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Supplement  

S1 Detailed model description and formulas 

The model consists of three components: (1) a snow component that simulates accumulation and ablation of snow, (2) a soil 

water component to calculate soil moisture, evapotranspiration and land runoff, and (3) a runoff component that derives total 

runoff. All modelled fluxes and states correspond to the spatio-temporal resolution of the forcing data, which in this study is 5 

a 1° x 1° latitude/longitude grid and daily time steps. 

The following describes all implemented processes and equations in detail. 

S1.1 Snow Component 

Snow storage is implemented as a simple accumulation and melt approach, which further is extended by consideration of 

sublimation and fractional snow cover. The snow storage as described by the snow water equivalent SWE [mm] at time t [d] 10 

is calculated as mass balance: 

 

𝐒𝐖𝐄𝐭 = 𝐒𝐖𝐄𝐭−𝟏 + 𝐒𝐅𝐭 − 𝐄𝐓𝐒𝐮𝐛𝐭 − 𝐌𝐭  (S1) 

 

where SWEt-1 [mm] is the snow water equivalent of the preceding time step which is increased by snowfall SFt [mm d-1] and 

reduced by the amount of sublimation ETSubt [mm d-1] and snow melt Mt [mm d-1].  15 

All precipitation P [mm d-1] is assumed to fall as snow at temperatures below 0 °C. Since precipitation estimates, especially 

during the cold season, are known for biases due to substantial under-catch (Rudolf and Rubel, 2005;Seo et al., 2010), P is 

scaled using the parameter psf to derive SF at time t: 

 

𝐒𝐅𝐭 = 𝐩𝐬𝐟 · 𝐏𝐭    | 𝐓 < 𝟎°𝐂   (S2) 

 20 

In order to incorporate sub-grid variability, the fraction of the grid cell covered by snow is computed following the H-

TESSEL approach (Balsamo et al., 2009;ECMWF, 2014): 

 

𝐅𝐒𝐂𝐭 = 𝐦𝐢𝐧 (
𝐒𝐖𝐄𝐭−𝟏

𝐬𝐧𝐜
, 𝟏)  (S3) 

 

with fractional snow cover FSC [-] at time t being linearly dependent on SWEt-1 of the preceding time step and the parameter 25 

snc [mm] being the minimum SWE that ensures complete snow coverage of the grid cell.  
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Further, snow melt M and sublimation ETSub are assumed to only emerge from snow covered area by using FSC as scaling 

factor in the calculation of these fluxes. 

 

Snow melt M occurs when snow storage is present and temperature exceeds melting temperature. Based on the restricted 

degree-day radiation balance approach described by Kustas et al. (1994), melt M [mm d-1] at time t depends on temperature 5 

Tt [°C] and net radiation Rnt [MJ m-2 d-1]: 

 

𝐌𝐭 = (𝐦𝐭 · 𝐓𝐭 + 𝐦𝐫  · 𝐑𝐧𝐭)  · 𝐅𝐒𝐂𝐭     | 𝐓 > 𝟎°𝐂  (S4) 

 

where the degree-day factor mt [mm °C-1] and the radiation factor mr [mm MJ-1] control the melt rate.  

 10 

The derivation of snow sublimation ETSub is adapted from the approach implemented in the GLEAM model. This technique 

is based on the Priestley and Taylor (1972) formula, which calculates evaporation rate as latent heat flux LE [MJ m-2 d-1] 

based on the available energy Rn [MJ m-2 d-1], ground heat flux G [MJ m-2 d-1]) and a dimensionless coefficient sna that 

parameterizes evaporation-resistance. LE at time t is derived by  

 15 

𝐋𝐄𝐭 = (𝐬𝐧𝐚 ·  
𝚫𝐬𝐧𝐭

𝚫𝐬𝐧𝐭+𝛄𝐬𝐧𝐭
 · (𝐑𝐧𝐭 − 𝐆)) · 𝐅𝐒𝐂𝐭  

(S5) 

 

with Δsnt being the slope of the temperature/saturated vapor pressure curve [kPa K-1] and γsnt representing the psychrometric 

constant [kPa K-1]. Both, Δsn and γsn, are modified for snow covered areas according to Murphy and Koop (2005). 

They calculate Δsnt as a function of Tt [K] (Eq.(S6)), and γsnt as a function of atmospheric pressure Pair [kPa], specific heat 

of air at constant pressure cp [MJ kg-1 K-1], the ratio molecular weight of water vapor/dry air MW and latent heat of 20 

sublimation of ice λsn [MJ kg-1] (Eq.(S7)). 

 

𝚫𝐬𝐧𝐭 =  (
𝟓𝟕𝟐𝟑.𝟐𝟔𝟓

𝐓𝐭
𝟐 +

𝟑.𝟓𝟑𝟎𝟔𝟗

𝐓𝐭−𝟎,𝟎𝟎𝟕𝟐𝟖𝟑𝟑𝟐
 ) · 𝐞

𝟗.𝟓𝟓𝟎𝟒𝟐𝟔 − 
𝟓𝟕𝟐𝟑.𝟐𝟔𝟓

𝐓𝐭
 + 𝟑.𝟓𝟑𝟎𝟔𝟖·𝐥𝐧(𝐓𝐭) − 𝟎,𝟎𝟎𝟕𝟐𝟖𝟑𝟑𝟐 ·𝐓𝐭

  
(S6) 

 

𝛄𝐬𝐧𝐭 =  
𝐏𝐚𝐢𝐫 ·𝐜𝐩

𝐌𝐀 · 𝛌𝐬𝐧𝐭
  (S7) 

 

In Eq.(S7), Pair is assumed to be time- and space-invariant with a uniform value of 101.3 kPa and cp = 0.001 MJ kg-1 K-1. 25 

MA is a constant of 0.622 and λsn is defined by Murphy and Koop (2005) as a function of Tt [K]. With a molecular mass of 

water of 18.01528 g mol-1, λsn can be calculated as: 
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𝛌𝐬𝐧𝐭 = (𝟒𝟔𝟕𝟖𝟐. 𝟓 + 𝟑𝟓. 𝟖𝟗𝟐𝟓 · 𝐓𝐭 −  𝟎. 𝟎𝟕𝟒𝟏𝟒 ·  𝐓𝐭
𝟐 +  𝟓𝟒𝟏. 𝟓 ·  𝐞

−(
𝐓𝐭

𝟏𝟐𝟑.𝟕𝟓
)

𝟐

) ·  
𝟎.𝟎𝟎𝟏

𝟏𝟖.𝟎𝟏𝟓𝟐𝟖
  

 (S8) 

 

Since snow-covered ecosystems can be assumed to be unstressed due to the sufficient availability of water, LE corresponds 

to actual sublimation ETSub (Miralles et al., 2011). And ETSub [mm d-1] can be converted from LE through division by λsn: 

 

𝐄𝐓𝐒𝐮𝐛𝐭 =
𝐋𝐄𝐭

𝛌𝐬𝐧𝐭
  (S9) 

 5 

Altogether, the model calculates ETSub as a function of Tt, Rnt, Pair, G, sna and FSCt. While Tt, Rnt and FSCt are variable in 

time and space and depend on input data, the approach postulates constant Pair = 101.3 kPa and G = 0 MJ m-2 d-1. 

S1.2 Soil component 

The central part of the model is the soil water component, which distributes input from rain fall and snow melt to soil water 

storage SM [mm], actual evapotranspiration ET [mm d-1] and land runoff Qs [mm d-1].  10 

Like snow, the calculation of soil water storage as represented by soil moisture SM [mm] at time t follows the mass balance 

 

𝐒𝐌𝐭 = 𝐒𝐌𝐭−𝟏 + 𝐈𝐧𝐭 − 𝐄𝐓𝐭  (S10) 

 

with SMt-1 [mm] being the soil moisture of the preceding time step which is increased by infiltration Int [mm d-1] and 

reduced by actual evapotranspiration ETt [mm d-1]. 15 

 

On the one hand, the amount of infiltration In [mm d-1] depends on the possible inflow IW [mm d-1], which is the sum of rain 

fall RF (precipitation P if T ≥ 0°C) and snow melt M at time t: 

 

𝐈𝐖𝐭 = 𝐑𝐅𝐭 + 𝐌𝐭  (S11) 

 20 

On the other hand, a part of IW may not infiltrate due to current soil moisture conditions but contribute to (direct) land 

runoff Qs [mm d-1]. To estimate the partitioning of IW into SM and Qs, Qs at time t is calculated after Bergström (1995) as: 

 

𝐐𝐬𝐭 = 𝐈𝐖𝐭  ·  (
𝐒𝐌𝐭−𝟏

𝐬_𝐦𝐚𝐱
)

𝐬𝐞𝐱𝐩 
  (S12) 
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In Eq.(S12) Qst depends on the inflow IWt, the runoff coefficient sexp and the actual soil moisture SMt-1 compared to its 

maximum water holding capacity smax. Thus, no land runoff occurs if the soil water storage is empty and all IW is allocated 

to land runoff if the soil is completely saturated. Between these points, sexp determines the amount of inflow that converts to 

Qs. While low values of sexp lead to a high amount of Qs even if the soil moisture deficit is low (e.g. low SM/smax ratio), 

higher values of sexp increase the proportion of IW that infiltrates.  5 

Infiltration In at time t is derived in accordance to the law of conservation of mass as: 

 

𝐈𝐧𝐭 = 𝐈𝐖𝐭 −  𝐐𝐬𝐭  (S13) 

 

Potential evapotranspiration potET [mm d-1] at time t is derived from net radiation Rn [MJ m-2 d-1] and air temperature T 

[°C] according to the Priestley-Taylor formula (Priestley and Taylor, 1972), where eta is the alpha coefficient: 10 

 

𝐩𝐨𝐭𝐄𝐓𝐭 = 𝐞𝐭𝐚  · (
𝚫𝐭

𝚫𝐭+𝛄𝐭
 ·  

 𝐑𝐧𝐭

𝛌𝐭
)  (S14) 

 

where Δt is the slope of the temperature/saturated vapor pressure curve [kPa K-1], λt the latent heat of vaporization [MJ kg-1] 

and γt the psychrometric constant [kPa K-1].  

The slope of the saturated vapor pressure curve Δt, as well as the latent heat of vaporization λt are functions of T at time t:  15 

 

𝚫𝐭 =  
𝟒𝟎𝟗𝟖 ·𝟎.𝟔𝟏𝟏· 𝐞

𝟏𝟕.𝟐𝟕 · 𝐓𝐭
𝐓𝐭+𝟐𝟑𝟕.𝟑

(𝐓𝐭 · 𝟐𝟑𝟕.𝟑)𝟐   
(S15) 

 

𝛌𝐭 =  𝟐. 𝟓𝟎𝟏 − (𝟐. 𝟑𝟔𝟏 · 𝟏𝟎−𝟑) · 𝐓𝐭  (S16) 

 

Analogue to Eq.(S7), γt depends on a constant atmospheric pressure Pair of 101.3 kPa, the specific heat of air at constant 

pressure cp [MJ kg-1 K-1], the constant MA and the latent heat of vaporization λt: 20 

 

𝛄𝐭 =  
𝐏𝐚𝐢𝐫 ·𝐜𝐩

𝐌𝐀 · 𝛌𝐭
  (S17) 

 

In order to avoid complete depletion of the soil water storage and to account for cohesion of water in the soil matrix, only a 

fraction of soil moisture after infiltration is assumed to be available for evapotranspiration. We express the sensitivity of 

evapotranspiration to available water similar to Teuling et al. (2006) by the parameter etsup. Thus, etsup determines the portion 25 
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of the sum of infiltration Int [mm d-1] and soil moisture SMt-1 [mm], that represents evapotranspiration supply supET [mm d-

1] at time t: 

 

𝐬𝐮𝐩𝐄𝐓𝐭 = 𝐞𝐭𝐬𝐮𝐩   · (𝐒𝐌𝐭−𝟏 + 𝐈𝐧𝐭)  (S18) 

 

Finally, actual evapotranspiration ET [mm d-1] at time t is derived by comparing potETt [mm d-1] and supETt [mm d-1]: 5 

 

𝐚𝐜𝐭𝐄𝐓𝐭 = 𝐦𝐢𝐧 (𝐩𝐨𝐭𝐄𝐓𝐭, 𝐬𝐮𝐩𝐄𝐓𝐭)  (S19) 

S1.3 Runoff component 

As total runoff comprises fast direct runoff as well as delayed interflow and base flow, it’s appropriate to consider 

retardation (Orth et al., 2013). Accordingly, total runoff Q [mm d-1] at time t results from the accumulated effects of all land 

runoff Qs [mm d-1] generated during the preceding 60 time steps: 10 

 

𝐐𝐭 = ∑ 𝐐𝐬𝐭−𝐢  · [𝐞
−

𝐢

𝐪_𝐭 − 𝐞
−

𝐢+𝟏

𝐪𝐭 ]𝟔𝟎
𝐢=𝟎   

(S20) 

 

 

where the recession time scale qt [d] determines how quickly land runoff is transformed into streamflow. In theory, an 

infinite number of time steps would be necessary to ensure that all generated Qs is transformed into Q. However, the 15 

arbitrary number of 60 days allows accounting for > 99 % of Qs (Orth et al., 2013), as long as qt is below 13 days. To allow 

longer recession times when calibrating the model and still account for > 99 % of Qs within the 60 days-window, the delay 

component of Eq.(S20) is scaled with its sum. 

Introducing temporal delay leads to retention of a portion of Qs, and thus to an additional, temporal storage of retained water 

RW [mm]. The change of retained water storage ΔRW [mm d-1] at time t can be inferred using the water balance:  20 

 

𝟎 =  𝐏𝐭 − 𝐚𝐜𝐭𝐄𝐓𝐭 − 𝐐𝐭 +  𝚫𝐓𝐖𝐒𝐭  (S21) 

 

with the change of total water storage ΔTWS [mm d-1] resulting from 

 

𝚫𝐓𝐖𝐒 =  (𝐒𝐖𝐄𝐭 −  𝐒𝐖𝐄𝐭−𝟏) +  (𝐒𝐌𝐭 −  𝐒𝐌𝐭−𝟏) + 𝐖𝐭  (S22) 

 25 

so that solving Eq.(S21) and Eq.(S22) 

delay component 
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𝚫𝐑𝐖𝐭 = 𝐚𝐜𝐭𝐄𝐓𝐭 + 𝐐𝐭 −  𝐏𝐭 − (𝐒𝐖𝐄𝐭 −  𝐒𝐖𝐄𝐭−𝟏) −  (𝐒𝐌𝐭 −  𝐒𝐌𝐭−𝟏)   (S23) 

 

The amount of retained water RW [mm] at time t then results from 

 

𝐑𝐖𝐭 = 𝐑𝐖𝐭−𝟏 + 𝚫𝐑𝐖𝐭  (S24) 

 5 

Finally, the integrated terrestrial water storage TWS [mm] at time t represents the sum of all storage components: 

 

𝐓𝐖𝐒𝐭 =  𝐒𝐖𝐄𝐭 + 𝐒𝐌𝐭 + 𝐑𝐖𝐭  (S25) 

 

S2 Uncertainty of the observational constraints 

Maps of the temporal average uncertainties of observed TWS, ET and Q that are used for model calibration are shown in 10 

Fig. S1. For observed SWE a constant average uncertainty of 35 mm is applied. 

 

 

Figure S1. Mean uncertainty of monthly TWSobs [mm], and of the mean seasonal cycle of ETobs [mm d-1] and Qobs [mm d-1] used for 

model calibration. Values are truncated to 50 mm resp. 10 mm. 15 
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S3 Cost terms 

Table S1 shows the cost terms achieved with the default and the optimized parameter set. Compared to the default parameter 

values, total costs clearly improve after calibration. The shown optimized values represent a weighted Nash-Sutcliff 

efficiency of 0.37 (TWS), 0.44 (SWE), 0.57 (Q) and 0.80 (ET) (weighted Nash-Sutcliff = 1 – cost value). 

 5 

Table S1. Cost values obtained with the default and the optimized model parameters using Eq. (1). 

parameter values TWS SWE ET Q total 

default 0.84 0.54 0.15 1.00 2.55 

optimized 0.63 0.56 0.20 0.43 1.82 

 

 

 

S4 Model performance regarding evapotranspiration and runoff 10 

 

 

Figure S2. Spatially averaged mean seasonal cycle (MSC) of the period 2002–2012 and inter-annual variability (IAV, difference between 

monthly values and the MSC) for ETmod and FLUXCOM based ETobs. 

 15 
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Figure S3. Spatially averaged mean seasonal cycle (MSC) of the period 2002–2012 and inter-annual variability (IAV, difference between 

monthly values and the MSC) for Qmod and EU-grid runoff Qobs. Qmodconsistent solely considers grid cells that coincide with Qobs, while 

Qmodall is based on modelled runoff for all grids of the study domain. 

 5 

 

Figure S4. RMSE of the mean seasonal cycle of simulated and observed a) ET [mm month-1] and b) Q [mm month-1]. RMSE values have 

been truncated to the range 0–30 (a) resp. 0-50 (b). 
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S5 Phase shift in mean seasonal TWS 

 

 

Figure S5. Grid wise phase lag [months] between mean seasonal TWSobs and TWSmod. Negative values indicate preceding of the model 

compared to GRACE TWS. 5 
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S6 Comparison with eartH2Observe models 

 

 

Figure S6. Comparison of spatially averaged observed (obs) a) SWE (GlobSnow) and b) TWS (GRACE) to simulations of this study 

(mod) and eartH2Observe models (incl. ensemble mean) in terms of average mean seasonal cycle (MSC) and inter-annual variability 5 
(IAV). MSC is calculated for the period 2002–2012, and IAV represents the difference of monthly values from the MSC. Only data points 

consistent between all models and the respective observational data are considered. 
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Figure S7. RMSE for the spatially averaged SWE (left) and TWS (right) achieved by our model compared to the model ensemble of 

eartH2Observe models and the ensemble mean across temporal scales. 

 

 5 

Figure S8. Comparison of a) RMSE and b) Pearson correlation r for monthly SWE and TWS time series simulated with the 

eartH2Observe models, the model ensemble mean (model mean) and by our model (mod). 
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S7 Uncertainty due to forcing and calibration data 

S7.1 Comparison to WFDEI precipitation forcing 

To assess the uncertainty in TWSmod and SWEmod that emerges from the choice of precipitation forcing, we calibrated our 

model in the same manner as before, yet used rain fall and snow fall estimates from the reanalysis based WFDEI product 

(Weedon et al. 2014) instead of GPCP-1DD precipitation data. Since precipitation is likely the most uncertain input data 5 

(Herold et al. 2015, Schellekens et al. 2017), we did not change the temperature and net radiation data sets. The global 

meteorological WFDEI data for land area is generated by applying the Water and Global Change (WATCH) forcing data 

methodology to ERA-Interim reanalysis data (Dee et al. 2011). The advantage of the WFDEI product is that it already 

provides separate values for snow and rain fall, as diagnosed by the reanalysis (Weedon et al. 2014). Therefore, it is not 

necessary to partition precipitation based on a temperature threshold within the model. We rather applied the provided rain 10 

and snow fall estimates directly, and also desisted from scaling snow fall. 

Regarding the MSC, we obtained similar model performance in terms of SWE and TWS for both, the spatially averaged 

dynamics (Fig. S9, Fig. S10) and the spatial pattern (not shown). Although the dynamics and thus the correlation 

coincidence, we obtain a higher amplitude in TWSmod when using WFDEI as forcing compared to the original TWSmod 

(and TWSobs). This higher amplitude relates to larger seasonal snow accumulation in SWEmodWFDEI, because the scaling 15 

parameter for snow fall is not calibrated. In terms of IAV, the correlation between observation and WFDEI forced model is 

comparable for both, TWS and SWE. However, the key findings (Fig. S11) remain the same as with GPCP precipitation 

forcing. 

 

 20 

Figure S9. Comparison of the spatially averaged mean seasonal cycle (MSC) and inter-annual variability (IAV, difference between 

monthly values and the MSC) of observed SWE (SWEobs), modelled SWE (SWEmod), and modelled SWE based on WFDEI 

precipitation forcing (SWEmodWFDEI). SWEmod consistent and SWEmodWFDEI consistent refers to modelled SWE considering only data 

points with available SWEobs, while SWEmod all and SWEmodWFDEI all incorporates all time steps for all grids of the study domain. 

 25 
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Figure S10. Comparison of the spatially averaged mean seasonal cycle (MSC) and inter-annual variability (IAV, difference between 

monthly values and the MSC) of observed TWS (TWSobs), modelled TWS (TWSmod), and modelled TWS based on WFDEI 

precipitation forcing (TWSmodWFDEI). For IAV, TWSobsmonthly value shows the original IAV of individual TWSobs months, while TWSobs, 

TWSmod and TWSmodWFDEI are smoothed using a 3-month average moving window filter. Pearson correlation r refers to the smoothed 5 
values. For the MSC no smoothing is applied. 

 

Figure S11. Relative contribution (based on CR (Eq.Fehler! Verweisquelle konnte nicht gefunden werden.))) of snow (SWE) and 

liquid water (W) to TWS variability on different spatial (local grid scale, spatially integrated) and temporal (mean seasonal MSC, inter-

annual IAV) scales when forced with WFDEI rain and snow fall. The boxplots represent the distribution of grid cell CR, with the dashed 10 
line marking the corresponding average. The star represents the CR calculated for the spatially integrated values. 
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S7.2 Comparison to other GRACE solutions 

In this study we used TWS estimates from the JPL mascon RL05 product for model calibration and evaluation (Watkins et 

al., 2015;Wiese, 2015). However, various GRACE solutions for TWS from different institutions and using different 

processing approaches exist. To assess the potential uncertainty resulting from the choice of TWS solution, we compared 

modelled TWS (mod) and the JPL mascon solution (JPLmasc) with other solutions based on different processing approaches. 5 

They include the mascon product from the Center of Space Research (CSR at the University of Texas) (CSRmasc) (Save et al., 

2016), as well as three RL05 solutions based on spherical harmonics provided by JPL, CSR and GeoforschungsZentrum 

(GFZ) (Swenson and Wahr, 2006;Landerer and Swenson, 2012;Swenson, 2012). As recommended, we also considered the 

average of the latter three (AvgJPL/CSR/GFZ). All TWS estimates were taken as anomalies to the respective time-mean of 2002–

2012, and scaled with the provided gain factors (except for CSRmasc that does not require scaling (Save et al., 2016). For 10 

comparison, we calculated the spatial average mean seasonal cycle (MSC) and inter-annual variability (IAV) across all grid 

cells of the study domain (Fig. S12). 

Thereby, we find that the spatial average MSC of all GRACE TWS estimates agrees in its dynamics, albeit minor differences 

in the solutions’ amplitudes exist (by ±15 mm). This results in comparable correlation and RMSE with modelled TWS. As 

the signal itself is noisier on IAV scales, the GRACE solutions show broader variability for IAV than at MSC scales as well. 15 

However, the qualitative pattern between the solutions remains, and modelled TWS is not closer to one specific solution or 

another during the entire time period. Therefore, the uncertainty evolving from the choice of GRACE solution used for 

model calibration can be assumed to be minor.  

 

 20 

Figure S12. Comparison of the spatially averaged mean seasonal cycle (MSC) and inter-annual variability (IAV, difference between 

monthly values and the MSC) of modelled TWS (mod) and observed TWS of different GRACE solutions. 
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S8 Covariances between SWE and W 

Figure S13 and Fig. S14 compare the contribution of the combined SWE and W variances and the covariance of both 

storages to the total variance of the spatially aggregated TWSmod. On the interannual and spatially aggregated scale, 81 % 

of TWS variability is explained by the variances in SWE and W, suggesting that the covariance between SWE and W only 

has minor effect. This is underlined by high percentage of SWE and W variance on total TWSmod variance for all grids of 5 

the study domain (Fig. S14). On mean seasonal scales, the majority of spatially aggregated TWS variability is still explained 

by variances in SWE and W, but the contribution of the covariance increases. This can be expected, as the seasonal variation 

of snow storage affects the subsequent availability of liquid water storages through the snowmelt process. At the local scale, 

though, the percentage of SWE and W variance on total TWSmod variance remains high in regions where the dominance of 

either snow or liquid water components are clear (Fig. 7 of the manuscript). In regions where covariances of two storage 10 

components is larger, the contribution of two storage components to TWS variability are similar resulting in a CR value of 

around 0. Therefore, we conclude that while the covariances of snow and liquid water can be remarkable on the seasonal 

scale over a large spatial domain, it does not affect or change the dominant components on the TWS. 

 

 15 

Figure S13. Percentage of SWE and W variance on total TWSmod variance on mean seasonal (MSC) and interannual (IAV) scales. 
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Figure S14. Percentage composition of spatially aggregated TWSmod variance from the combined variances of SWE and W, and two 

times the covariance of SWE and W on mean seasonal (MSC) and interannual (IAV) scales. 
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