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Abstract. The impact of spatial and temporal variability of
rainfall on hydrological response remains poorly understood,
in particular in urban catchments due to their strong vari-
ability in land use, a high degree of imperviousness and the
presence of stormwater infrastructure. In this study, we an-
alyze the effect of storm scale, position and movement in
relation to basin scale and flow-path network structure on
urban hydrological response. A catalog of 279 peak events
was extracted from a high-quality observational dataset cov-
ering 15 years of flow observations and radar rainfall data for
five (semi)urbanized basins ranging from 7.0 to 111.1 km2

in size. Results showed that the largest peak flows in the
event catalog were associated with storm core scales ex-
ceeding basin scale, for all except the largest basin. Spatial
scale of flood-producing storm events in the smaller basins
fell into two groups: storms of large spatial scales exceed-
ing basin size or small, concentrated events, with storm core
much smaller than basin size. For the majority of events, spa-
tial rainfall variability was strongly smoothed by the flow-
path network, increasingly so for larger basin size. Correla-
tion analysis showed that position of the storm in relation to
the flow-path network was significantly correlated with peak
flow in the smallest and in the two more urbanized basins.
Analysis of storm movement relative to the flow-path net-
work showed that direction of storm movement, upstream or
downstream relative to the flow-path network, had little in-
fluence on hydrological response. Slow-moving storms tend
to be associated with higher peak flows and longer lag times.
Unexpectedly, position of the storm relative to impervious

cover within the basins had little effect on flow peaks. These
findings show the importance of observation-based analysis
in validating and improving our understanding of interac-
tions between the spatial distribution of rainfall and catch-
ment variability.

1 Introduction

The interactions between spatial and temporal variability of
rainfall and hydrological response characteristics have been
the topic of numerous empirical and modeling studies in re-
cent decades (Anquetin et al., 2010; Lobligeois et al., 2014;
Morin et al., 2006; Segond et al., 2007; Syed et al., 2003;
Tetzlaff and Uhlenbrook, 2005; Volpi et al., 2012; Yakir and
Morin, 2011). They have shown that interactions depend on
the complex interplay between rainfall variability and catch-
ment heterogeneity in ways that remain poorly understood.
This is the case in particular for urban catchments where
strong variability in land-use, high degree of imperviousness
and the presence of stormwater drainage and detention in-
frastructure increase the complexity of hydrological response
(e.g. Bruni et al., 2015; Fletcher et al., 2013; Meierdiercks
et al., 2010; Smith et al., 2005, 2013a; Yang et al., 2016).

Urbanization tends to be associated with higher peak flows
induced by reduced infiltration rates on impervious surfaces
and with shorter response times. (e.g. Rose and Peters, 2001;
Cheng and Wang, 2002; Du et al., 2012; Huang et al., 2008).
However, several studies have found mixed effects of urban-
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ization on peak flows and response times, associated with
a combination of imperviousness and flood mitigation mea-
sures, especially for basins where urbanization has predom-
inantly taken place after implementation of stormwater con-
trol legislation (e.g. Smith et al., 2013a; Hopkins et al., 2015;
Miller et al., 2014). Niemczynowicz (1999) and Schilling
(1991) pointed out the importance of spatially distributed
rainfall information at high resolution to study response in
urban basins. Thanks to the advances of weather radar, such
information is becoming increasingly available (Krajewski
and Smith, 2002; Berne and Krajewski, 2013), typically at
1 km spatial resolution (Smith et al., 2007), and in some cases
down to less than 100 m (Otto and Russchenberg, 2011; Chen
and Chandrasekar, 2015; Thorndahl et al., 2017). (Wright
et al., 2014b) analyzed flow variability in three suburban-
ized catchments in relation to different radar rainfall prod-
ucts and found that storm event water balance and hydrolog-
ical response times varied with the radar product used for
analysis. Berne et al. (2004) derived relationships for critical
rainfall resolution for urban hydrology, using high-resolution
radar rainfall datasets over six basins in the Mediterranean
region. They found that the temporal and spatial rainfall res-
olution required for urban hydrological analysis varied from
about 5 min, 3 km for basins ∼ 10 km2, to about 3 min, 2 km
for basins of ∼ 1 km2 scale. Radar rainfall data have been
used in various studies in recent decades to drive hydrologi-
cal models and sensitivity of urban hydrological response to
spatial and temporal rainfall variability. Bruni et al. (2015)
and Ochoa-Rodriguez et al. (2015) used rainfall data from
a polarimetric rainfall radar, at ∼ 30–100 m and minute res-
olution to drive semidistributed hydrodynamic models of
one and seven highly urbanized catchments, respectively, in
northwestern Europe to study urban hydrological response
for a range of rainfall input resolutions. They found that sen-
sitivity of flows to rainfall variability increased for smaller
basin sizes and that hydrological response was more sensi-
tive to change in temporal than in spatial rainfall input res-
olution. Gires et al. (2012) quantified the impact of unmea-
sured small-scale rainfall variability on urban runoff for an
urban catchment in London, by downscaling radar rainfall
data from 1 km and 5 min resolution to a resolution 9–8 times
higher in space and 4–1 times higher in time. Uncertainty in
simulated peak flow associated with small-scale rainfall vari-
ability reached 25 and 40 % respectively for frontal and con-
vective events. Rafieeinasab et al. (2015) analyzed sensitivity
of hydrological response to rainfall variability for five urban
catchments of different sizes, located in the City of Arling-
ton and Grand Prairie (US), using a distributed hydrologi-
cal model. They found that while flow variability was better
captured using higher resolution rainfall input, errors in re-
producing flow by the models remained equally large, with
peak flow over- and underestimations of more than 100 %.

(Wright et al., 2014a) analyzed hydrological response for
four semiurbanized basins in Charlotte watershed, North
Carolina, using a Gridded Surface Subsurface Hydrologic

Analysis (GSSHA) model to examine the effect of rainfall
time and length scales on flood response. They found that
peak flows in the larger basins (∼ 50–100 km2) were domi-
nated by large-scale storms, while more concentrated orga-
nized thunderstorm systems dominated in the smaller basins
(∼ 7–30 km2). They also identified limitations of this and
similar modeling studies, where hydrologic response may be
attributable to errors in radar rainfall estimates or to features
that were omitted or poorly represented in the model, such as
detention ponds, the spatial distribution of layered soils and,
in particular, initial soil moisture.

Smith et al. (2002) used a data-driven approach to study re-
lationships between temporal and spatial rainfall variability
and hydrological response in urban basins. They introduced
the concept of rainfall-weighted flow distance, representing
storm position and movement relative to the flow-path net-
work in the basin. In their study, they analyzed hydrological
response in five semiurbanized basins in the US for five ex-
treme flood-producing storms based on detailed radar rain-
fall and flow observation datasets. They found that fractional
coverage of a basin by heavy rainfall is a key element of
scale-dependent flood response: storm event scales, i.e. spa-
tial (area, length) and temporal (duration) scales smaller than
the basin scale (basins length, response time), lead to lower
runoff ratios and flood peak compared to when scales of rain-
fall and basin are similar. Storm motion was found to be am-
plifying peak flow under particular conditions: storm motion
from the lower basin to the upper basin on a timescale of ap-
proximately 2 h served to amplify peak discharge for the case
of a large, ∼ 100 km2 basin, relative to other modes of storm
motion. In Smith et al. (2005), spatial rainfall variability in
relation to the flow-path network was analyzed for 25 flash-
flood-producing storms in a 14 km2 urban watershed. They
found that spatial rainfall variability was strongly smoothed
by the flow-path network, resulting in hydrological responses
for storms with widely varying spatial rainfall variability be-
ing strikingly similar.

Other authors have used similar concepts to study hydro-
logical response in natural basins. In an extensive study of
300 events over a 148 km2 basin in Arizona, Syed et al.
(2003) found that runoff volume and peak were strongly cor-
related with areal coverage by the storm core (> 25 mm h−1

rainfall intensity). The importance of the storm core’s posi-
tion increased with basin size, with storm cores positioned in
the central portion of the watershed producing more runoff
and higher flood peaks. Morin et al. (2006) found that the
sensitivity of flood response (in terms of flood peak mag-
nitude and peak timing) to spatial rainfall variability in-
creased with storm intensity, which they attributed to high
flow velocities during intense storms. Similar results were
found by Lobligeois et al. (2014), who analyzed the influ-
ence of spatial rainfall variability on hydrological response
in 181 catchments in France based on spatial rainfall vari-
ability, storm position and catchment-scale storm velocity
indices. They found that flow simulations by hydrological
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models benefited from spatially distributed rainfall input for
large catchments and strongly spatially distributed rainfall
fields. Nicotina et al. (2008) analyzed rainfall variability in
a numerical study for large basins up to several thousand
square kilometers and found that spatial variability of a storm
was more important than variability in total rainfall volume
over the basins. This was attributed to the dominant influence
of hillslope flow on scales typically smaller than the rainfall
variability scale, smoothing differences in travel times to the
basin outlet. Channel flow only became more important in
very large basins (> 8000 km2), leading to stronger sensitivity
to spatial rainfall variability. Zoccatelli et al. (2011) analyzed
rainfall coverage, storm position and movement relative to
the flow-path network for five storms in five different basins
in southeastern Europe. Based on a model sensitivity study,
they found that peak timing error introduced by neglecting
spatial rainfall variability ranged between 30 and 72 % of the
corresponding catchment response time. Nikolopoulos et al.
(2014) analyzed the role of storm motion using radar rainfall
data to drive two models of varying complexity. They found
that storm motion did not play a significant role in generating
hydrologic response for a large storm event, in basins sized
8–623 km2. Emmanuel et al. (2015) investigated the impacts
of spatial rainfall variability on hydrological response using a
model simulation approach and found significant dispersion
in results obtained for events for different simulation scenar-
ios, showing the need for studying larger sets of events to
derive robust general conclusions. Modeling studies reported
in the literature have remained inconclusive with respect to
the interactions between rainfall and catchment scales (Og-
den et al., 2011; Morin et al., 2006; Nicotina et al., 2008;
Rafieeinasab et al., 2015). This emphasizes the importance
of using field observations to corroborate preliminary con-
clusions drawn from model simulations.

In this study, we extracted a catalog of 279 flood events
from 15 years of high-quality flow observations, in five
nested (semi)urbanized basins in Charlotte region, North
Carolina (US). By flood events we understand the set of
events associated with the top five largest peak flows per
year, on average. The term “flood response” is used to re-
fer to hydrological response associated with these high flow
events, on the (sub)catchment scale. In the catchments we
investigated, it is hard to distinguish between “bank-full”
flow and inundating flows, since channels and natural flood-
plains were heavily modified as a consequence of urbaniza-
tion. As a result, what used to be considered bank-full flow
in a natural channel could be considered flooding (of pri-
vate properties, gardens) in the urbanized context (Turner-
Gillespie et al., 2003). Observational resources for the Char-
lotte metropolitan region are exceptionally rich (e.g. Smith
et al., 2002; Wright et al., 2013). The region is covered by
two National Weather Service WSR-88D (Weather Surveil-
lance Radar-1988 Doppler) radar instruments, both of which
were deployed in 1995. A dense network of rain gauges and
stream gauges was installed by the US Geological Survey

(USGS) in 1995. We analyze the influence of spatial scale,
position and movement of storms relative to the flow-path
network as well as interactions with spatial distribution of
imperviousness on urban flood response. We aimed to ad-
dress the following questions.

– How does rainfall scale interact with basin scale in de-
termining urban flood response? We use fractional cov-
erage to express the relation between rainfall scale and
basin scale and to investigate the dependencies of flood
peak magnitude and lag time on rainfall scale.

– Does the position of a storm in relation to the flow-path
network influence flood response? We use the concept
of rainfall-weighted flow distance (RWD) to identify the
position of a storm relative to the flow-path network and
analyze whether storms concentrated in the upstream
part of the catchment are associated with significantly
different responses compared to storms concentrated in
the center or near the basin outlet.

– How does storm direction and velocity in relation to
the flow-path network influence flood response? We use
first-order differences in RWD to characterize storm
movement and investigate if storms passing over the
basin in the downstream direction lead to significantly
different hydrological responses compared to storms
moving in the upstream direction and storms moving
perpendicular to the main flow direction.

– How does the position of a storm in relation to the spa-
tial distribution of imperviousness influence flood re-
sponse?

This paper is organized as follows: in Sect. 2, the case
study area, datasets and methods used in this study are in-
troduced. Results are presented and discussed in Sect. 3, fol-
lowed by summary and conclusions in Sect. 4.

2 Data and methods

2.1 Study region, rainfall and flow datasets

The data used in the study were collected at five USGS
stream gauging stations in Charlotte-Mecklenburg county,
North Carolina. Gauging stations are located at the outlet of
hydrological basins that range from 7.0 to 111.1 km2 in size.
The area is largely covered by low- to high-intensity urban
development, covering 60 to 100 % of basin areas. The per-
centage of impervious cover varies from 25 % in the least
developed to 48 % in the most urbanized basin covering the
city center of Charlotte. Figure 1 shows a map with the loca-
tion of the area, catchment boundaries and location of stream
gauges used in the analysis. High-resolution (30 m) grid-
ded datasets were used for terrain elevation (National Map
of USGS, http://viewer.nationalmap.gov/), impervious cover,
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Figure 1. Location of Little Sugar Creek catchment (c), topography (a), land use and land cover (b), and location and boundaries of subbasins,
including locations of flow gauges and the location of rainfall radar.

land use and land cover (LULC, from National Land Cover
Dataset NLCD, available at: http://www.mrlc.gov/).

The focus of this was Little Sugar Creek catchment, up-
stream of the flow gauge at Archdale, with a total drainage
area of 111 km2. Additionally, we used data from basins
nested within the main basin, sized 7.0, 13.3, 31.5 and
48.5 km2. Stream gage data were collected at 5 to 15 min in-
tervals over the period 2001–2015. For this study, all flow
data were linearly interpolated 1 min values and converted to
UTC time. Gauges measure water depth using pressure trans-
ducers, using an accuracy standard set by the USGS Office
of Surface Water for stage measurement at approximately
0.01 foot (ft) or 0.2 percent of the effective stage. Flows are
derived from stage–discharge curves that were established
based on protocols developed by USGS and include man-
ual flow measurements during site visits performed by USGS
staff. As part of this procedure, stage–discharge curves are
checked and recalibrated during site visits several times per
year. More information on gauge data and field measure-
ments is available at http://waterdata.usgs.gov/nc/nwis. Flow
datasets for the Charlotte region are of exceptionally high
quality and consistency as data collection protocol and gauge
locations have remained unchanged over decades.

A summary of basin characteristics in Little Sugar Creek
catchment is provided in Table 1. (Sub)basin areas range
from 7.0 to 111.1 km2, with impervious cover from 23.9 to
48.2 % and urban land use (excluding parks and lawns) cov-
ering 47.1 to 79.1 % of the basin area. Upper Little Sugar
(Upper LSugar hereafter) is the most urbanized basin, cov-

ered by the urban core of the city of Charlotte. Upper and
lower Briar (hereafter Upper Briar and Lower Briar) are
the least urbanized basins, with impervious cover of 23.9
and 24.7 % respectively; Little Hope (LHope) is the small-
est basin in size. Maximum flow distance along the flow-path
network varies from 49 km for the smallest to 213 km for the
largest basin. Basin compactness, computed as the ratio of
basin area over perimeter squared, is highest for Little Hope
and lowest for Upper LSugar, showing that the latter is the
most elongated basin. Dams have been implemented in three
of the basins, all for recreational purposes, according to the
National Inventory of Dams (nid.usace.army.mil/cm_apex).
Storage volume varies from approximately 0.1 to 2 mm (dam
storage volume divided by basin area).

Based on data from the USGS flow datasets, we es-
tablished a catalog of flood events, based on “peak-over-
threshold” selection such that we have, on average, five
events per year over the period 2001–2015. Since radar rain-
fall data were only available for the summer season, April to
September, events were extracted exclusively for this period.
Flood events are local maxima in discharge for which there
is not a larger discharge in a time window of 12 h centered on
the peak time. Events with incomplete rainfall or discharge
data were excluded from the dataset. This resulted in a cata-
log of 50 to 69 storm events per basin (see Table 1).

Rainfall amounts were computed for the time period as-
sociated with each of the flood events, based on radar rain-
fall data. A total of 15 years (2001–2015) of high-resolution
(15 min, 1 km2) Hydro-NEXRAD radar rainfall fields were
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Table 1. Summary of hydrological basins in the Little Sugar Creek catchment: basin area (km2), imperviousness (%), slope (–), land use
coverage (high intensity, medium intensity, low intensity urban development) (%), maximum flow distance (km), number of dams regulating
stormwater flows (–), number of POT flood events used for analysis (–).

Name USGS Drainage Slope Max. flow Basin com- Impervi- Land use coverage (%) No. of No. of
ID area distance pactness ousness high int. med. int. low int. dams events

(km2) (–) (km) (–) (%) (–) (–)

Little Hope 02146470 7.0 2.2 49 2.6 32.2 9.3 9.4 48.5 0 54

Upper 0214642825 13.3 1.9 58 2.3 23.9 3.6 9.3 34.2 1 50
Briar

Upper 02146409 31.5 2.2 128 1.4 48.2 22.5 24 32.6 0 69
Little Sugar

Lower 0214645022 48.5 2.4 168 1.6 24.7 4.5 9.9 32.8 5 54
Briar

Lower 02146507 111.1 2.4 213 1.6 32.0 10.3 14.1 32.8 8 52
Little Sugar

available for this study, based on volume scan reflectivity
observations from the NWS-operated Weather Surveillance
Radar 1988 Doppler (WSR-88D) radar in Greer, South Car-
olina (radar code KGSP, see Fig. 1c). The Hydro-NEXRAD
processing system was developed to generate radar rainfall
estimates for hydrologic applications by converting three-
dimensional polar-coordinate volume scan reflectivity fields
from NWS WSR-88D radars into two-dimensional Carte-
sian surface rainfall fields (Krajewski et al., 2011). The
standard convective rainfall–reflectivity (Z–R) relationship
(R = aZb, where a = 0.017, b = 0.714; R is rain rate in
millimeters per hour, Z is radar reflectivity in millimeters
to the power six per cubic meter), a 53 dBZ hail threshold,
and several standard quality control algorithms are used (see
Seo et al., 2011 for more details). No range correction al-
gorithms are used in this study. The dataset has been exten-
sively validated in Wright et al. (2014b) and used for rain-
fall frequency analysis in Wright et al. (2013). Mean field
bias correction of the radar rainfall is done on the daily scale
using 71 rain gages from the Charlotte rain gauge network
(CRN) (see Wright et al., 2014b). Radar-based rainfall esti-
mates captured rainfall variability on timescales of 5–15 min
based on the sampling resolution of the radar beam, and
space scales of 1 km2. We used rainfall data at a temporal
resolution of 15 min to avoid sensitivity to sampling error on
the 5 min timescale. Radar rainfall data were spatially resam-
pled at 30 m resolution using inverse-distance interpolation
between radar pixel centroids, to enable computation of rain-
fall redistribution relative to the flow-path network and im-
perviousness, within the radar pixel (as will be explained in
the next section). Basin-average rainfall rates were also com-
puted, based on spatial aggregation of rainfall values over
1 km2 pixels within the catchment boundaries of the individ-
ual basins (percent of each 1 km2 grid in the basin was com-
puted for pixels overlapping catchment boundaries). While
15 min estimates derived from 5 min radar sampling may

smooth some of the rainfall variability, especially for fast-
moving storms, they sufficiently capture the rainfall infor-
mation relevant for this study, i.e. minimum, mean and max-
imum distance of storms relative to the outlet and movement
of storms relative to the flow-path network.

2.2 Methods

2.2.1 Hydrograph and basin average rainfall
characteristics

The following rainfall metrics were defined per event, based
on basin-average rainfall rates derived from radar rainfall
data at 15 min, 1 km2 resolution.

– Basin-average rainfall rate (mm h−1):

Rb(t)=

T∫
0

R(t,x)dx, (1)

where Rb(t) is the basin-average rainfall rate at times t

(mm h−1); R(t,x) is the rain rate at pixel x (1× 1 km2)
at time t (time step is 15 min), and T is the time period
of the selected event, from 12 h before the time of the
maximum peak flow for a storm event until 12 h after
the time of peak flow.

– Rainfall duration Rd (hours), duration of rainfall above
a minimum threshold of 1 mm h−1 within the rainfall
event:

Rd =

T∫
0

I (Rb(t) > 1)dt, where I (Rb(t,x) > 0)

=

{
1 for Rb(t,x) > 1mmh−1

0 otherwise.
(2)
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– Total rainfall depth per event (mm):

Rb,tot =

T∫
0

Rb(t). (3)

– Maximum 15 min rainfall intensity (mm h−1):

Rb,max =max
{
Rb(t) : t ∈ [0,T ]

}
. (4)

The following metrics were used to analyze relationships
between rainfall and hydrologic response; flow values were
normalized by basin area and expressed in cubic meters per
second per square kilometer (m3 s−1 km−2), to allow com-
parison among different basins.

– Maximum normalized peak flow (m3 s−1 km−2):

Qmax =max
{
Q(t)A−1

: t ∈ [0,T ]

}
, (5)

where Q is the instantaneous flow observation, at 1 min
intervals (m3 s−1); A is the basin area (km2).

– Total normalized runoff volume (m3):

Qtot =

T∫
0

Q(t)A−1dt. (6)

– Flood event duration (hours): TQ, defined as the
interval between the time when the unit hydro-
graph continuously rises above 0.05 and falls below
0.01 m3 s−1 km−2. Thresholds were established based
on visual inspection of the hydrographs and work well
for flood events with a single peak (or events separated
from other flood peaks by at least 6 h). For flood events
with multiple peaks (i.e. flood peaks that are either pre-
ceded or followed by another flood peak within a short
time, e.g. 1 h), these thresholds can result in anoma-
lously long event durations that are not representative
of hydrological response behavior. For these events, we
manually determined the start and end time for each of
the “multi-peak” events by visually inspecting the hy-
drographs. We further checked the duration for “single-
peak” events through visual inspections, to ensure con-
sistency in the definition of event duration.

– Lag time (hours): Tl, defined as the time difference be-
tween basin-average rainfall peak and maximum peak
flow, computed from the time distance between the time
of peak flow and time of basin-average maximum rain-
fall intensity during the preceding 12 h time period. In
our initial analyses, we used two methods to compute
lag times, based on peak-to-peak and on distance be-
tween centroids of hyetograph and hydrograph. The lat-
ter resulted in a large number of negative lag time val-
ues, associated with events with multiple rainfall and/or
peak flows. After visual inspection of hyetographs and
hydrograph peaks, we decided that peak-to-peak time
gave a better representation of the response between
rainfall and peak flows for most events, and hence we
decided to stick to this lag time definition in our analy-
ses.

– Runoff ratio (–): normalized runoff divided by total
basin-average rainfall over the duration of the flood
event (TQ).

– Peak ratio (–): normalized peak flow (flow divided by
basin area) divided by rainfall peak intensity.

2.2.2 Rainfall spatial characteristics: spatial
variability, fractional coverage and
rainfall-weighted flow distance

We used fractional coverage of the basin by rainfall above a
given threshold to analyze the influence of rainfall scale in re-
lation to basin scale on hydrological response. Additionally
we used the concept of rainfall-weighted flow distance, as
first introduced by Smith et al. (2002). RWD provides a rep-
resentation of rainfall variability relative to a distance met-
ric imposed by the flow-path network. The methodology has
been used in multiple previous studies (Smith et al., 2002,
2005; Zoccatelli et al., 2011; Nikolopoulos et al., 2014; Em-
manuel et al., 2015). It represents the position of a storm
relative to the flow-path network and is used to analyze
how storm position and movement influence hydrological re-
sponse.

Rainfall fractional coverage (–) was computed as follows:

Rc(t)=max
{

1
A

∫
A

I (R(t,x))dx

}
, (7)

where I (R(t,x)) is the indicator function and equals 1 when
R(t,x)>r or 0 otherwise; Rc(t) is the maximum portion of
basin area receiving rainfall equal to or exceeding r mm h−1

rainfall. We used a threshold of r = 25 mm h−1, represen-
tative of high-intensity rainfall. This threshold corresponds
with the 1 in threshold that is used by the flood hazard com-
munity in US, specifically the National Weather Service, as
an index for potential flash flooding. It has also been used
previously in the literature to investigate the influence of
storm core versus overall rainfall (e.g. Syed et al., 2003).
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Rainfall-weighted flow distance (RWD(t), in m) was com-
puted as follows:

RWD(t)=

∫
A

w(t,x)d(x)dx, (8)

where distance function {d(x);x ∈ A} is the flow distance
from point x within the basin to the outlet of the basin and
w(t,x) is the rainfall weight function:

w(t,x)=
R(t,x)∫

A

R(t,x)dx. (9)

RWD is normalized by maximum flow distance in the net-
work, as follows:

D(t)=
1

dmax

∫
A

w(t,x)d(x)dx, (10)

where D(t) is the rainfall-weighted flow distance, normal-
ized by maximum flow distance (–), dmax = {d(x);x ∈ A},
maximum flow distance in the flow-path network (m).

The random variable D(t) takes values from 0 to 1: low
values of D(t) are associated with rainfall that is spatially
concentrated near the outlet, high values with rainfall con-
centrated near the headwaters of the basin. For uniformly
distributed rainfall, all weights across the basin are equal and
D(t) represents the mean flow distance imposed by the flow-
path network:

d =

∫
A

d(x)dx. (11)

Normalized, rainfall-weighted flow distances were com-
puted per time step as well as for the total accumulated rain-
fall per storm event. The first provides information on storm
movement over the basin relative to the flow-path network
and combines both temporal and spatial rainfall variation
(Smith et al., 2002), while the latter focuses on the spatial
aspect of rainfall distribution, summarizing it for the total
accumulated rainfall per storm event (Smith et al., 2005).

RWD dispersion was computed, to provide an indication
of whether spatial rainfall variability as imposed by the flow-
path network is unimodal or multimodal. The normalized
RWD dispersion (–) was defined as follows (Smith et al.,
2005).

S(t)=
1
s


∫
A

w(t,x)
[
d(x)− d

]2
dx


1
2

(12)

where s is the dispersion for uniform rainfall:

s =


∫
A

[
d(x)− d

]2
dx


1
2

. (13)

RWD dispersion takes the value 1 for uniform rainfall;
values below 1 are associated with unimodal spatially dis-
tributed rainfall and values above 1 represent multimodal
spatially distributed rainfall peaks in relation to the flow-path
network.

To further investigate the influence of spatial distribution
of urbanization on urban flood response, we computed nor-
malized RWD strictly for pixels with impervious cover larger
than 80 %, classified as high-intensity development in the
NLCD dataset. Thus, imperviousness-weighted, normalized,
rainfall-weighted flow distance (DI (t)) was computed as fol-
lows:

DI (t)=
1

dmax

∫
A

I (x)w(t,x)d(x)dx, (14)

where I (x) is an impervious indicator and takes value 1 for
pixels with impervious cover > 80 % and 0 for pixels with
impervious cover < 80 %.

2.2.3 Summary statistics and correlation analysis

Metrics associated with normalized RWD are sensitive to the
length of the time window over which they are computed
(Smith et al., 2002; Nikolopoulos et al., 2014). We used a
range of time windows of x h rainfall, x varying from 0.5 to
3 h, corresponding to the timescales of storm duration and lag
time for the largest two basins (median storm durations 3 and
3.5 h, median lag times 1.7 and 2.0 h respectively). Results
based on a 2 h window are shown in Sect. 3. The time win-
dow was centered over the time of event-maximum rainfall
intensity. The following summary statistics were retained for
normalized RWD: mean, minimum, maximum, coefficient
of variation (CV) and gradient as well as RWD for event-
total accumulated rainfall. We analyzed time-varying spa-
tial coverage by the storm core (> 25 mm h−1), 1Rcov/1t ,
in relation to basin-average rainfall 1R/1t to see how much
of change in rainfall intensity is associated with change in
storm core coverage of the basin. We analyzed 1R/1t ver-
sus 1RWD/1t to see how change in rainfall intensity relates
to movement of the storm relative to the flow-path network.
Correlation analyses were performed for all combinations of
metrics associated with basin-average rainfall, flow hydro-
graph, spatial rainfall variability and imperviousness distri-
bution, based on Spearman rank correlations. Correlations
were tested for significance at the 5 % level (p value > 0.05,
based on t test).

3 Results and discussion

3.1 Rainfall and hydrograph characteristics of the
selected events

In Fig. 2, box plots of rainfall and flow characteristics are
shown for the catalog of selected events, for the five basins.
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Figure 2. Box plots showing 10, 25, 50, 75 and 90 % quantiles of characteristic rainfall and flow values for all events, per basin: total basin-
average rainfall depth (a), total normalized runoff volume (mm) (b), max 15 min rainfall intensities (mm h−1) (c), normalized peak flows
(m3 s−1 km−2) (d), rainfall duration in hours (e), lag time (f). Box plots are based on 50 to 69 events per basin, as listed in Table 1.

The plots show that basin-average rainfall depth was of the
same order of magnitude for all basins, with median val-
ues varying between 32.2 and 37.0 mm. Runoff volumes are
slightly lower for the smallest two basins in terms of their
median values and less skewed. Peak rainfall intensities show
stronger variation with basin size: median for peak 15 min
rainfall intensity decreases from 41.7 mm h−1 for the small-
est to 31.2 mm h−1 for the largest basin. Peak rainfall in-
tensity varied by factor of 10 approximately across the set
of selected peak events per basin (9.5 to 87.6 mm h−1 for
Lower LSugar; 9.3 to 83.2 mm h−1 for Lower Briar; 9.7
to 91.7 mm h−1 for Upper LSugar; 8.8 to 90.7 mm h−1 for
Upper Briar; 10.4 to 118.5 mm h−1 for LHope). Figure 2d
shows large differences in peak flows between the basins,
as indicated by 25–75 and 10–90 % ranges per basin. Lower
Briar has lowest median normalized peak flows and narrow-
est quantile ranges, tied to a combination of large area size
and low impervious cover compared to other basins, result-
ing in strongly smoothed flood response. The smallest basin,
LHope, has a strongly skewed peak flow distribution, with
the highest median as well as the largest quantile ranges of
normalized peak flow values compared to the other basins.
The lowest flow variability is found for the most urbanized
basin (size 31.5 km2), which suggests a smoothing effect of
imperviousness on flow variability. Upper LSugar, the most
impervious basin, shows a high median peak flow value rel-

ative to its basin size and quantile ranges similar to the much
smaller UBriar basin. This is confirmed by coefficient of vari-
ation values of the flow distributions per basin: 0.37 and 0.
46 for Upper and Lower LSugar; 0.65, 0.46 and 0.44 for
LHope, Upper and Lower Briar. Similar results were found
for a wider range of basins in this region in (Ten Veldhuis
and Schleiss, 2017), who concluded that for the basins in the
Charlotte catchment, flow regulation and peak flow restric-
tions induced by capacity constraints result in an overall ef-
fect of peak flow reduction associated with urbanization. The
only quantitative information available to us about stormwa-
ter infrastructure in the Charlotte catchment is the number of
dams, which is low for all 5 catchments (0, 1, 0, 5 and 8 for
the smallest to largest catchment). In a recent study by (Bell
et al., 2016), additional information was collected for basins
in this region. They computed the percentage area of miti-
gated area by detention structures: 5.5, 5.8 and 3.2 % for Lit-
tle Hope, Upper Briar and Upper Little Sugar, respectively.
These numbers show that the impact of detention structures
on hydrological response is likely to be very small.

Flow peaks for our event catalog (maximum flow peaks
per basin were 3.4 and 10.4 m3 s−1 km−2, respectively) were
associated with 100-year return periods in 1990 and 1992,
respectively, decreasing to 8 and 20 years in 2007, following
(Villarini et al., 2009), who reported flood frequency distri-
butions for Lower LSugar Creek and for LHope Creek, based
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on a generalized additive model fitted to annual flood peaks
in these 2 basins. For rainfall, we compared return inter-
vals of maximum 15 min rainfall intensities (over 1× 1 km2

with point rainfall frequency estimates provided by NOAA
(NOAA, 2017); no frequency estimates were available on a
1× 1 km2 scale. Maximum values per event varied from 8.8.
to 132 mm h−1, associated with return intervals of less than
1 year up to 25 years on the point scale.

Rainfall duration varied from approximately 0.5 to 14 h,
representing a wide range from concentrated, single-peak
events to prolonged, multi-peak events (Fig. 2e). Distribu-
tions show large quantile ranges (2.5 to 4 h, 25–75 % range)
and are highly skewed. Values in the upper percentiles were
mainly associated with storm events with multiple rainfall
peaks. Lag times (Fig. 2f), computed as time between max-
imum rainfall intensity and peak flow, are strongly tied to a
combination of basin area size and impervious cover. Upper
LSugar, the most urbanized basin, has the shortest median lag
time (26 min); the two largest basins have median lag times
of 1.7 and 2 h, whereas Lower LSugar has a slightly shorter
median lag time than Lower Briar, despite its larger size. This
confirms findings in an earlier study by Smith et al. (2002),
who found that peaks at Lower LSugar are mostly linked
to discharge from the highly urbanized Upper LSugar basin.
Lag time values in the upper percentiles are generally asso-
ciated with multi-peak events, where multiple rainfall peaks
caused one or more peak flows over a prolonged period of
time. Runoff ratios vary mainly with imperviousness degree:
the largest median runoff ratio was found for Upper LSugar
(0.51), followed by Lower LSugar (0.44), Lower Briar (0.38)
and the two smallest basins, Upper Briar (0.35) and LHope
(0.34). Variability in runoff ratio, expressed in terms of co-
efficient of variation, is low for Upper and Lower LSugar
basins compared to the other basins (figure not shown). This
effect is even stronger for peak-to-peak ratios: variability in
terms of CV is very low for the more impervious basins (0.5
and 0.6 respectively for Upper and Lower LSugar) compared
to the other basins (CV values 5.1, 4.2 and 3.7 for LHope,
Upper and Lower Briar, respectively).

3.2 Spatial rainfall variability and fractional basin
coverage

Spatial rainfall variability was analyzed based on the coeffi-
cient of variation of rainfall intensities per time step. Mean
CV values vary from 1.24 for the smallest to 3.51 for the
largest basin, showing that rainfall tends to be more spatially
uniform for smaller basins compared to larger basins. Spa-
tial variability is high compared to temporal rainfall vari-
ability based on basin-average rainfall, where CV values
vary between 0.94 and 1.03 (no clear relation with basin
size). This is partially a result of the difference in aggre-
gation scales: basin-average rainfall is aggregated over 7 to
111 km2 and 15 min, while spatially variable rainfall is ag-
gregated over 1 km2 and several hours of rainfall duration.

Additionally, spatially varied rainfall data include far more
zero values, which leads to strongly skewed distributions, as
is confirmed by large differences between mean and median,
while these differences are small for temporal rainfall vari-
ability. Still, these results show that rainfall for the selected
flood events tends to be highly spatially variable. Moreover,
spatial variability changes over the duration of events, more
strongly so for the larger than for the smaller basins. This
is a characteristic of hydroclimatic conditions in this region
northeast of the Appalachians, as confirmed for instance by
Zhou et al. (2017). Similar results were found by Lobligeois
et al. (2014), who analyzed spatial variability of storm events
associated with the largest 20 flood events in 181 basins
in France. They showed that spatial rainfall variability was
strongly dependent on hydroclimatic regions, with high vari-
ability occurring in the Mediterranean area, associated with
summer convective storms, and low variability over much of
the northern and western regions of France.

Figure 3 shows box plots and empirical histograms of
fractional rainfall coverage, i.e. the maximum percentage
of basin area covered by rainfall intensities larger than
25 mm h−1 during storm events, representing the most in-
tense core of the storm. The box plots show that storm cores
exceed basin scale for 43 and 23 % of the storms in the
two smallest basins (7 and 13.3 km2, respectively). For the
larger basins this decreases to 10, 4 and 2 % (for basin sizes
31.5, 48.5 and 111.1 km2, respectively). Similar results were
shown by Smith et al. (2002) and Syed et al. (2003) for the
same range of (sub)basin sizes, for 5 storms using radar rain-
fall data and for 300 summer storms in Arizona using in-
terpolated rain gauge data, respectively. Another interesting
feature appears in the empirical histograms: for the smaller
basins, fractional coverage values tends to be either small
compared to basin size (coverage 0–20 %) or approaching
basin size (coverage 80–100 %). Zhou et al. (2017) showed
that the hydro-climatology of flood events in this region re-
flects a mixture of flood agents, consisting of thunderstorms
and tropical cyclones. The largest fraction of events in the
upper tail of flood distributions for basins in this area is
associated with organized thunderstorms, which could ex-
plain the spatially concentrated nature of storm cores over
LSugar Creek subbasins. Table 2 shows the degree of over-
lap in selected storm events between the five (sub)basins. The
table shows that 54 to 69 % of events in the largest basin
(Lower LSugar) is represented in the flood event catalog for
the smaller basins (first row), indicating that these events
are likely to have been large-scale events, affecting the en-
tire basin. Overlap between flood-producing events in Upper
Briar and Lower Briar is 59 %. The lowest overlap occurs for
LHope, indicating that a substantial part of flood events in
this smaller basin is associated with a different collection of
storm events compared to the other basins. As we can see
in Fig. 2, a higher degree of overlapping storms between
basins does not result in more similar rainfall or flow pat-
terns: rainfall and flow characteristics are as similar or dis-
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Figure 3. Box plots showing 10, 25, 50, 75 and 90 % quantiles (a) and empirical histograms (b) of fractional basin coverage by maximum
rainfall intensities > 25 mm h−1, representative of the storm core, for the five basins in the Little Sugar Creek catchment.

Table 2. Overlap in top flood producing storms for the five basins
in Little Sugar Creek catchment, absolute numbers of events.

Basin LLSugar LBriar ULSugar UBriar LHope
name

LLSugar 52 36 36 32 28
LBriar 54 30 32 21
ULSugar 69 30 34
UBriar 50 20
LHope 54

similar for Upper compared to Lower LSugar Creek as they
are for LHope and UBriar or other sets of non-overlapping
basins. Even if flood events in different catchments are gen-
erated by the same rainfall events, the characteristics of the
rainfall as it affects the catchments is very different.

Figure 4 shows scatter plots of fractional coverage versus
peak flow. The plots show that there is a tendency for peak
flows to increase with fractional coverage and that the top
peak flow values are generally associated with 100 % basin
coverage by the storm core. This confirms results found by
Smith et al. (2002), who concluded that the relation between
storm scale and basin was an important driver for flood re-
sponse, and Syed et al. (2003), who found that areal coverage
of the storm core was better correlated with runoff than area
coverage of the entire storm. Our results show that for the
urbanized basins in Little Sugar Creek, some of the highest
peak flows (top 10 events in flood catalog) occur for frac-
tional coverage well below 100 %. This could be associated

with urbanization effects changing the upper tail of the peak
flow distribution, as was suggested by Zhou et al. (2017),
resulting in a different representation of storm events in the
highest quantile peak flows.

We analyzed relationships between fractional coverage
and rainfall intensity to see whether changes in basin-average
rainfall are strongly tied to change in fractional coverage by
the storm core, associated with the storm core moving into
or out of the basin. Spearman rank correlation between first-
order differences in rainfall intensity and rainfall coverage
with time (1R/1t versus 1Rcov/1t) were significant for
all basins, with correlation values varying between 0.38 and
0.69. This confirms that for the selected set of largest flow
events in these basins, change in fractional coverage by the
storm core is an important driver for change in basin-average
rainfall intensity.

3.3 Rainfall position and movement relative to
flow-path network and effects on hydrological
response

An important aim of this study was to investigate how po-
sition and movement of rainfall in relation to the flow-path
network, influences hydrological response. Figure 5 shows
time-series of basin-average rainfall, fractional coverage by
storm core (> 25 mm h−1) and normalized RWD and RWD
dispersion for two selected events in Lower LSugar basin.
The two events (Fig. 5a and b) represent events from the top
10 highest peak flows in this basin. The third row in the fig-
ure illustrates development of normalized RWD as a function
of time, the dashed line shows the flow distance for uniform
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Figure 4. Scatter plots of basin fractional coverage by rainfall intensities > 25 mm h−1 versus peak flow, per event, for the five basins in Little
Sugar Creek catchment and associated values for Spearman rank correlation coefficients.

rainfall, 0.53. The figure shows that normalized RWD values
vary in a relatively small range around the mean: mean values
are 0.41 and 0.40, for a 3 h time window centered on the rain-
fall peak. Associated coefficient of variation values are 0.30
and 0.23. This indicates that, on average, rainfall was concen-
trated slightly closer to the basin outlet compared to uniform
rainfall. Normalized RWD dispersion shows whether rainfall
is distributed uniformly, unimodally or multimodally with re-
spect to the flow-path network (see also Eq. 12). Mean nor-
malized RWD dispersion values are 0.83 and 0.93, for a 3 h
window centered on the rainfall peak. Maximum normalized
RWD dispersion is 1.04 for the first and 1.39 for the sec-
ond event. This indicates that on average rainfall was mildly
concentrated in space compared to uniform rainfall, the first
event being more unimodal and concentrated in space dur-
ing the peak of the storm and the second event breaking into
a multimodal structure in between the two rainfall peaks.
Storm movement relative to the flow-path network can be
derived from the time series of normalized RWD, by analyz-
ing gradients in RWD over time. As Fig. 5 shows, normal-
ized RWD was more or less constant during the period of
the most intense rainfall for the first event (cf. period with
rainfall intensities > 25 mm h−1), indicating that storm posi-
tion relative to the flow-path network changed little during
the event. For the second event, RWD decreased from 0.64
to 0.24, the main decrease happening at the same time rain-
fall intensities decreased. This implies that the storm moved
into the basin at the upstream end of the flow-path network
and moved towards the outlet at the end of the event, to about

0.24 of the maximum flow distance (storm centered over the
outlet corresponds to flow distance value of zero).

3.3.1 Relationship between storm position relative to
flow-path network and hydrological response

Figure 6 shows box plots of normalized RWD values for
event-total accumulated rainfall depth (Fig. 6a) and for the
mean and gradient of 2 h temporally varied RWD (Fig. 6b
and c) for the five basins. Results show that differences in
normalized RWD between events tend to be small: 25–75 %
ranges smaller than 0.1 for many of the basins. Differences
increase with a combination of basin size and shape: the
largest 25–75 and 10–90 % ranges occur for Upper LSugar,
the most elongated basin (see compactness values Table 1).
This effect is emphasized for normalized RWD dispersion,
where median values are lower and percentile ranges are
much higher for the larger and elongated basins than for the
two smallest basins (Fig. 6c). These results show that spatial
rainfall variability is strongly smoothed by the flow-path net-
work and that distribution of rainfall-weighted flow distances
tends to be near uniform for the smallest basins. This sug-
gests that the position of the storm relative to the flow-path
network is likely to affect hydrological response, mainly in
the larger basins. Relatively more spatially unimodal events
occur in the larger and more elongated basins (Fig. 6c), yet
this does not result in large differences in position along the
flow-path network, as indicated by normalized RWD.
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Figure 5. Time series of basin-average rainfall, flow, portion of basin covered by high-intensity rainfall (> 25 mm h−1), normalized
rainfall-weighted flow distance (RWD) and RWD dispersion in Lower LSugar, for two events that occurred on 16 August 2009 (a) and
12 July 2010 (b).

Figure 7a shows a scatter plot of RWD computed for total
accumulated rainfall depth per storm event versus lag time.
For the smaller basins, no clear signal can be observed, yet
for the larger basins (Lower Briar and Lower LSugar), lag
time was significantly and positively correlated with storm-
total RWD. This indicates that in these basins, storm events
concentrating in the upstream parts of the flow-path net-
work are associated with longer lag times. No significant
correlations with peak flow were found, as shown in Ta-
ble 3, which summarizes Spearman rank correlation values
between storm-total RWD (RWDtot) and hydrological re-
sponse characteristics, peak flow and lag time.

3.3.2 Relationship between storm movement relative to
flow-path network and hydrological response

In this section we investigate how the combination of storm
position and movement in time influence hydrological re-
sponse. We analyzed correlations with peak flow and lag time
for minimum, mean, maximum and gradient in normalized
RWD over a range of time windows. Table 3 summarizes
correlation values for peak flow and lag time, in relation to
rainfall depth, rainfall intensity and RWD. The highest cor-
relations were found for rainfall depth and maximum inten-

sity; significant correlations were found for mean RWD and
peak flow (LHope, ULSugar, LLSugar), for mean RWD and
lag time (LBriar), and for gradient in RWD with lag time
(UBriar, LLSugar). Figure 7b shows a scatter plot of maxi-
mum RWD versus peak flow; the plot shows there is no clear
relationship between RWDmax and flow peak in LHope,
UBriar and LBriar, either because the scale of these basins
is too small compared to the scale of most storms (LHope)
or because spatial rainfall variability is strongly smoothed
by the basin (UBriar, LBriar). In ULSugar and LLSugar, the
highest peak flows occur for storms that concentrate over
the central and downstream parts of the basin, resulting in a
negative correlation. A possible explanation for the negative
correlation between RWD and peak flow for the Upper and
Lower LSugar basins is the spatial distribution of impervious
areas associated with the urban core of Charlotte. This will
be analyzed in more detail in Sect. 3.4. No significant corre-
lations between RWD and peak flow were found for Upper
and Lower Briar, which suggests that spatial rainfall distribu-
tion does not influence peak flows, possibly due to a strong
smoothing effect of the flow-path network in these basins.
Figure 7c shows that large peak flows tend to occur for gradi-
ents near zero, i.e. slow-moving, near-stationary storms (rel-
ative to the flow-path network) or moving storms of larger
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Figure 6. Box plots of RWD values for storm total rainfall (a); mean RWD for a 2 h window (b) and RWD dispersion for a 2 h window (c),
for all events, for the five basins; scatter plot of mean RWD versus peak flow (d), for Lower LSugar, distinguishing between events with
single and with multiple flow peaks. Red circles in box plots indicate RWD associated with spatially uniform rainfall.

Table 3. Summary of correlations between both peak flow (Qpeak) and lag time (Tlag) and total basin-average rainfall (Rtot), peak rainfall
intensity (Rmax), normalized RWD associated with storm event total accumulated rainfall (RWDtot), mean normalized RWD for a 2 h time
window (RWDm) and gradient in RWD for a 2 h time window (RWDgrad).

Basin Peak flow Lag time

Name vs. Rtot vs. Rmax vs. RWDtot vs. RWDm vs. RWDmax vs. Rtot RWDtot vs. RWDm vs. RWDgrad

LHope 0.30∗ 0.40∗ 0.07 0.31∗ 0.09 0.39∗ 0.20 0.18 −0.08
UBriar 0.32∗ 0.33∗ 0.14 −0.03 −0.03 0.31∗ 0.12 −0.15 −0.37∗

ULSugar 0.49∗ 0.43∗ −0.18 −0.27∗ −0.32∗ 0.29∗ 0.05 −0.08 −0.20
LBriar 0.53∗ 0.38∗ 0.08 0.06 −0.05 0.56∗ 0.41∗ 0.25∗ −0.09
LLSugar 0.48∗ 0.32∗ −0.16 −0.29∗ −0.23 0.43∗ 0.32∗ 0.05 −0.49∗

∗ Indicates significant correlations at the 5 % level.

size than the basin area (especially for smaller basins like
LHope).

We separately investigated correlations between rainfall-
weighted flow distance and hydrological response for a sub-
set of clear, single-peak events, to exclude more complex cor-
relation patterns associated with multi-peak events. Single-
peak events tend to show slightly higher correlations com-
pared to multi-peak events, between rainfall properties or
rainfall-weighted flow distances and peak flow or lag time
(Fig. 6d). We also investigated whether correlations were dif-
ferent for small-scale storms compared to large-scale storms,

by splitting the storm catalog into events with maximum rain-
fall coverage > 25 mm h−1 above and below 50 %. Correla-
tion values for the two subsets improved for some cases, but
improvements were not consistent across different basins. Fi-
nally, we investigated correlations for a subset of the storm
event catalog, with a strong relation between storm move-
ment and rainfall-weighted flow distance, as indicated by
a strong correlation between the two, implying that change
in rainfall intensity is closely associated with rainfall mov-
ing across the basin. The number of events with significant
1Rb/1t versus 1DRw/1t correlation varied from 12 for
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Figure 7. Scatter plots for storm-total RWD (2 h window) versus lag time (a), maximum RWD (2 h window) versus peak flow (b), gradient
in RWD (2 h window) versus peak flow (c) and gradient in RWD (2 h window) versus lag time (d).

Lower Briar to 22 for Upper LSugar, i.e. 22 to 34 % of the
storm catalog. Generally, correlations with peak flow and lag
time improved, indicating that storm movement into and out
of the basin, leading to changes in basin-average rainfall in-
tensity, significantly contributes to an explanation of the vari-
ability in hydrologic response. Investigations for event sub-
sets served as a first exploration of potential multivariate rela-
tionships in the datasets. Results showed that explaining vari-
ability in hydrological response based on rainfall-weighted
flow distance is more straightforward for single-peak events
than for multi-peak events and that storm movement into and
out a basin plays a significant role in explaining variability in
hydrological response.

Table 3 shows that lag time was significantly negatively
correlated with gradient in RWD associated with storm
movement, for Upper Briar and Upper and Lower LSugar.
This implies that storms moving faster towards the basin out-
let were associated with slightly shorter lag times. Figure 7d
shows that the relationship with RWD gradient is more sub-
tle: small (near zero) gradients tend to be associated with
longer lag times, while fast-moving storms tend to be as-
sociated with short lag times. Negative correlation with lag
time is explained by negative gradients dominating over pos-
itive gradients. No significant correlations were found be-

tween dispersion of rainfall-weighted flow distance and peak
flow or lag time, showing that temporal variability in uni-
or multimodality of storm events does not have a significant
influence on hydrological response.

In this section we analyzed the influence of the position
and movement of storms relative to the flow-path network
on hydrological response. Results showed that spatial rain-
fall variability was strongly smoothed by the flow-path net-
work, confirming similar results found by Smith et al. (2005)
for a small (14.3 km2) basin. We found that, in small basins,
rainfall concentrated in the upstream part of the basins was
associated with higher peak flows, while in larger basins rain-
fall concentrated near the outlet was associated with signifi-
cantly higher peak flows. Correlations were of the same or-
der of magnitude or slightly weaker than those between to-
tal rainfall depth or peak rainfall intensity and peak flow.
This confirms results found by Smith et al. (2002), who
found that for only one of five storms they analyzed, storm
position and movement amplified peak flow. While Syed
et al. (2003) found that the importance of storm position in-
creased with basin size, this effect was not clearly visible for
the basins we investigated in our study. Slow-moving, near-
stationary storms (relative to the flow-path network) were as-
sociated with longer lag times in some but not all basins;
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Figure 8. Cumulative distribution of catchment area (a) and of impervious areas (b) as a function of distance along the flow-path network,
for the five basins in Little Sugar Creek catchment.

near-stationary storms also tend to be associated with higher
peak flows. Earlier studies have surmised sensitivity of hy-
drological response to storm position and movement to be
highest when computed over time windows equal to the basin
lag time (Zoccatelli et al., 2011; Nikolopoulos et al., 2014).
In our analyses, we found no relation between the time win-
dows for computation of storm position or movement and
basin response time.

3.4 Spatial distribution of impervious areas, spatial
rainfall variability and hydrological response

Spatial distribution of rainfall in relation to the distribution
of impervious areas in the basins is expected to have an in-
fluence on peak flow and lag time, since rainfall on impervi-
ous areas generates relatively more runoff and runs off faster
compared to pervious areas. The degree of interaction be-
tween spatial rainfall variability and spatial imperviousness
distribution is likely to depend on two factors: degree of im-
pervious cover in a basin and degree of spatial variation in
imperviousness. Figure 8a shows the cumulative distribution
of basin area as a function of distance along the flow-path
network for the five basins in Little Sugar Creek. Figure 8b
shows the cumulative distribution for impervious areas. Gra-
dients steeper than the 1–1 line indicate where impervious ar-
eas are relatively concentrated along the flow-path network.

Imperviousness is most inhomogeneously distributed for
LHope, where it is almost entirely concentrated in the up-
stream part of the basin (above 0.55 normalised distance
along the flow-path network). In Upper Briar, impervious ar-
eas are more concentrated between 0.4 and 0.6 normalized
RWD. In Upper LSugar, imperviousness is nearly homoge-
neously distributed along the flow-path network. In Lower
LSugar and Lower Briar, impervious areas are slightly more

concentrated near and just downstream of the mean flow-path
distance.

We analyzed the influence of spatial rainfall variability in
relation to the distribution of impervious areas based on a
binary weighting of normalized RWD by imperviousness,
DI (t), as described in Sect. 2.2.2. We found that differ-
ences in normalized RWD between events increased by im-
perviousness weighting only for the smallest basin, LHope,
while they remained more or less neutral for Upper Briar
and Upper LSugar and slightly decrease for Lower Briar
and Lower LSugar. This is illustrated in the scatter plots for
RWD and imperviousness-weighted RWD versus peak flow
in Fig. 9. We analyzed influence of imperviousness on hy-
drological response based on Spearman correlations among
imperviousness-weighted RWD, peak flow and lag time.
As Fig. 9 shows, relationships between imperviousness-
weighted RWD and peak flow changed little or decreased
slightly compared to those based on total basin area. The
overall effect was that correlations based on imperviousness-
weighted RWD for both peak flow and lag time were weak
and no longer significant at the 5 % level. This shows that
position of the storm relative to impervious cover within the
basins had little effect on flow peaks. This was mainly due to
imperviousness being relatively homogeneously distributed
in four of the five basins; by contrast, for LHope, Fig. 9 shows
that higher flow peaks were all associated with rainfall over
the upper part of the basin, where imperviousness is concen-
trated. Future studies covering a wider range of basin scales
and variability in impervious cover will be needed, to investi-
gate to what extent this conclusion holds for other urbanized
basins and what combinations of storm scales and impervi-
ousness distribution lead to sensitivity of peak flows to im-
pervious cover. Apart from impervious cover, the effect of
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spatial distribution of urban soils with relatively lower per-
meability than natural soils can be analyzed using the same
approach. This will provide better insights into characteristic
imperviousness cover and variability scales that determine
sensitivity of hydrological response to spatial rainfall vari-
ability.

4 Summary and conclusions

The objective of this study was to provide insights into how
spatial and temporal rainfall variability interact with catch-
ment scale and flow-path network structure to generate hy-
drological response in urbanized basins, based on extensive
observational datasets. The study comprised analysis of a cat-
alog of the largest 279 flood events extracted from 15 years
of rainfall and flow data over 5 nested basins of varying size
and degree of urban development. We analyzed rainfall cov-
erage over the basin and over impervious areas in the basin to
analyze spatial variability effects on peak flow and lag time.
We used the concept of rainfall-weighted flow distance in-
troduced by Smith et al. (2002) to analyze how storm po-
sition and movement relative to the flow-path network in-
fluenced hydrological response. The following conclusions
were drawn from the analyses.

1. Catchment scale determines the type of storm events
that produce largest peak flows at the catchment outlet:
storm events for the catalog of the largest peak flows in
the small (7 km2) basin show only 39–54 % overlap with
those for the larger basins. The largest overlap in storm
events, 69 %, is found for the two largest basins, 48.5
and 111.1 km2 in size. This confirms results reported
by Smith et al. (2013b) and Zhou et al. (2017), who
also found markedly different rainfall climatologies for
flood-producing storms in basins of different size.

2. Catchment scale determines the degree of variability in
peak flows and peak rainfall intensities for the cata-
log of largest flood events. Coefficients of variation in
peak flows vary from 0.46 for the largest to 0.65 for
the smallest basin. The lowest flow variability is found
for the most urbanized basin (size 31.5 km2), which
suggests a smoothing effect of imperviousness on flow
variability. Similar results were found by other authors
and were attributed to the effect of constraints in the
drainage network (Smith and Smith, 2015; Ten Veldhuis
and Schleiss, 2017).

3. Scale of the storm core, measured by maximum cover-
age of a basin by rainfall intensities above 25 mm h−1,
varies strongly with basin scale: for the smallest (7 km2)
basin, intense storm cores exceed basin scale for 43 %
of the storms, while 30 % of the storms cover less than
half of the basin. For the largest basin, storm cores
exceed basin scale for only 2 % of the storms and

44 % of events cover less than half the basin area. Em-
pirical histograms of rainfall coverage for intensities
above 25 mm h−1 show that for the smaller basins, up
to 31.5 km2, storm events largely fall into two groups:
large-scale events, with intense storm cores exceeding
basin-scale and small-scale events, with storm cores
covering less than 20 % of the basin.

4. Dynamics of rainfall coverage by the storm core are
an important driver for temporal variability of basin-
average rainfall. Spearman rank correlation between
first-order differences in rainfall intensity and rainfall
coverage with time (1R/1t versus 1Rcov/1t) were
significant for all basins; correlation values varying be-
tween 0.38 and 0.69. This suggests that storm move-
ment over the basin drives increases and decreases in
basin-average rainfall intensity more strongly than de-
velopment of storm cells during storm passage over the
basin.

5. There is a tendency for peak flows to increase with frac-
tional coverage and the highest peak flow values are
generally associated with 100 % basin coverage by the
storm core. This confirms results found by Smith et al.
(2002), who concluded that the relation between storm
scale and basin was an important driver for flood re-
sponse, and Syed et al. (2003), who found that areal
coverage of the storm core was better correlated with
runoff than area coverage of the entire storm. Our results
also show that for the urbanized basins in Little Sugar
Creek, some of the highest peak flows (top 10 events
in flood catalog) occur for fractional coverage well be-
low 100 %. This could be associated with urbanization
effects changing the upper tail of the peak flow distribu-
tion, as was suggested by Zhou et al. (2017), resulting in
a different representation of storm events in the highest
quantile peak flows.

6. The combination of spatial rainfall structure and flow-
path network (expressed in terms of rainfall-weighted
flow distance) plays a smaller role in explaining vari-
ability in hydrological response compared to rainfall
volume and peak intensity. This could be explained by
spatial rainfall variability having a relatively small con-
tribution to flow variability compared to climatologi-
cal rainfall variability, as shown by Peleg et al. (2017).
Another explanation is that spatial rainfall variability
is strongly smoothed by the flow-path network, as was
also shown in earlier studies for a more limited range of
observations (Smith et al., 2005).

7. The role of storm movement relative to the flow-path
network is investigated based on temporal gradients in
rainfall-weighted flow distance. Movement of storms
upstream or downstream along the main axis of the
flow-path network have no significant influence on peak
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Figure 9. Scatter plots of 2 h-mean RWD versus peak flow, for RWD based on all areas (lower x axis) and for normalized RWD weighted by
imperviousness (upper x axis), for the five basins in LSugar Creek catchment.

flows. Slow-moving, (near) stationary storms relative to
the flow-path network tend to be associated with higher
peak flows. Additionally, slow-moving storms are gen-
erally associated with longer lag times.

8. The impact of spatial variability in urban land cover on
hydrological response is investigated based on rainfall-
weighted flow distance over impervious areas. We find
that position of the storm relative to impervious cover
within the basins had little effect on flow peaks. A pos-
sible explanation is that for the largest basins, where
spatial rainfall variability is higher, imperviousness is
relatively homogenously distributed, and more smooth-
ing by the flow-path network occurs. By contrast, for the
smallest basin, where imperviousness is concentrated in
the upper part of the basins, the highest peak flows were
all associated with rainfall over this part of the basin.

Results of this study, based on 279 flood events for a range
of basin sizes, clearly show that the relation between rain-
fall and basin scales is an important driver for generating
the largest peak flows. Rainfall spatial structure and storm
movement seem to play a less important role, being strongly

smoothed by the flow-path network. Additional analyses for
a larger number of basins are needed to further look into the
role of storm position and movement in generating hydrolog-
ical response. Additionally, the influence of spatial variability
in impervious cover on peak flows and lag time needs further
investigation to better understand the interplay between the
spatial distribution of rainfall and urbanization. The role of
other spatially variable catchment characteristics like topog-
raphy and (urban) soil properties have not been considered
in this study. In a recent study by Zhou et al. (2017) the ef-
fect of antecedent watershed wetness was investigated for the
Charlotte region. They did not find a significant influence of
antecedent rainfall on flood response. Direct observations of
soil moisture content could help to shed more light on the
effect of soil moisture in urban regions and how that affects
hydrological response. The importance of variability in to-
pography, soil moisture and urbanization in relation to spa-
tial rainfall variability and climatological variability remain
important topics for future research. Future work will focus
on analyses for a larger number of basins and a larger set of
storms, including smaller, more concentrated storms relative
to the catchment scale, to investigate the role of spatial rain-
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fall variability compared to climatological rainfall variability
in explaining hydrological response.

Data availability. Flow data used in this study are open datasets
made publicly available by USGS. They are available at http:
//waterdata.usgs.gov/nc/nwis (USGS, 2016). The following is a
link to flow gauges in Mecklenburg County, used in our study:
https://waterdata.usgs.gov/nc/nwis/uv?referred_module. The radar
rainfall data used in this study are archived at Princeton University
and can be made available through the authors upon request.
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