

Objective	Implementation	Constraints
The definition of D	Defined $\forall f \in A$	The changing of it (f) is denoted by g .
The definition of g	$f'(x) = \begin{cases} 0 & (x < x_1) \\ f(x) & (x_1 \leq x \leq x_2) \\ 1 & (x > x_2) \end{cases}$ $f'(x) = \begin{cases} 0 & (x < x_1) \\ f(x) & (x \geq x_1) \\ f(x) & (x \leq x_2) \\ 1 & (x > x_2) \end{cases}$ $f'(x) = f(x)$	$\exists x_1 x_2 \in R f(x) = 0$ and $f(x) = 1$, then $(x_1 < x_2)$; $\exists x_1 \in R f(x) = 0$ and $\exists! x_2 \in R, f(x) = 1$; $\exists x_2 \in R, f(x) = 1$ and $\exists! x_1 \in R, f(x) = 0$; $\exists! x_1 x_2 \in R, f(x) = 0$ and $f(x) = 0$;
The definition of B	$B = \{h h = g(f(x))\}, B \neq \emptyset$	h is a continuous function.
The definition of topological distance D	$D = \int_a^b f_1 - f_2 $ $\forall D \notin \left\{ D D = \int_a^b f_1 - f_2 dx, \forall f_1, f_2 \in B \right\}$	$a < b, a, b \in R, a$ and b are all real numbers*; $\exists m \in R; m > D$ (D is a limited value);
Proof of positive definiteness	$D(j - j) = 0$	$\forall j \in B, j - j = 0$, then $D = \int_a^b j - j dx = 0$;
Proof of symmetry	$D(j_1, j_2) = D(j_2, j_1)$	$\forall j_1, j_2 \in B$ then, $ j_1 - j_2 = j_2 - j_1 $;
Trigonometric inequality	$ j_1 - j_3 = j_1 - j_2 + j_2 - j_3 \leq j_1 - j_2 + j_2 - j_3 $ $D(j_1, j_3) \leq D(j_1, j_2) + D(j_2, j_3)$	$\forall j_1 j_2 j_3 \in B$; $\int_a^b j_1 - j_3 dx \leq \int_a^b (j_1 - j_2 + j_2 - j_3) dx$ $= \int_a^b j_1 - j_2 dx + \int_a^b j_2 - j_3 dx$