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Abstract. In the process of groundwater recharge, surface
water usually enters an aquifer by passing an overlying un-
saturated zone. Little attention has been given to the de-
velopment of analytical solutions to a coupled unsaturated–
saturated flow model due to localized recharge up to now.
This paper develops a mathematical model to depict three-
dimensional transient unsaturated–saturated flow in an un-
confined aquifer with localized recharge on the ground sur-
face. The model contains Richards’ equation for unsaturated
flow, a flow equation for saturated formation, and the Gard-
ner constitutive model describing the behavior of unsaturated
soil properties. Both flow equations are coupled through the
continuity conditions of the head and flux at the water table.
The semi-analytical solution to the coupled flow model is de-
rived by the methods of Laplace transform and Fourier cosine
transform. A sensitivity analysis is performed to explore the
head response to the change in each of the aquifer parame-
ters. A quantitative tool is presented to assess the recharge
efficiency signifying the percentage of the water from the
recharge to the aquifer. We found that the effect of unsat-
urated flow on the saturated hydraulic head is negligible if
two criteria associated with the unsaturated soil properties
and initial aquifer thickness are satisfied. The head distri-
butions predicted from the present solution match well with
those from finite-difference simulations. The predictions of
the present solution also agree well with the observed data
from a field experiment at an artificial recharge pond in
Fresno County, California.

1 Introduction

Understanding the effect of water flow due to recharge from
a surface water body such as precipitation, lake, or artificial
pond on the groundwater flow system is important in water
resource planning and management (e.g., Wang et al., 2010;
Siltecho et al., 2015; Yang et al., 2015; Scudeler et al., 2016;
Shi et al., 2016). The subsurface soil formation may be di-
vided into unsaturated and saturated zones depending on the
water saturation in void spaces of the soils. In the recharge
process, the surface water may infiltrate and flow through the
unsaturated zone and then arrives at the water table of the sat-
urated zone (i.e., aquifers). Chang et al. (2016) reviewed an-
alytical solutions describing the spatiotemporal distributions
of groundwater mounds caused by localized recharge on the
ground surface. They classified 17 solutions in a tabular form
with flow dimensions as well as six headings of references,
aquifer domain, aquifer boundary conditions, recharge re-
gion, recharge rate, and remarks. However, those solutions
they reviewed all neglect the process of infiltration in the
unsaturated zone and assume that the surface water directly
recharges the saturated zone.

Solving Richards’ equation (Richards, 1931) analytically
for unsaturated flow is tricky owing to its nonlinearity. Gard-
ner (1958) presented a model to express the relative hy-
draulic conductivity as an exponential function of the pres-
sure head in unsaturated soils. Analytical methods for devel-
oping the solution to Richards’ equation mostly rely on the
use of linearization based on Gardner’s model. Many arti-
cles used such an approach to study flow in an unsaturated
zone with infiltration from a variety of surface water bod-
ies (see, e.g., Huang and Wu, 2012; Wu et al., 2013; Wang
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and Li, 2015). Those articles neglected the presence of an
underlying aquifer and treated its water table as the lower
boundary with a condition of constant pressure head (e.g.,
Huang and Wu, 2012) or water content (e.g., Chen et al.,
2001b). For 1-D downward flow, Srivastava and Yeh (1991)
discussed distributions of the pressure head and water con-
tent in two distinct unsaturated soil layers with a constant
surface flux. Chen et al. (2001a) examined the water content
in an unsaturated medium with an arbitrary time-varying sur-
face flux, by extending Warrick’s (1975) solution for a flux
consisting of step functions of time. Later, Wu et al. (2012)
did similar work to Srivastava and Yeh (1991), but addi-
tionally considered the deformation of the two-layer soils
caused by the change in the porewater pressure in the soils
due to the surface flux. For 2-D flow in a vertical plane,
Batu (1980) analyzed steady-state flow net affected by an
array of strip surface sources with two different infiltration
rates. Protopapas and Bras (1991) focused on the transient
pressure head due to a uniform strip source with a finite width
and infinite length on the ground surface. For 3-D flow, Chen
et al. (2001b) investigated the water content induced by a
surface source with an arbitrary spatiotemporal infiltration
rate. Tracy (2007) studied the pressure head distribution in a
cuboid soil sample with localized recharge over a rectangular
area on the top. The sides of the sample are under either the
Dirichlet or no-flow boundary condition.

Abovementioned solutions are applicable to either the case
of saturated flow in aquifers recharged directly by surface
water or the case of unsaturated flow due to surface water
infiltration. So far little has been known about the combi-
nation of saturated and unsaturated flows that represents a
typical process of recharge to the aquifer. This paper aims at
developing a mathematical model for describing 3-D tran-
sient unsaturated–saturated flow in an unconfined aquifer
with localized recharge. Richards’ equation along with Gard-
ner’s model is adopted to delineate unsaturated flow between
the ground surface and the water table. The 3-D ground-
water flow equation is employed to depict saturated flow in
the aquifer. Richards’ equation is coupled with the saturated
flow equation via the continuity conditions of the head and
flux at the water table. Such a coupled flow model has been
proposed by several articles to investigate pumping draw-
down problems (e.g., Mathias and Butler, 2006; Tartakovsky
and Neuman, 2007; Mishra and Neuman, 2010, 2011). They
treated an extraction well as a line sink in the aquifer, while
we consider the localized recharge as a plane source to the
aquifer. The coupled flow model in their studies is 2-D writ-
ten in cylindrical coordinates, while that in ours is 3-D ex-
pressed in Cartesian coordinates. In addition, their solutions
are obtained by the Hankel transform, but ours is based on the
Fourier cosine transform. The present work aims to inves-
tigate the spatiotemporal distribution of the hydraulic head
due to localized recharge from the ground surface. The semi-
analytical solution for the hydraulic head is obtained by the
Laplace transform and the Fourier cosine transform. A finite-

difference solution is built to check the correctness of the
present solution. The effect of the unsaturated zone on the
head in the saturated aquifer is explored by the present so-
lution. The water quantity from the localized recharge to the
aquifer is analyzed. The sensitivity analysis is executed to
examine the head response to the variation in each of the
aquifer parameters. Application of the present solution to a
field experiment of artificial recharge is also provided.

2 Methodology

2.1 Mathematical model

Consider an unconfined aquifer system with localized
recharge over a rectangular area on the ground surface of
the system. The origin of the Cartesian coordinate system
is located at the center of the recharge area as illustrated
in Fig. 1a. The area has a size of 2l by 2w on the x− y
plane. The shortest distance between an observation point
(x, y) and a point (xe, ye) on the edge of the area is defined
as d =min(

√
(x− xe)2+ (y− ye)2). The initial water table

separates the unsaturated and saturated zones as shown in
Fig. 1b and is chosen as the reference datum of the coordi-
nate system. The initial thicknesses of the unsaturated and
saturated zones prior to the recharge are denoted as b and B,
respectively.

The mathematical model for the aquifer system comprises
two simultaneous equations for unsaturated and saturated
flows. The equation for saturated flow in homogeneous and
anisotropic aquifers is expressed as

Kx
∂2h

∂x2 +Ky
∂2h

∂y2 +Kz
∂2h

∂z2 = Ss
∂h

∂t
for −B ≤ z ≤ 0, (1)

where h(x, y, z, t) is the hydraulic head in the saturated zone;
t is elapsed time since recharge began; Kx , Ky , and Kz are,
respectively, the saturated hydraulic conductivities in the x,
y, and z directions; Ss is the specific storage. Richards’ equa-
tion for unsaturated flow is expressed as (Richards, 1931)

Kx
∂

∂x

[
kr (φ)

∂φ

∂x

]
+Ky

∂

∂y

[
kr (φ)

∂φ

∂y

]
+Kz

∂

∂z

[
kr (φ)

∂φ

∂z

]
= C (φ)

∂φ

∂t
, (2)

where φ(x, y, z, t) is the hydraulic head in the unsaturated
zone. The relative hydraulic conductivity kr(φ) and specific
moisture capacity C(φ) are defined by the Gardner constitu-
tive model (Gardner, 1958) as

kr (φ)= e
a(φ−z) (3)

and

C (φ)= aSye
a(φ−z), (4)

Hydrol. Earth Syst. Sci., 22, 3951–3963, 2018 www.hydrol-earth-syst-sci.net/22/3951/2018/



C.-H. Chang et al.: Analysis of three-dimensional unsaturated–saturated flow 3953

Figure 1. Schematic diagram of unsaturated–saturated flow in an unconfined aquifer system with localized recharge: (a) top view and
(b) cross-sectional view.

where Sy is the specific yield and a is the unsaturated expo-
nent related to the pore-size distribution of a medium ranging
from 0.2 to 5 m−1 (Philip, 1969). Substituting Eqs. (3) and
(4) into Eq. (2) leads to

Kx
∂2φ

∂x2 +Ky
∂2φ

∂y2 +Kz
∂2φ

∂z2 − aKz
∂φ

∂z

+ a

[
Kx

(
∂φ

∂x

)2

+Ky

(
∂φ

∂y

)2

+Kz

(
∂φ

∂z

)2
]

= aSy
∂φ

∂t
. (5)

It is essentially nonlinear and solved with difficulty by an-
alytical methods. Kroszynski and Dagan (1975) employed
the approach of perturbation expansion to simplify Richards’
equation as a first-order linearized equation and developed
an approximate solution for unsaturated–saturated flow in-
duced by well pumping. The approach is extensively used
in many studies on unsaturated–saturated flow (e.g., Mathias
and Butler, 2006; Tartakovsky and Neuman, 2007; Mishra
et al., 2012; Liang et al., 2017a). The linearized version of
Richards’ equation is written as

Kx
∂2φ

∂x2 +Ky
∂2φ

∂y2 +Kz
∂2φ

∂z2 − aKz
∂φ

∂z

= aSy
∂φ

∂t
for 0≤ z ≤ b. (6)

The initial conditions for those two zones are

φ = h= 0 at t = 0. (7)

Because of symmetry of the recharge area along the x and y
axes, the first quadrant (i.e., x ≥ 0 and y ≥ 0) of the flow do-
main is considered. Thus, all the horizontal outer boundaries
are specified as the no-flow condition expressed as

∂φ

∂u
=
∂h

∂u
= 0 at u= 0, (8)

limu→∞

∂φ

∂u
= limu→∞

∂h

∂u
= 0, (9)

where u ∈ (x,y). The top boundary condition for the
recharge area is denoted as

Kze
−az ∂φ

∂z
= I [H (x)−H (x− l)][H (y)−H (y−w)]

at z= b, (10)

where I is a constant recharge rate and H() is the Heav-
iside step function. Note that Eq. (10) can be written as
Kz exp(−az)∂φ/∂z= I inside the recharge area 0≤ x ≤ l
and 0≤ y ≤ w and denoted as ∂φ/∂z= 0 outside that area.
The impermeable boundary condition at the aquifer bottom
is written as

∂h

∂z
= 0 at z=−B. (11)

The two continuity requirements of the hydraulic head and
flux at the water table are expressed, respectively, as

φ = h at z= 0 (12)

and

∂φ

∂z
=
∂h

∂z
at z= 0. (13)

The continuity conditions are valid when the water table
change is less than 50 % of the initial saturated aquifer thick-
ness, which is certified by a Hele-Shaw experiment (Marino,
1967).

Define the dimensionless variables and parameters as fol-
lows:

h=
h

B
, φ =

φ

B
,x =

x

d
, y =

y

d
, z=

z

B
, t =

Kx t

Ssd2 ,

l =
l

d
,w =

w

d
,b =

b

B
, κz =

Kzd
2

KxB2 ,κy =
Ky

Kx
,
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α = aB, σ =
Sy

SsB
, ξ =

I

Kz
, (14)

where the overbar represents a dimensionless variable or pa-
rameter. According to Eq. (14), the unsaturated–saturated
flow model is rewritten as

∂2φ

∂x2 + κy
∂2φ

∂y2 + κz
∂2φ

∂z2 −ακz
∂φ

∂z

= ασ
∂φ

∂t
for 0≤ z ≤ b (15)

∂2h

∂x2 + κy
∂2h

∂y2 + κz
∂2h

∂z2 =
∂h

∂t
for − 1≤ z ≤ 0 (16)

φ = h= 0 at t = 0, (17)

∂φ

∂u
=
∂h

∂u
= 0 at u= 0, (18)

limu→∞

∂φ

∂u
= limu→∞

∂h

∂u
= 0, (19)

exp(−αz)
∂φ

∂z
= ξ [H (x)−H

(
x− l

)
][H (y)−H (y−w)]

at z= b, (20)

∂h

∂z
= 0 at z=−1, (21)

φ = h at z= 0, (22)

∂φ

∂z
=
∂h

∂z
at z= 0, (23)

where u ∈ (x,y).

2.2 Laplace domain solution

The unsaturated–saturated flow model composed of
Eqs. (15)–(23) is solved by the methods of Laplace and
Fourier cosine transforms. The Laplace transform is defined
as

f̃ =

∞∫
0

f exp(−pt)dt (24)

with the property that

∞∫
0

∂f

∂t
exp(−pt)dt = pf̃ − f |t=0, (25)

where f̃ ∈ (φ̃, h̃) represents the dimensionless hydraulic
head in the Laplace domain, p is the Laplace transform pa-
rameter, f ∈ (φ, h), and f |t=0 = 0 is from Eq. (17). Using
Eqs. (24) and (25) converts φ(x,y,z, t) into φ̃(x,y,z,p),
∂φ/∂t into pφ̃, h(x,y,z, t) into h̃(x,y,z,p), ∂h/∂t into ph̃,
and ξ into ξ/p. The model then becomes

∂2φ̃

∂x2 + κy
∂2φ̃

∂y2 + κz
∂2φ̃

∂z2 −ακz
∂φ̃

∂z
= ασpφ̃ (26)

and

∂2h̃

∂x2 + κy
∂2h̃

∂y2 + κz
∂2h̃

∂z2 = ph̃ (27)

subject to the transformed boundary conditions of
lim

u→0,∞
∂φ̃/∂u= lim

u→0,∞
∂h̃/∂u= 0 with u ∈ (x,y),

exp(−αz)∂φ̃/∂z= (ξ/p)[H (x)−H
(
x− l

)
][H (y)−

H (y−w)] at z= b, and ∂h̃/∂z= 0 at z=−1. More-
over, the transformed continuity conditions are φ̃ = h̃ and
∂φ̃/∂z= ∂h̃/∂z at z= 0.

Afterward, one may take the double Fourier cosine trans-
form that provides

f̂ =

∞∫
0

∞∫
0

f̃ cos(ω1x)cos(ω2y)dxdy (28)

and

∞∫
0

∞∫
0

(
∂2f̃

∂x2 + κy
∂2f̃

∂y2

)
cos(ω1x)cos(ω2y)dxdy

=−(ω2
1 + κyω

2
2)f̂, (29)

where f̂ ∈ (φ̂, ĥ) represents the dimensionless hydraulic
head in the Fourier domain; ω1 and ω2 are the Fourier cosine
transform parameters. The transform converts φ̃(x,y,z,p)
into φ̂(ω1,ω2,z,p), h̃(x,y,z,p) into ĥ(ω1,ω2,z,p),
∂2φ̃/∂x2

+ κy(∂
2φ̃/∂y2) into −(ω2

1 + κyω
2
2)φ̂,

∂2h̃/∂x2
+ κy(∂

2h̃/∂y2) into −(ω2
1 + κyω

2
2)ĥ, and

(ξ/p)[H (x)−H
(
x− l

)
][H (y)−H (y−w)] into

ξ sin
(
ω1l

)
sin(ω2w)/(pω1ω2). Equations (26) and (27)

hence become ordinary differential equations in terms of z
denoted, respectively, as

κz
∂2φ̂

∂z2 −ακz
∂φ̂

∂z
−

(
ασp+ω2

1 + κyω
2
2

)
φ̂ = 0 (30)

and

κz
∂2ĥ

∂z2 −
(
p+ω2

1 + κyω
2
2

)
ĥ= 0. (31)

Similarly, the transformed boundary conditions are ex-
pressed as

∂ĥ

∂z
= 0 at z=−1 (32)

and

exp(−αz)
∂φ̂

∂z
= ξ sin

(
ω1l

)
sin(ω2w)/(pω1ω2)

at z= b. (33)
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The transformed continuity conditions are written as

φ̂ = ĥ at z= 0 (34)

and

∂φ̂

∂z
=
∂ĥ

∂z
at z= 0. (35)

Solving Eqs. (30) and (31) subject to Eqs. (32)–(35) and then
taking the inverse Fourier cosine transform leads to the solu-
tions in the Laplace domain written as

φ̃ (x,y,z,p)=
4
π2

∞∫
0

∞∫
0

Re(x,y,ω1,ω2)�φ(ω1,ω2,z,p)

dω1dω2 for 0≤ z ≤ b (36a)

and

h̃ (x,y,z,p)=
4
π2

∞∫
0

∞∫
0

Re(x,y,ω1,ω2)�h(ω1,ω2,z,p)

dω1dω2 for − 1≤ z ≤ 0 (36b)

with

�φ =
4

p(µ1+µ2)
exp [

αz+ (α+ λ2)b

2
]

[λ2 coshλ1 cosh
(
λ2z

2

)
+ (2λ1 sinhλ1−α coshλ1)

sinh
(
λ2z

2

)
], (36c)

�h =
4

p(µ1+µ2)
λ2 exp [

(α+ λ2)b

2
]cosh[(1+ z)λ1] ,

(36d)

Re =


ξ sin

(
ω1l

)
sin(ω2w)cos(ω1x)cos(ω2y)/(ω1ω2)

for ω1 6= 0 and ω2 6= 0,
ξw sin

(
ω1l

)
cos(ω1x)/ω1 for ω1 6= 0 and ω2 = 0,

ξ l sin(ω2w)cos(ω2y)/ω2 for ω1 = 0 and ω2 6= 0,
ξwl for ω1 = 0 and ω2 = 0,

(36e)

µ1 = [exp
(
bλ2

)
− 1]

(
λ2

2−α
2
)

coshλ1, (36f)

µ2 = 2λ1[(λ2+α)exp
(
bλ2

)
+ λ2−α]sinhλ1, (36g)

λ1 =

√
(p+ω2

1 + κyω
2
2)/κz,

λ2 =

√
α2+ 4(ασp+ω2

1 + κyω
2
2)/κz. (36h)

Note that Eq. (36a) is the solution for unsaturated flow, while
Eq. (36b) is that for saturated flow. The inverse Laplace trans-
form to both solutions may not be tractable. The numerical
inversion of Laplace transform proposed by Stehfest (1970)
is therefore used to obtain time-domain results of the solu-
tions. The double integrals in the solutions can be evaluated
numerically by the Gaussian quadrature (e.g., Gerald and
Wheatley, 2004) using the dblquad Matlab built-in function
(Gilat and Subramaniam, 2007) or the NIntegrate Mathemat-
ica built-in function (Wolfram, 1996).

2.3 Solution for the transient recharge rate

The present solution can be applied to the problem of time-
varying recharge rates based on Duhamel’s integral (Bear,
1979, p. 158). The dimensionless transient head solution gt
subject to the dimensionless time-varying recharge rate ξt

(
t
)

can be expressed as

gt = g0+

t∫
0

∂ξt (τ )

∂τ
g
(
t − τ

)
dτ, (37)

where τ is a dummy variable, g0 denotes φ or h for the ini-
tial dimensionless recharge rate ξt

(
t = 0

)
, and g(t − τ) rep-

resents φ or h with t replaced by t − τ . If Eq. (37) is not an
integrable function, we can evaluate numerically through the
discretization method that (Singh, 2005)

gN = g0+

N∑
i=1

1ξi

1t
G(N − i+ 1), (38a)

1ξi = ξi − ξi−1, (38b)

G(M)=

1t∫
0

g(M1t − τ)dτ, (38c)

where gN signifies the dimensionless head solution at t =
1t ×N ; 1t is a dimensionless time step; G(M) is called
the ramp kernel; ξi and ξi−1 are, respectively, dimensionless
recharge rates at t =1t × i and t =1t × (i− 1).

2.4 Recharge efficiency

The percentage of the water from the localized recharge
reaching the water table is defined as recharge efficiency
(RE) (Munevar and Marino, 1999) written as

RE(t)=Kz

∞∫
0

∞∫
0

∂h

∂z
dxdy/(I l w) at z= 0, (39)

where the denominator I× l×w is the volumetric rate of the
water entering the aquifer system from the recharge, and the
double integral is the sum of the infiltration flux at the water
table. According to the dimensionless quantities defined in
Eq. (14), Eq. (39) becomes

R̃E(p)=

∞∫
0

∞∫
0

∂h̃

∂z
dxdy/(ξ l w) at z= 0, (40)

where R̃E represents RE in the Laplace domain and h̃ is de-
fined in Eq. (36b). The RE increases from zero to a value
equal to or below unity. The infiltration process does not
affect the water table when RE= 0. On the other hand, the
water from the surface recharge totally arrives at the aquifer
when RE= 1.
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Figure 2. Schematic diagram of finite-difference grids: (a) top view and (b) cross-sectional view.

2.5 Sensitivity analysis

The sensitivity analysis is commonly used to assess the
change in the hydraulic head in response to a small change in
a hydraulic parameter. The normalized sensitivity coefficient
based on the present solution is defined as

Si,t =
∂O

∂Pi/Pi
, (41)

where O represents the present solution for the unsaturated
or saturated flow and Pi is the ith parameter. Equation (41)
can be approximated as

Si,t =
O (Pi +1Pi)−O(Pi)

1Pi/Pi
, (42)

where 1Pi is an increment set to 10−3Pi (Yeh et al., 2008).
Note that a large value of |Si,t | indicates that the head is sen-
sitive to the change in the target parameter.

2.6 Finite-difference solution

An iterative algorithm based on an implicit finite-difference
approximation to Eq. (5) is developed to solve the nonlinear
unsaturated–saturated flow model. Figure 2 shows the finite-
difference grids in the simulation domains of 0≤ x ≤ 500 m,
0≤ y ≤ 500 m, and −20 m≤ z ≤ 10 m discretized by a non-
uniform grid with small grid sizes near the recharge area of
0≤ x ≤ 50 m and 0≤ y ≤ 50 m and large grid sizes away
from that area. The domain falls in the first quadrant due
to symmetrical flow to the x-axis and y-axis. The saturated
thickness is 20 m and the unsaturated thickness is 10 m. All

the boundaries except the recharge region are therefore under
the no-flow condition. Equation (5) is approximated as

Kx

(
1xw

1X
φm+1
i+1,j,k −

2
1xw1xe

φm+1
i,j,k +

1xe

1X
φm+1
i−1,j,k

)
+Ky

(
1ys

1Y
φm+1
i,j+1,k −

2
1ys1yn

φm+1
i,j,k +

1yn

1Y
φm+1
i,j−1,k

)
+
Kz

1z2

(
φm+1
i,j,k+1− 2φm+1

i,j,k +φ
m+1
i,j,k−1

)
−
aKz

1z

(
φm+1
i,j,k+1−φ

m+1
i,j,k

)
+ a

[
Kx

(
1xwφ

m+1
i+1,j,k − (1xw+1xe)φ

m+1
i,j,k+

1xeφ
m+1
i−1,j,k

)2
+Ky

(
1ysφ

m+1
i,j+1,k − (1ys+1yn)φ

m+1
i,j,k

+1ynφ
m+1
i,j−1,k

)2
+
Kz

1z2

(
φm+1
i,j,k+1−φ

m+1
i,j,k

)2
]

=
aSy

1t

(
φm+1
i,j,k −φ

m
i,j,k

)
, (43a)

1X =1xw1xe(1xw+1xe)/2, (43b)
1Y =1ys1yn(1ys+1yn)/2, (43c)

where φmi,j,k is the hydraulic head in the unsaturated zone at
a nodal point (i, j , k); superscriptm represents one time step
earlier than the present time denoted as superscript m+ 1;
1xw, 1xe, 1yn and 1ys are grid sizes beside a nodal point
(i, j , k) in the west, east, north and south, respectively; 1z
is the grid size on the z-axis; 1t is the time step. Note that
Eq. (43) reduces to the discretized expression of Eq. (6) when
the quadratic terms are neglected. Similarly, Eq. (1) is ap-
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proximated as

Kx

(
1xw

1X
hm+1
i+1,j,k −

2
1xw1xe

hm+1
i,j,k +

1xe

1X
hm+1
i−1,j,k

)
+Ky

(
1ys

1Y
hm+1
i,j+1,k −

2
1ys1yn

hm+1
i,j,k +

1yn

1Y
hm+1
i,j−1,k

)
+
Kz

1z2

(
hm+1
i,j,k+1− 2hm+1

i,j,k +h
m+1
i,j,k−1

)
=
Ss

1t

(
hm+1
i,j,k −h

m
i,j,k

)
, (44)

where hmi,j,k is the hydraulic head in the saturated zone at a
nodal point (i, j , k). The initial condition for each nodal point
is expressed as

φ1
i,j,k = h

1
i,j,k = 0 at each (i,j,k). (45)

The no-flow condition specified at the outer boundaries
shown in Fig. 2a and the bottom can be written as

φm+1
i−1,j,k = φ

m+1
i+1,j,k and hm+1

i−1,j,k = h
m+1
i+1,j,k at i = 1, nx, (46)

φm+1
i,j−1,k = φ

m+1
i,j+1,k and hm+1

i,j−1,k = h
m+1
i,j+1,k at j = 1, ny, (47)

hm+1
i,j,k−1 = h

m+1
i,j,k+1 at k = 1, (48)

where nx and ny are the total number of grids on the x- and
y-axes, respectively. The top boundary condition is approxi-
mated as φm+1

i,j,k−1 = φ
m+1
i,j,k+1 outside the recharge area,

Kze
−ab

1z

(
φm+1
i,j,k+1−φ

m+1
i,j,k

)
= I inside the recharge area

at k = nz, (49)

where nz is the total number of grids on the z-axis. The grid
sizes1xw,1xe,1ys, and1yn are all 5 m inside the recharge
area, while outside the area they gradually increase according
to the formulas 1xe = 1.21xw and 1yn = 1.21ys starting
from 1xw =1ys = 5 m and 1xe =1yn = 1.2× 5 m= 6 m.
Note that the largest grid size is set equal to 25 m for good ac-
curacy in solution prediction. The grid size1z is set to 0.1 m
and the time step 1t is chosen as 0.1 days for the period of
0–2.5 days and 0.25 days for 2.5–100 days. The total num-
ber of nodal points is 327 789. The values of the hydraulic
parameters are shown in Table 1.

The head solution to the nonlinear model of Eqs. (43)–
(49) is obtained by an iteration method. Initially, the
quadratic terms in Eq. (43) are assumed as Kxg

(n−1)
x G

(n)
x +

Kyg
(n−1)
y G

(n)
y +Kzg

(n−1)
z G

(n)
z with

G(n)x =1xwφ
m+1,(n)
i+1,j,k − (1xw+1xe)φ

m+1,(n)
i,j,k

+1xeφ
m+1,(n)
i−1,j,k , (50a)

G(n)y =1ysφ
m+1,(n)
i,j+1,k − (1ys+1yn)φ

m+1,(n)
i,j,k

+1ynφ
m+1,(n)
i,j−1,k , (50b)

G(n)z = (φ
m+1,(n)
i,j,k+1 −φ

m+1,(n)
i,j,k )/1z, (50c)

g(n−1)
x =1xwφ

m+1,(n−1)
i+1,j,k − (1xw+1xe)φ

m+1,(n−1)
i,j,k

+1xeφ
m+1,(n−1)
i−1,j,k , (50d)

g(n−1)
y =1ysφ

m+1,(n−1)
i,j+1,k − (1ys+1yn)φ

m+1,(n−1)
i,j,k

+1ynφ
m+1,(n−1)
i,j−1,k , (50e)

g(n−1)
z = (φ

m+1,(n−1)
i,j,k+1 −φ

m+1,(n−1)
i,j,k )/1z, (50f)

where superscript (n) represents the nth iteration and gradi-
ents g(n−1)

x , g(n−1)
y , and g(n−1)

z cause a linearized Eq. (43)
because they are known head values from the previous it-
eration. At the first time step (i.e., t =1t , m= 2), the first
iteration solves a system of Eqs. (44)–(49) and the linearized
Eq. (43) with g(0)x = g

(0)
y = g

(0)
z = 1 and obtains the numer-

ical solution of φ2,(1)
i,j,k at each nodal point. The second iter-

ation obtains φ2,(2)
i,j,k with updated values of g(1)x , g(1)y , and

g
(1)
z from the previous result of φ2,(1)

i,j,k . Repeat this itera-
tion process for n≥ 3 until the convergence condition of∣∣∣φ2,(n)
i,j,k −φ

2,(n−1)
i,j,k

∣∣∣< 10−4 at each nodal point in the unsat-

urated zone is satisfied. The last result of φ2,(n)
i,j,k is therefore

the head solution to the nonlinear model. Similarly, the itera-
tion process is applied to obtain φm,(n)i,j,k for m≥ 3 at the other
time steps (i.e., t = 21t , 31t, . . .) with the convergence con-
dition

∣∣∣φm,(n)i,j,k −φ
m,(n−1)
i,j,k

∣∣∣< 10−4. Note that the first itera-

tion at each time step calculates g(0)x , g(0)y , and g(0)z using
φ
m,(n)
i,j,k obtained at the previous time step.

3 Results and discussion

The default values of the parameters and variables used in
the calculation of the present solution are listed in Table 1.
In Sect. 3.1, the error arising from neglecting the process of
infiltration in the unsaturated zone is examined. In Sect. 3.2,
the recharge efficiency associated with the properties of the
unsaturated zone is investigated. In Sect. 3.3, the sensitiv-
ity analysis of the hydraulic head in the unsaturated zone
in regard to various hydraulic parameters is discussed. In
Sect. 3.4, the present solution is compared with a finite-
difference solution. In Sect. 3.5, the present solution is ap-
plied to a field problem of artificial recharge.

3.1 Effect of unsaturated flow on head distributions in
aquifers

Here we investigate the difference between the present so-
lution and Chang et al.’s (2016) analytical solution to ex-
plore the effect of unsaturated flow on the head distribu-
tions in the aquifer. Chang et al.’s (2016) solution consid-
ers 3-D saturated flow in an unconfined aquifer with local-
ized recharge but neglects the effect of unsaturated flow. One
might expect that the difference will mainly be dominated by

www.hydrol-earth-syst-sci.net/22/3951/2018/ Hydrol. Earth Syst. Sci., 22, 3951–3963, 2018



3958 C.-H. Chang et al.: Analysis of three-dimensional unsaturated–saturated flow

Table 1. Default values of variables and hydraulic parameters.

Notation Default value (unit) Definition

a 0.5 m−1 Unsaturated exponent in Gardner’s model for soil characteristics
(b, B) (10 m, 20 m) Initial thicknesses of unsaturated and saturated zones, respectively
C None Specific moisture capacity
d 50 m Shortest distance between the edge of recharge area and observation point
h None Hydraulic head in saturated zone
I 0.1 m d−1 Recharge rate
kr None Relative hydraulic conductivity
(Kx , Ky , Kz) (10 m d−1, 10 m d−1, 1 m d−1) Saturated hydraulic conductivity in x, y, and z directions, respectively
(l, w) 50 m Half of width of recharge area in x and y directions, respectively
(Ss, Sy ) (10−5 m−1, 0.2) Specific storage and specific yield, respectively
t None Time
(x, y, z) None Cartesian coordinates
φ None Hydraulic head in unsaturated zone
(b, l, w) (0.5, 1, 1) (b/B, l/d , w/d)
(h, φ, t) None (h/B, φ/B, Kx t/(Ssd

2))
(x, y, z) None (x/d, y/d, z/B)
(α, κy , κz) (10, 1, 0.625) (aB, Ky/Kx , Kzd2/(KxB

2))
(ξ , σ ) (0.1, 1000) (I/Kz, Sy/(SsB))

Figure 3. Temporal distributions of the dimensionless head in the
saturated zone predicted by the present solution and Chang et
al.’s (2016) solution for different pairs of (α, b) representing the
effect of unsaturated flow.

the magnitudes of parameters α (dimensionless unsaturated
exponent) and b (dimensionless unsaturated thickness). Fig-
ure 3 displays the predicted temporal head distributions at
(x, y, z)= (2,0,−0.5) by their solution and the present so-
lution, Eq. (36b), for different pairs of (α, b) with α = 102 or
103 and b from 10−3 to one. Significant difference in h pre-
dicted by both solutions can be seen except for the cases (α,

b)= (102,10−1), (103, 10−1), and (103, 10−2) shown in the
figure. The result indicates that the thickness of the unsatu-
rated zone is less than 10 % of the saturated aquifer thickness
(i.e., b ≤ 0.1) for obtaining close predictions from both so-
lutions. When b = 10−2, both solutions disagree if α = 102

and agree well if α = 103, indicating that the magnitude of
the product αb (= ab) should at least be 10 (i.e., αb ≥ 10)
for good agreement of both solutions. It is worth noting that
both solutions disagree even for a much thinner unsaturated
zone as compared with the aquifer (i.e., b = 10−3) because
of αb < 10. Additionally, the curves for α = 10 all disagree
with Chang et al.’s (2016) solution, whereas the curves for
α = 104 match with this solution except for two cases where
(α, b)= (104,0.5) and (104, 1) (not shown in the figure).
Judging from the above, one can recognize that the effect of
unsaturated flow on the predicted head in saturated aquifers
is negligible when αb ≥ 10 and b ≤ 0.1. A great number of
existing analytical solutions ignoring unsaturated flow give
accurate predictions only when those two inequalities are sat-
isfied (e.g., Chang and Yeh, 2007; Illas et al., 2008; Bansal
and Teloglou, 2013). Otherwise, significant deviations will
happen in their predictions.

3.2 Effect of unsaturated flow on recharge efficiency

The effect of the unsaturated zone on the RE is explored
based on the curves of the RE versus t shown in Fig. 4 plot-
ted using Eq. (40) for different pairs of (α,b)= (100,0.5),
(10, 0.5), (1, 0.01), (1, 0.5), and (1, 1). For a given t , the
RE increases with α for a fixed b and decreasing b for a
fixed α. After t = 106, the RE approaches an ultimate value
equalling unity when (α,b)= (100,0.5) and (1, 0.01), 0.9
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Figure 4. Temporal distribution curves of the recharge efficiency
(RE) for different pairs of (α, b) representing the effect of unsatu-
rated flow.

when (α,b)= (10,0.5), 0.7 when (α,b)= (1,0.5), and 0.6
when (α,b)= (1,1). Those results imply that the ultimate
recharge efficiency (URE) depends on the magnitudes of
both α and b. Figure 5 illustrates contours of the URE at
t = 107 in the ranges of 0.01≤ b ≤ 1 and 1≤ α ≤ 100. The
URE approaches unity when b < 0.05 or α > 20. In contrast,
it is below 0.9 and related to a given pair (α, b) when b > 0.1
and α < 10. It is clearly seen that the RE is great for a large
α and/or a small b. Those results provide useful information
in the estimation of the amount of water from the recharge
entering the aquifer. Notice that the case of URE < 1 may
be due to the problem that unsaturated flow is influenced by
the water retention capacity and diffusivity in the horizontal
direction.

3.3 Sensitivity analysis for flow in unsaturated zone

Chang et al. (2016) performed the sensitivity analysis to in-
vestigate the sensitivity of the hydraulic head in saturated
aquifers to the change in each of the aquifer parameters.
This section focuses on the sensitivity analysis of the head
in the unsaturated zone. Consider the recharge area of 0≤
x ≤ 50 m and 0≤ y ≤ 50 m and the observation points A at
(0, 0, 5 m) under the area and B at (100 m, 0, 5 m) beside the
area. Other values of the parameters are given in Table 1. The
temporal distribution curves of the normalized sensitivity co-
efficient Si,t predicted by Eq. (42) to each of the parameters
a, l, w, Ss, Sy , Kx , Ky , and Kz are exhibited in Fig. 6a for
point A and Fig. 6b for point B. At a given time, a positive

Figure 5. Contours of the ultimate recharge efficiency (URE) plot-
ted at t = 107 for various values of α and b.

Si,t means that the change in the specific parameter causes
the increase in the head. In contrast, a negative Si,t signifies
that the change leads to the head decrease. The magnitude of
the head remains unchanged when Si,t = 0. Obviously, the
parameters l, w, Sy ,Kx , andKy are important factors affect-
ing the predicted head observed at points A and B, revealing
that those parameters should be included in the flow model.
The head at point A is sensitive to the changes in a and Kz,
but that at point B is insensitive. The result implies that un-
saturated flow prevails under the recharge area but does not
away from the area. In addition, the coefficient Si,t to Ss al-
most equals zero over the entire recharge period, indicating
that the change in Ss does not affect the predicted head in the
unsaturated zone.

3.4 Validation of the present solution

The finite-difference solution to the unsaturated–saturated
flow model based on the nonlinear and linearized versions
of Richards’ equation, Eqs. (5) and (6), has been devel-
oped and described in Sect. 2.6. It is used to validate the
present solution. Figure 7 demonstrates temporal head distri-
butions observed at (25 m, 0, 5 m) and (25 m, 0, −10 m) un-
der the recharge area and at (94.65 m, 0, 5 m) and (94.65 m, 0,
−10 m) beside the area. The figure displays good agreement
on the predicted head distributions from both the solutions.
It is noteworthy that numerous attempts had been made by
scholars to examine the accuracy of the linearized version
of Richards’ equation (e.g., Kroszynski and Dagan, 1975;
Mishra and Neuman, 2010; Liang et al., 2017b). They also
revealed that the linearized equation causes insignificant de-
viation in model predictions. We therefore conclude that the
present solution is correctly developed and fairly predicts the
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Figure 6. Temporal distribution curves of the normalized sensitivity coefficients for the hydraulic head in the unsaturated zone in response
to the change in each of the parameters a, l, w, Ss, Sy , Kx , Ky , and Kz observed at (a) (0, 0, 5 m) under the recharge area and (b) (100 m, 0,
5 m) beside the area.

hydraulic head for the unsaturated–saturated flow induced by
localized recharge.

3.5 Application of the present solution to the field
experiment

Bianchi and Haskell (1968) executed a field experiment
of artificial recharge from two ponds on an alluvial fan
in Fresno County, California. Pond No. 2 was within a
square of 90 m× 90 m on the ground. The average recharge
rate of the pond was 0.107 m d−1. The initial water table
was 6.4 m below the ground and 24.384 m over the im-
pervious aquifer bottom. The entire recharge period was
10.92 days on record. The values of the aquifer parame-
ters obtained from well test data were Kx = 7.925 m d−1

and Sy = 0.022. There are 19 observation data of the wa-
ter table rise beneath the center of the pond versus time
shown in Fig. 8. We apply the least square method us-
ing the Mathematica FindRoot built-in function (Wolfram,
1996) to estimate five parameters a, Kx =Ky , Kz, Ss, and
Sy based on the data and the present solution. The esti-
mated values are a = 0.388 m−1, Kx = 5.642 m d−1, Kz =
1.573 m d−1, Ss = 5× 10−5 m−1, and Sy = 0.102, which are
all in the reasonable ranges of their parameter values; they
are 0.2≤ a ≤ 5 m−1 (Philip, 1969), 8.64× 10−2

≤Kx ≤

864 m d−1, 0.1Kx ≤Kz ≤ 0.33Kx , 10−5
≤ SsB ≤ 10−3, and

0.01≤ Sy ≤ 0.3 for sandy aquifers (Freeze and Cherry, 1979,
p. 604). Figure 8 demonstrates 19 observed data of the wa-
ter table rise, the predictions from Glover’s (1960) solution
with Kx = 7.925 m d−1 and Sy = 0.022 provided in Bianchi
and Haskell (1968), and the present solution with the five
estimated parameters. The Glover solution was developed
by assuming that the flow is radially outward from a circu-

Figure 7. Temporal distributions of the hydraulic head predicted
by the present solution and the finite-difference solution based on
Richards’ equation, Eq. (5), and its linearized version, Eq. (6), ob-
served at (25 m, 0, 5 m) and (25 m, 0, −10 m) under the recharge
area and at (94.65 m, 0, 5 m) and (94.65 m, 0, −10 m) beside the
area.

lar recharge pond with an equivalent area to the square of
90 m× 90 m and the unsaturated flow above water table is
neglected. The predictions from the present solution agree
well with the observed data, but those from Glover’s solu-
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Figure 8. Comparison of the water table rise predicted by the
present solution and Glover’s (1960) solution with field-observed
data given in Bianchi and Haskell (1968).

tion do not, indicating that the effect of unsaturated flow had
better be considered because αb = 2.48 and b = 0.26 in this
case do not satisfy the condition of αb ≥ 10 and b ≤ 0.1 con-
cluded in Sect. 3.1. From those discussed above, the present
solution has been shown to be applicable to a real-world
problem for unsaturated–saturated flow due to a recharge
pond.

4 Concluding remarks

This study develops a novel mathematical model depicting
3-D unsaturated–saturated flow for the process that surface
water recharge passes through an unsaturated zone and flows
down to an unconfined aquifer. The Richards equation is
considered to delineate unsaturated flow induced by infiltra-
tion due to recharge from the ground surface. The Gardner
model is used to describe the unsaturated soil characteristics.
The transient groundwater flow equation is then employed
to describe the rise of the hydraulic head in the aquifer in
response to the water flow from the unsaturated zone. Both
equations are coupled by the continuity equations of the head
and flux at the water table. The head solution to the model is
derived by means of the Laplace transform and Fourier co-
sine transform. The recharge efficiency defined as the per-
centage of the water from the recharge down to the aquifer
is clearly discussed. The sensitivity analysis is performed to
investigate the head response to the change in each of the hy-
draulic parameters in the unsaturated zone. The present solu-
tion agrees well with the finite-difference solution in predict-

ing the time-varying head for the unsaturated–saturated flow
model. In addition, the present solution is applied to study the
observed data from a field experiment conducted by Bianchi
and Haskell (1968). On the basis of the studies obtained from
the present solution, the following conclusions can be drawn.

The effect of unsaturated flow on the hydraulic head in the
aquifer is ignorable when the product of the unsaturated ex-
ponent (a) and initial unsaturated thickness (b) is greater than
10 (i.e., ab ≥ 10) and the unsaturated thickness is less than
10 % of the initial aquifer thickness (B) (i.e., b/B ≤ 0.1).
Otherwise, the effect should be considered to avoid large de-
viations in calculating the head in the aquifer. Existing mod-
els considering only saturated flow can predict accurate re-
sults only when these two inequalities are satisfied.

The recharge efficiency initially equals zero, increases
with time, and finally approaches a constant value (below
or equal to unity) depending on the values of α(= aB) and
b(= b/B).

The ultimate recharge efficiency approaches unity when
b < 0.05 or α > 20 but less than 90 % when b > 0.1 and
α < 10. In other words, the surface source supplies more
recharge water to the aquifer if the unsaturated zone has a
large α and/or a small b.

The results of the sensitivity analysis indicate that the pa-
rameter a, l, or w causes positive influence but Sy , Kx , Ky ,
or Kz produces negative impact on the predicted head in the
unsaturated zone. The head under the recharge area is sensi-
tive to the changes in a and Kz, but that beside the area is
not. Moreover, the head is rather insensitive to the change in
Ss.
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