
days with a low potential for intense precipitation.

Dynamically downscaling all CCLM 0.11◦ PEDs to 0.02◦

produces ECDFs of daily precipitation that closely resemble
those of the observed PEDs, for both seasons (Fig. 5, green
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Table 2. Summary table of the performance of the classification algorithm for training period (ERA-Interim) and CCLM evaluation runs.
“Redundant days” are defined as days with precipitation below the 90th percentile (all days). The third column shows the percentage of total
days identified as PEDs, with the fourth column showing the percentage of actual extreme days contained within these PEDs. The rightmost
column compares the fraction of redundant days (P < P90D) contained in the PEDs and amongst the set containing all days (“All days”).

Data/experiment Time period PEDs P99D captured Redundant days
(No. of days) (No. of days) (days/total days) (days / total days)

PEDs All days

ERA-Interim DJF 1980–2015 6.8 % 100 % 22.5 % 90.0 %
(3249) (222) (32 / 32) (50 / 222) (2924 / 3249)

ERA-Interim JJA 1979–2015 8.6 % 97 % 44.1 % 90.0 %
(3373)∗ (290) (33 / 34) (128 / 290) (3036 / 3373)

CCLM-0.11◦ CORDEX-EU DJF 1980–2015 6.8 % n/a n/a
(ERA-Interim driven) (3249) (220)

CCLM-0.11◦ CORDEX-EU JJA 1979–2015 9.8 % n/a n/a
(ERA-Interim driven) (3373)∗ (331)

∗ Ends on 31 July 2015; n/a= not applicable.

Figure 5. Empirical cumulative distribution functions of daily precipitation for all days (red, observed), PEDs (blue, observed), and CCLM
PEDs (green, downscaled to 0.02◦) in (a) winter 1980–2015 and (b) summer 1979–2015 (up to 31 July 2015). Differences between the blue
and red curves (REGNIE) highlight the increased likelihood of heavy rainfall events amongst the PEDs. All values are area averages over the
Wupper catchment. Vertical red lines mark important percentiles of the all-day distribution. The area of the Wupper catchment encompasses
753 and 161 grid cells of REGNIE and CCLM data, respectively. Stations in and around the Wupper catchment are marked in Fig. 2. The
similarity of the blue (REGNIE) and green (CCLM) PED curves shows that, with skilful identification of PEDs, convection-permitting
downscaling can reproduce the observed PED statistics well.

curve); both ECDFs are again dominated by heavy to ex-
treme precipitation events, with dry days (PD < 0.1 mm) al-
most completely eliminated. Indeed, many of the seemingly
dry to light-rain days counted over the Wupper catchment in
the convection-permitting simulations do still feature heavy
precipitation, though displaced to neighbouring regions of
the 0.02◦ simulation domain (Fig. 6); this occurs most of-
ten in summer, owing to the more small-scale and chaotic
nature of convective precipitation. The good match between
the ECDFs of observed and downscaled PEDs shows that,
with skilful classification of the PEDs, selective downscal-

ing can be relied on to realistically reproduce the same range
of precipitation events over the catchment as expected from
the training dataset and observations, allowing of course for
known model biases (e.g. Fosser et al., 2015). In the pro-
cess, computational expense is reduced by over 90 % (Ta-
ble 2) compared to the computational efforts that would be
required for a continuous simulation over the same period at
such high spatial resolution. While the spatial resolutions of
REGNIE and CCLM are similar (1 and 2.2 km, respectively),
users should beware that area means in datasets with consid-
erably different grid resolutions may differ simply because
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Figure 6. Illustrative modelled PEDs. (a) Example summer PED downscaled to 0.02◦ and (b) the same day in the 0.11◦ parent model. In
this example, the strongest precipitation directly strikes the catchment in the 0.02◦ CCLM despite missing the catchment in the parent 0.11◦

CCLM. (c) Example summer PED with highly localized intense precipitation that falls outside the catchment in the 0.02◦ CCLM. (d) The
corresponding day in the 0.11◦ CCLM.

of the different sample sizes, i.e. the number of grid cells
contained within the averaging area, in particular for small
catchments and large differences in the grid-box area.

3.3 Performance testing on seasonal time-slice
simulations

The dynamical-downscaling of two sets of 30-summer time
slices – historical (1970–1999) and RCP8.5 (2070–2099) –
from 0.11 to 0.02◦ provides an additional set of tests for the
classification algorithm, namely: what fraction of the actu-
ally simulated extreme days in the 0.02◦ model would the
method have identified as PEDs from the 0.11◦ model? In
addition, is classification performance degraded in a future
climate? The summer season is chosen to ask these ques-
tions due to the greater challenges in predicting summertime
intense precipitation (see Sects. 2.4 and 3.1).

Applying the classification algorithm, identically to in
Sect. 3.2, to the 0.11◦ historical and RCP8.5 simulations
again yields selections of PEDs representing less than 10 %
of the total days (Table 3). Amongst these PEDs, at least
75 % of 0.02◦-simulation extreme days are captured in both

time slices. In the case of the historical simulations, the frac-
tion of redundant days (i.e. P < P90D) climbs by almost
six percentage points relative to the training dataset; for the
RCP8.5 simulations, the fraction falls marginally. The for-
mer increase may simply be an artefact of the fewer summers
(30 vs. 37) present in this testing dataset. The similarity of
performance between the historical and future simulations is
noteworthy, particularly in light of RCP8.5 2070–2099 repre-
senting the end of the most extreme RCP scenario. Projected
changes in large-scale extratropical circulation can be con-
siderable (e.g. Barnes and Polvani, 2013; Zappa et al., 2013)
and are known to exert strong control on regional precipita-
tion climatologies (Shepherd, 2014). In the case of the MPI-
ESM-LR model used in this study, for example, a northward
shift of the annual-mean jet in the Atlantic sector (Barnes
and Polvani, 2013) and reduction in the frequency of both
North Atlantic and Eurasian summertime anticyclonic block-
ing (Masato et al., 2013) are projected under the RCP8.5
scenario. Despite this, the classification algorithm performs
more or less the same in historical and future climates. While
the classification algorithm unsurprisingly fails to capture
all extreme days in either the historical or RCP8.5 simula-
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Table 3. Summary table of performance of classification algorithm for 0.11◦ CCLM historical and RCP8.5 simulations, continuously down-
scaled to 0.02◦ over 30 summers. “Redundant days” are defined as days with precipitation below the 90th percentile (all days). The third
column shows the percentage of total days identified as PEDs, with the fourth column showing the percentage of actual extreme days con-
tained within these PEDs. The rightmost column compares the fraction of redundant days (P < P90D) contained in the PEDs and amongst
the set containing all days (“All days”).

Data/experiment Time period PEDs P99D captured Redundant days
(No. of days) (No. of days) (days / total days) (days / total days)

PEDs All days

MPI-ESM-LR/CCLM-0.11◦ JJA 1970–1999 9.8 % 75 % 49.8 % 90.0 %
CORDEX-EU/Historical (2760) (271) (21 / 28) (135 / 271) (2484 / 2760)

MPI-ESM-LR/CCLM-0.11◦ JJA 2070–2099 9.5 % 82 % 42.9 % 90.0 %
CORDEX-EU/RCP8.5 (2760) (261) (23 / 28) (112 / 261) (2484 / 2760)

tions, the fact that the performance is the same across both
climates indicates the added value of employing our down-
scaling methodology, allowing more robust conclusions to be
drawn from the output. Of the extreme days that are not cap-
tured, 6 out of 7 (historical) and 4 out of 5 (RCP8.5) are lost
due to their circulation patterns not matching any of the pre-
defined extremal clusters well. This could indicate that the
training period for identifying the extremal patterns is too
short to encompass sufficient diversity or, more likely, that
the GCM in question (MPI-ESM-LR) does not adequately
represent the frequency and/or persistence of the large-scale
circulation patterns that lead to observed extremes in our
catchment. For example, CMIP5 GCMs are known to under-
estimate the frequency of Eurasian blocking (Masato et al.,
2013) and GCMs in general often underestimate the persis-
tence of blocking systems (e.g. Matsueda, 2011); the pole-
ward flank of such blocking anticyclones often transports
warm moist air into central Europe, enabling intense convec-
tive precipitation (see Sect. 3.1). In the case of MPI-ESM-LR
during summer, a southward bias in the storm-track axis and
over-active North Atlantic blocking are also evident in the
CMIP5 historical simulations (Masato et al., 2013).

The similar performance of the classification algorithm
across climates, as well as the evaluation period, is confirmed
by looking at the historical and RCP8.5 ECDFs (Fig. 7). As
in the training dataset, the ECDFs of the PEDs are shifted to-
wards more intense precipitation compared to the ECDFs for
the sets of all days. For the PEDs, the probability of exceed-
ing the respective climatological (JJA) 99th (90th) percentile
in the historical and RCP8.5 simulations is similar to that
found in the training dataset and the dynamically downscaled
PEDs of the evaluation period, roughly 10 % (55 %) (com-
pared to 1 % (10 %) for all days), and the ECDFs are dom-
inated by heavy to extreme events with dry days almost ab-
sent. To quantify differences in the distributions of precipita-
tion events amongst all days and the PEDs for discrete inten-
sity ranges, we compute the relative likelihoods (R) of find-
ing a precipitation event within a given intensity range for the
historical and RCP8.5 simulations (Fig. 8); this is simply the

ratio of the respective probabilities, e.g. P(E|PED) : P(E),
with the smaller of the two probabilities used as the denomi-
nator for plotting purposes.

The greatest difference between all days and the PEDs
is found in the relative likelihoods of a randomly sampled
day being dry, which is an order of magnitude lower in the
PEDs. Indeed, considering the set of non-PEDs, the proba-
bility density function exhibits an even higher density of dry
days than that found for all days (not shown). Focusing on
just wet-day percentiles, a regime shift from a higher R for
all days to a higher R for PEDs occurs above the median
wet-day event. The higher R for the PEDs grows further as
event intensity nears the most extreme precipitation events,
consistent across historical and RCP8.5 experiments and ap-
proaching a factor of 10 in places (Fig. 8). For the most ex-
treme events (PD ≥ PW99.9), more variability between his-
torical and RCP8.5 R values emerges as the number of days
involved limits towards zero. Future changes in the fraction
of wet days, and the sensitivity of wet-day percentiles to such
changes (Schär et al., 2016), likely contribute to some of the
small differences in relative likelihood between the historical
and RCP8.5 experiments.

3.4 Applications and outlook

The preconditioning of PEDs on known extremal circulation
patterns does not just reduce the total number of days to dy-
namically downscale. Importantly, it also allows conclusions
to be drawn about changes in catchment-relevant precipita-
tion between two periods, e.g. present and future climates,
for these circulation patterns. A classification method that
does not guarantee the capture of all extreme days clearly
cannot be used to draw overall conclusions about precipita-
tion changes in a given catchment. Preconditioning on circu-
lation types does, however, allow conclusions to be drawn
about changes in specific classes of precipitation extreme
(Fig. 9), e.g. as identified via the clustering methodology
outlined in Sect. 2.1. For example, for a known extremal
circulation pattern, will the likelihood that the accompany-
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Figure 7. Empirical cumulative distribution functions of daily precipitation for all days (red) and PEDs (blue) downscaled to 0.02◦. (a) His-
torical (JJA, 1970–1999), (b) RCP8.5 (JJA, 2070–2099). All values are area averages over the Wupper catchment. Vertical red lines mark
important percentiles of the all-day distribution.

d

d

Figure 8. Relative likelihoods of precipitation on a randomly sampled day from the set of all days and the PEDs being within a given
intensity range for the (a) historical and (b) RCP8.5 0.02◦ simulations. Note that precipitation intensities are based on the percentiles of wet
days (PD ≥ 0.1 mm).

ing precipitation exceeds some catchment-relevant threshold
be higher or lower in the future? This approach is in a way
analogous to the framework used in conditional event attri-
bution (e.g. Trenberth et al., 2015; Pall et al., 2017), where
the question is posed: for some observed circulation pat-
tern, how is the event’s intensity affected by known ther-
modynamic changes in the Earth’s climate system? A ma-
jor advantage of such an approach is the relative robustness
of projected thermodynamic changes in the climate system
compared to projected dynamical changes (Shepherd, 2016).
From a catchment-hydrology perspective, one could imag-
ine this being particularly useful for catchments vulnerable

to specific compound extremes, for example intense precipi-
tation in an estuarine catchment compounded by a shoreward
moving low-pressure system with strong onshore winds (e.g.
Bevacqua et al., 2017). Beyond the extremal patterns identi-
fied from the training period, however, there remains the pos-
sibility that a future climate may also contain new extremal
circulation patterns that were previously either not associated
with extreme precipitation or simply not present at all. Such
systematic effects could only be explored with continuous
dynamical downscaling of the different climates.
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Figure 9. Percentage change in daily precipitation intensity be-
tween the historical and RCP8.5 periods (JJA), conditional on ex-
tremal circulation pattern, from the 0.02◦ simulations. The numbers
indicate the total number of PEDs for each pattern (i.e. cluster) in
the historical (left) and RCP8.5 (right) periods, while vertical bars
represent 90 % confidence intervals. Clusters with less than 10 days
in either period are excluded from the calculations. On the right
hand side, the corresponding climate change signal for the 95th and
99th percentile of all days is provided for reference.

4 Further discussion

The consistent performance of the classification scheme
across historical and future climates further demonstrates its
utility for studying changes in defined classes of precipita-
tion extreme, for example those preconditioned on an iden-
tified extremal synoptic pattern that is known to severely af-
fect a given catchment. In this regard, our method is com-
plementary to current trends in how the projected impacts of
climate change are communicated and adapted to end-user
needs. Recent literature advocates the use of high-resolution
weather models to create bespoke storylines of high-impact
weather events for a given catchment in a future climate
(Hazeleger et al., 2015). In the so-called “Tales” approach of
Hazeleger et al. (2015), the broad statistical terms in which
climate change projections are typically communicated are
replaced by high-resolution simulations of carefully selected
past and future weather events over a given catchment in
order to study the catchment-specific impacts of individual
hydrometeorological events from past and future climates.
This approach is designed to form part of a collaborative
process in which end users play a key role in selecting the
type of events to be studied, providing vivid case-studies on
which adaptation strategies can be decided (Hazeleger et al.,
2015). Our methodology could be integrated seamlessly into
this workflow. An additional advantage of this type of mod-
elling framework is that anthropogenic factors extraneous to
global climate change can easily be implemented into the
modelling chain (Shepherd, 2016), for example adding po-
tential changes in land-use to a high-resolution hydrological
model, or changes in hydraulic infrastructure to a hydraulic
model for assessing impacts on reservoirs, water-treatment
plants, drainage systems, etc.

An important element in the transferability of the method
to other catchments is its inherent flexibility, allowing in par-

ticular for the active involvement of end users. End users can
contribute and integrate their empirical knowledge towards
the identification of the local-scale meteorological predic-
tors most suitable for their own catchment, perhaps taking
the ones we use or those suggested in Chan et al. (2018) as
a starting point. Data availability in the models to be down-
scaled may, however, require choosing parameters that are
only approximate indicators of the most suitable ones. For
the Wupper catchment studied here, for example, we found
daily maximum 700 hPa vertical velocity to perform better
than daily maximum 500 hPa horizontal divergence as an in-
dicator of extreme precipitation in the training dataset. The
regional model that we wished to downscale, however, had
saved vertical velocity at too low a temporal resolution to
meaningfully calculate daily maxima. The adoption of hori-
zontal divergence was thus necessitated, allowing the PEDs
to still be appropriately classified while avoiding an unac-
ceptable increase in computational expense. The method is
additionally adaptable to the computing capacity of the user.
With the caveat that excessively high thresholds will result
in more undesirably rejected days, thresholds for the iden-
tification of PEDs can be either raised or lowered based on
available computational resources.

Data produced via a method like ours are indeed useful
for many applications, though not universally so, and do
also come with their own limitations. Care must therefore
be taken when applying such data and interpreting subse-
quent results. The issue of stationarity should be acknowl-
edged: one can never be certain that a future climate will
not include heavy precipitation events caused by previously
unimportant circulation patterns. Non-stationarity may also,
positively or negatively, impact the effectiveness of local-
scale predictors. Non-stationarity is indeed a common issue
also affecting model parametrization schemes and statistical
downscaling – a motivating factor for anchoring our method
with a convection-permitting model. Additionally, the cata-
logue of downscaled PEDs is no random sample of high-
resolution climate data and thus cannot be treated as tradi-
tional projections. Traditional projections can only be made
with continuous, multi-decadal downscaling, and not with
the discontinuous time series that we produce.

Our method is instead ideal for applications requiring
high-resolution data suitable as input for modelling the
catchment-scale impacts of extremes. Such applications in-
clude (i) design situations and stress testing for hydraulic
infrastructure, e.g. dams, canal networks, urban sewerage
systems, and (ii) process-oriented case studies of the catch-
ment’s response to extremes, e.g. runoff formation processes
leading to flooding. In such applications, the emphasis is on
combining realistic initial conditions with physically plausi-
ble and realistic extremes, as input for the hydrological mod-
els. Typical problems with using observational data for such
studies are that the spatial and/or temporal coverage of the
observational network was insufficient to capture suitably
extreme historical events to use in, e.g. design situations.
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Coarser model data present problems too, in that they also
tend not to realistically capture the peak intensities and spa-
tial variability of such intense events (see Sect. 1). For such
studies, hydrological models would need to be calibrated
with either observations or lower-resolution RCM data. Real-
istic initial conditions, e.g. for design situations, can also be
obtained from such sources or, as is often the case, prescribed
and varied in order to test the sensitivity to initial conditions
of the catchment’s response to a given extreme. For example,
the reservoir level prior to a rain-on-snow event – such events
can quickly mobilize large volumes of water into runoff, po-
tentially overwhelming hydraulic infrastructure.

A further means through which our methodology can be
used to limit computational expense is in the selection of in-
dividual models from multi-model ensembles (e.g. CMIP) to
downscale over a given region, avoiding the computational
expense of dynamically downscaling an entire multi-model
ensemble. GCMs whose historical runs fail to satisfactorily
reproduce the observed PED climatology, i.e. the seasonal
frequency of PEDs, could be considered to poorly represent
the regional extremal circulation patterns and thus be rejected
in favour of the top N best-performing models, with N a
function of both available computing resources and the re-
duction in intra-ensemble spread that can be tolerated. Such
a region-targeted selection of GCMs (Maraun et al., 2017)
could even be combined with the aforementioned “Tales” ap-
proach, making a potent tool.

5 Conclusions

Hydrological modellers, amongst others, benefit greatly from
high-resolution climate data at the catchment scale – par-
ticularly for studying the impacts of extreme precipitation.
In achieving these high resolutions O(1 km) while main-
taining data quality, dynamical downscaling to convection-
permitting resolution presents numerous advantages, though
it comes at an often prohibitive computational expense. To
reduce the overall computational burden and instead dynam-
ically downscale only those days for which there is an ele-
vated likelihood of extreme precipitation in a catchment, we
have developed a flexible and transferable classification algo-
rithm for identifying potential extreme days (PEDs) and re-
jecting days unlikely to produce intense precipitation. While
reducing computational expense by over 90 %, the precipi-
tation distribution of the training dataset’s PEDs – in which
more or less all extreme days were captured – was well re-
produced via convection-permitting dynamical downscaling,
showing an ECDF dominated by heavy precipitation events.
Testing the classification algorithm on continuous datasets
driven by a different global model, at least three-quarters of
the convection-permitting model’s summertime extremes –
which are intrinsically more challenging to identify than their
wintertime counterparts – were caught and computational ex-
penses were again slashed by over 90 %.

Our method represents a computationally inexpensive pro-
cedure to produce high-resolution climate data, focused
on extreme rainfall events, for hydrological modellers and
decision-makers, while retaining the advantages of the
convection-permitting modelling framework (see Sect. 1).
The explicit simulation of fine-scale processes along the
modelling chain gives additional confidence in the end prod-
uct, as fine-scale processes can substantially modulate the
regional climate change signal (Diffenbaugh et al., 2005).
Irrespective of increases in processor power, regional mod-
els will always be able to be run at higher spatial resolutions
than their global counterparts. Should global models some
day run at convection-permitting resolution as standard, clas-
sification algorithms can still be utilized for downscaling to
ever-higher resolutions at which even more processes can
be explicitly simulated, e.g. turbulence. Classification algo-
rithms, such as the one presented here, for selective dynam-
ical downscaling preconditioned on known extremal circula-
tion patterns can thus play an important and enduring role in
climate modelling.

Code and data availability. ERA-Interim reanalyses (Dee
et al., 2011) are available from the ECMWF (ECMWF:
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e.g. https://esgfdata.dkrz.de/projects/esgf-dkrz/, last access:
25 July 2018). All remaining simulation data and scripts are
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