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Abstract. Decision making on water resources management
at ungauged, especially large-scale watersheds relies on hy-
drological modeling. Physically based distributed hydrolog-
ical models require complicated setup, calibration, and val-
idation processes, which may delay their acceptance among
decision makers. This study presents an approach to develop
a simple decision support tool (DST) for decision makers and
economists to evaluate multiyear impacts of land use change
and best management practices (BMPs) on water quantity
and quality for ungauged watersheds. The example DST de-
veloped in the present study was based on statistical equa-
tions derived from Soil and Water Assessment Tool (SWAT)
simulations and applied to a small experimental watershed
in northwest New Brunswick. The DST was subsequently
tested against field measurements and SWAT simulations
for a larger watershed. Results from DST could reproduce
both field data and model simulations of annual stream dis-
charge and sediment and nutrient loadings. The relative er-
ror of mean annual discharge and sediment, nitrate–nitrogen,
and soluble-phosphorus loadings were − 6, −52, 27, and
−16 %, respectively, for long-term simulation. Compared
with SWAT, DST has fewer input requirements and can be
applied to multiple watersheds without additional calibra-
tion. Also, scenario analyses with DST can be directly con-
ducted for different combinations of land use and BMPs
without complex model setup procedures. The approach in

developing DST can be applied to other regions of the world
because of its flexible structure.

1 Introduction

Pollution from nonpoint sources poses a significant threat
to ecosystems and plant and animal communities (Vörös-
marty et al., 2010). Nonpoint sources of sediment, nutri-
ents, and pesticides, primarily from agricultural lands, have
been identified as major contributors to water quality degra-
dation (Zhang et al., 2004; Ongley et al., 2010). These
pollutants are difficult to control because they come from
many sources (Quan and Yan, 2001). Practices such as
strip cropping, terracing, crop rotation, and nutrient manage-
ment can be developed to prevent soil erosion and reduce
the movement of nutrients and pesticides from agricultural
lands to aquatic ecosystems (D’Arcy and Frost, 2001). These
pollution-prevention methods, known as best management
practices (BMPs), are intended to minimize the negative en-
vironmental impact of agricultural activities, while maintain-
ing land productivity. Reliable information on the impacts
of land use change and BMPs on water quantity and qual-
ity is critical to watershed management (Panagopoulos et al.,
2011).
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Many studies have been conducted to evaluate the impact
of land use change and BMPs on water quality based on
field experiments (Novara et al., 2011; Pimentel and Krum-
mel, 1987; Sadeghi et al., 2012; Turkelboom et al., 1997; Ur-
bonas, 1994). Monitoring systems have been established to
assess the impact of land use change and BMPs on water re-
sources in order to capture the spatial and temporal variation
in soil, climate, and topographic conditions in watersheds
(Veldkamp and Lambin, 2001). Statistical models developed
from field data from small watersheds are usually assumed
to apply to large watersheds (Blöschl and Sivapalan, 1995;
Blöschl and Grayson, 2001). Although it is not difficult to
quantify soil erosion and chemical loadings in experimental
plots, it is time-consuming and expensive (Mostaghimi et al.,
1997). Clearly, it is not practical to conduct field experiments
for every possible combination of land use and BMPs, under
different biophysical conditions. As a result, it is unlikely
sufficient field data could be obtained to develop manage-
ment plans and conduct cost–benefit analyses. In addition,
statistical models could potentially be derived from exper-
iments; however, it is difficult to establish cause-and-effect
relationships between BMPs and water quality variables un-
der varied biophysical conditions or to quantify the impact of
combined land use and BMPs on water quality at the water-
shed scale (Renschler and Lee, 2005).

Process-based models of hydrology can be used to ex-
trapolate field data to fill data gaps (Borah and Bera, 2003,
2004; Singh, 1995; Singh and Woolhiser, 2002; Singh and
Frevert, 2005). These process-based models provide quanti-
tative information that is usually difficult to obtain from field
experiments (Borah et al., 2002). For example, ANSWERS
(Beasley et al., 1980), CREAMS (Knisel, 1980), GLEAMS
(Leonard et al., 1987), AGNPS (Young et al., 1989), EPIC
(Sharpley and Williams, 1990), and the Soil and Water As-
sessment Tool (SWAT; Arnold et al., 1998) have been used
to understand surface runoff, soil erosion, nutrient leaching,
and pollutant-transport processes. However, these process-
based models require extensive input data and complex cal-
ibration procedures (Liu et al., 2015); watersheds with suf-
ficient data to calibrate and validate these models are nor-
mally small, resulting in lack of representation at large spatial
scales. Furthermore, once a model is calibrated, parameters
become watershed-specific, which cannot be easily extended
to other watersheds. In addition, these models require spe-
cialized expertise, which prevents nonexpert decision makers
and economists using them (Viavattene et al., 2008).

A decision support tool could be developed by combining
“decision rules” with geographic information systems (GISs)
for water quality assessment in large ungauged watersheds.
The “decision rules” could be based on regression equa-
tions derived from field experiments (Renschler and Harbor,
2002), or they could be defined simply as constants based
on expert knowledge. Alternatively, simulations from a well-
calibrated hydrological model could be used to develop sta-
tistical equation-based “decision rules”. Apart from defining

“decision rules” at each grid cell, to assess water quantity
and quality in streams or at subbasin and watershed outlets,
the decision support tool should consider discharge, sedi-
ment, and nutrient routing within the watershed. For exam-
ple, a commonly used routing method for sediments is the
sediment–delivery ratio (SDR) method, which is widely em-
ployed in many GIS-based erosion models (May and Place,
2010; Wilson et al., 2001; Zhao et al., 2010). For discharge,
a simple summation routing at the outlet produces accept-
able accuracy for small- and medium-sized watersheds, con-
sidering that there is negligible water losses from surface
runoff and streamflow. For large watersheds, water losses are
generally greater. These water losses can be estimated using
simple linear equations. The annual export of nutrients from
watersheds (via the nutrient–delivery ratio) has been stud-
ied empirically in many studies as nutrient loading per land
area (Endreny and Wood, 2003; Beaulac and Reckhow, 1982;
Reckhow and Simpson, 1980).

A decision support tool developed based on “decision
rules” is generally flexible and easy for decision makers and
economists to use (Endreny and Wood, 2003). However, their
practicality in normal circumstances, particularly with re-
spect to their level of accuracy, needs to be evaluated. In
addition, to provide sufficient “decision rules” with reason-
able accuracy, fully validated hydrological models are re-
quired to be able to fill data gaps in field experiments. The
present study used SWAT to provide modeled data in the
development of the decision support tool. The main objec-
tive of the present study is to develop a simple decision sup-
port tool with the intent to evaluate the impact of land use
change and BMPs on water resources in a large ungauged
watershed in New Brunswick, Canada. This paper presents
the development and testing of a decision support tool us-
ing data from two watersheds in the potato belt of New
Brunswick: one small experimental watershed, with exten-
sive monitoring and field survey data, and a larger watershed
containing the smaller watershed. Specifically, this involves
(1) setting up, calibrating, and validating SWAT for a small
experimental watershed; (2) developing statistical equations
relating water quality and quantity variables with weather,
soil, land use information based on SWAT simulations for
different combinations of land use and BMPs; (3) integrat-
ing the statistical equations into a decision support tool with
the aid of ArcGIS; and (4) testing the decision support tool
against field measurements and model simulations of stream
discharge, sediment, and nutrient loadings for a large water-
shed.

2 Materials and methods

2.1 Study sites and data collection

The large watershed of this study is the Little River water-
shed (LRW), located in the upper Saint John River valley

Hydrol. Earth Syst. Sci., 22, 3789–3806, 2018 www.hydrol-earth-syst-sci.net/22/3789/2018/



J. Qi et al.: Developing a decision support tool for assessing land use change in ungauged watersheds 3791

Figure 1. Location of the Little River watershed (LRW) and Black
Brook watershed (BBW) in New Brunswick (NB), Canada and
water-monitoring stations no. 01 and no. 12 as well as weather
stations no. 08 and St. Leonard. Elevations and subbasins are also
shown for LRW.

of northwestern New Brunswick, Canada (Fig. 1). It covers
an area approximately 380 km2 with a mixture of agricul-
tural (16.2 %), forest (77 %), and residential (6.8 %) land uses
(Xing et al., 2013). Elevation in the watershed ranges from
127 to 432 m a.m.s.l. (above mean sea level) (Fig. 1). The
soil in the study sites is classified as mineral, derived from
various parent materials. The major associations are Cari-
bou, Carleton, Glassville, Grandfalls, Holmesville, McGee,
Muniac, Siegas, Thibault, Undine, Victoria, Waasis, and one
organic soil (Fig. 2). The study site belongs to the upper
Saint John River valley ecoregion in the Atlantic Maritime
Ecozone (Marshall et al., 1999). The climate of the region
is considered to be moderately cool boreal with approxi-
mately 120 frost-free days, annually (Yang et al., 2009).
Daily maximum and minimum temperatures are 24 (in July)
and −18.1 ◦C (in January) based on Canadian Climate Nor-
mal station data at St. Leonard (http://climate.weather.gc.ca/
climate_normals, last access: 15 July 2018). The average
temperature is 3.7 ◦C and annual precipitation is 1037.4 mm
(Zhao et al., 2008). About one-third of the precipitation is
in the form of snow. Snowmelt leads to major surface runoff
and groundwater recharge events from March to May (Chow
and Rees, 2006). The land use and soil maps in the setup of
SWAT for LRW were derived from publicly available data
(Department of Energy and Resource Development – ERD,
New Brunswick; Fig. 2).

The small experimental watershed of the study is the Black
Brook Watershed (BBW), a subbasin of LRW (Fig. 1). The
BBW has been studied extensively for more than 20 years to
evaluate the impact of agriculture on soil erosion and water
quality (Li et al., 2014; Chow and Rees, 2006). The water-
shed covers an area of 14.5 km2, with 65 % being agricul-

Figure 2. Slope classes created using a 10 m resolution lidar (light
detection and ranging)-based DEM (digital elevation model), soil
and land use maps, and land use IDs in SWAT (see Table 2 for land
use ID meaning).

ture land, 21 % forest land, and 14 % residential areas and
wetlands. Slopes vary from 1–6 % in the upper basin to 4–
9 % in the central area. In the lower portion of the water-
shed, slopes are more strongly rolling at 5–16 %. Soil surveys
(1 : 10000 scale) identified six mineral soils, namely Grand-
falls, Holmesville, Interval, Muniac, Siegas, and Undine, and
one organic soil, St. Quentin (Mellerowicz, 1993).

A water-monitoring station was established at the outlet of
BBW in 1992 (MS no. 01; Fig. 1) and another (MS no. 12) at
the outlet of LRW in 2001. At these stations, V-notch weirs
were installed, and the stage height of the water was recorded
using a Campbell Scientific CR10X data logger. Stage height
values were converted to total flow rates with a calibration
curve function (Chow et al., 2011). Water samples were col-
lected with an ISCO automatic sampler. Sampling frequency
was set at one sample every 72 h when runoff was absent.
During runoff events, sampling frequency was increased to
one sample for every 5 cm change in stage height. Sam-
ples were analyzed for concentration of suspended solids,
nitrate–nitrogen (NO3–N), and soluble-phosphorus (Sol–P).
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Table 1. Datasets in SWAT setup, calibration, and validation for BBW and LRW.

Dataset BBW LRW

Lidar DEM resolution 1 m 10 m
Soil map Survey (1993) ERD
Land use maps Survey (1992–2011) ERD (one map)
Precipitation, temperature, relative humidity, and wind speed St. Leonard (1992–2011) St. Leonard (2001–2010)
Solar radiation WS no. 08 (1992–2011) WS no. 08 (2001–2010)
Contour tillage operation (spring and fall) Survey (1992–2011) Only for potato and barley (2001–2010)
Fertilizer application Survey (1992–2011) Estimated from BBW (2001)
Crop rotation Survey (1992–2011) Potato–barley (2001–2010)
Terraces and grassed waterways Survey (1992–2011) Negligible
Discharge, sediment, NO3-N, and Sol-P MS no. 01 (1992–2011) MS no. 12 (2001–2010)

Detailed description of data collection procedures and sam-
ple analyses can be found in Chow et al. (2011). Weather data
including daily precipitation, air temperature, relative humid-
ity, and wind speed were acquired from the St. Leonard En-
vironment Canada weather station (http://climate.weather.gc.
ca, last access: 15 July 2018), located approximately 5 km
northwest of BBW (Fig. 1). The daily average relative hu-
midity and wind speed were calculated based on averaging
hourly values. Since this weather station did not monitor
daily solar radiation, the study used solar radiation collected
from a weather station located approximately 10 km south-
east of BBW (WS no. 08; Fig. 1).

2.2 SWAT setup, calibration, and validation for BBW
and LRW

A modified version of SWAT has been developed for cold
regions (Qi et al., 2016a, b, 2017a, b), and it was used for
the BBW and LRW in this study. Detailed model setup,
calibration, and validation for BBW can be found in Qi
et al. (2017b). Specific model inputs for both watersheds
are provided in Table 1. The same weather data were
used for both watersheds (Table 1). The digital elevation
model (DEM) for LRW and BBW were both based on high-
resolution lidar (light detection and ranging) data; the first
was created at 10 m and the second at 1 m resolution. The
LRW was delineated into 32 subbasins from which their
topographic characteristics were defined (Fig. 1). The soil
types and slopes, which were classified into five separate
classes, are illustrated in Fig. 2 for LRW. After combining
the soil, slope, and land use maps through the ArcSWAT-
interface function, 362 HRUs were subsequently created for
LRW (based on thresholds: 10, 15, and 20 % for land use,
soil, and slope).

Since only one land use map was available for LRW (Ta-
ble 1), assumptions were made based on information avail-
able on land use and management records for BBW to adjust
the SWAT-management files for LRW as follows:

Table 2. Land use and land use groups for BBW and LRW.

Land use groups Land use ID Land use type
in SWAT

General crops AGRL Agricultural land – generic
CANA Canola
CRON Corn
FPEA Field peas
POTA Potato

Grains BARL Barley
OATS Oats
PMIL Millet
RYE Rye
SWHT Spring wheat
WWHT Winter wheat

Grasses BERM Bermuda grass
CLVR Clover
HAY Hay
PAST Past
RYEG Ryegrass
TIMO Timothy

Forestry FRSD Forest – deciduous
FRSE Forest – evergreen
FRST Forest – mixed
RNGB Range – bush
WETF Wetlands – forested
WETN∗ Wetlands – no forest

Nonvegetated lands URMD Residential
UTRN Transportation
UIDU∗ Industrial

Note: “∗” indicates unique land use types to LRW not present in BBW and, therefore,
unaccounted for in the development of the decision support tool.

1. Potato–barley rotations were assigned to the land use
ID POTA (Table 2); for other land use IDs, a single crop
was considered.

2. Fertilizers were applied only to potato and barley
fields, and fertilizer amounts and N : P (nitrogen-to-
phosphorus) ratios were averaged for potato and barley
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fields over the entire watershed, based on 2001 survey
data from BBW.

3. Contour tillage was applied only to potato and barley
fields.

4. It was assumed that flow diversion terraces (FDTs) and
grassed waterways in LRW were not used. It is worth
noting that these four assumptions serve as a baseline
scenario for the assessment of FDT in LRW.

To evaluate the global performance of the decision sup-
port tool for LRW, related land use and management files
were prepared and accessed by SWAT. For the purpose of
comparison, simulations with SWAT were produced in an
initial application by setting the adjustable parameters of the
model to their default values, and in a second application by
setting the parameters according to values produced with a
watershed-specific model calibration to BBW. This approach
with model parameterization is widely accepted when apply-
ing SWAT to large ungauged watersheds (Panagopoulos et
al., 2011).

2.3 Decision rules

The decision support tool was designed to use the “decision
rules” to estimate annual discharge and sediment and nutrient
loadings from individual grid cells:

A=

n∑
i=1

DRi ·Ai, (1)

where A is the annual discharge or sediment and nutrient
loadings at the outlet of the watershed, and DRi and Ai are
the delivery ratios and annual discharge or loadings, respec-
tively, for grid cell i. For the present study, statistical equa-
tions derived from simulations of the calibrated version of
SWAT for BBW were defined as the “decision rules” in the
decision support tool.

2.3.1 Land use groups and BMP scenarios

In statistical equation development, land uses in BBW (24, in
total) were first classified into five land use groups according
to their influences on hydrological processes (Table 2). Note
that water land use type (WATR) was not used due to its small
overall coverage (Fig. 2). As for watershed management, we
considered three main BMPs, i.e.,

1. FDT+ contour tillage,

2. contour tillage only, and

3. no-BMP (without FDT and contour tillage).

The calibrated version of the enhanced SWAT for BBW
was used to generate annual outputs based on HRUs
from 1992 to 2011. The model was run 3 times to generate
the BMP-specific data for statistical equation development.

2.3.2 Explanatory variables selection

Explanatory candidate variables must be physically mean-
ingful in hydrological and biochemical processes. It is worth
noting that both continuous and categorical variables were
included in the regression equation. The land use groups
were the only categorical variable, and the remaining were
all continuous variables. To detect significant predictors, the
analysis of covariance (ANCOVA) was used. It requires at
least one continuous and one categorical explanatory vari-
able and is used to identify the major interaction of predictor
variables. By including continuous variables, the method can
reduce the variance of error to increase the statistical power
and precision in estimating categorical variables (Keselman
et al., 1998; Li et al., 2014). Inclusion of interaction terms in
these regression models dramatically increased model per-
formance.

In the present study, we only considered interactions be-
tween two explanatory variables at a time. Student t tests
were conducted to examine the statistical significance of each
level of land use groups and their interaction with the vari-
ous continuous variables. When one level of land use groups
(e.g., grains; Table 2) did not significantly correlate with wa-
ter quality or quantity, or there were nominal interactions
between a given level and other explanatory variables, this
particular level of land use groups would be combined with
other levels of land use groups until all new levels of land use
groups were statistically significant.

Multiple linear regression analyses were used to relate an-
nual total discharge (mm) and sediment (t ha−1), NO3–N
(kg ha−1), and Sol–P (kg ha−1) loadings to the explanatory
variables. These work was conducted in R (Ihaka and Gen-
tleman, 1996). Only six continuous explanatory variables
were determined for the specification of the statistical mod-
els. Annual precipitation (PCP), annual mean air tempera-
ture (TMP), and mean saturated hydraulic conductivity of
soil (SOL_K) were common to the dependent variables (i.e.,
total discharge and sediment, NO3–N, and Sol–P loadings).
The LS factor (USLE_LS) and annual N and P application
rates (N_APP and P_APP) were unique to the equations ad-
dressing sediment, NO3–N, and Sol–P loading.

2.3.3 Delivery ratio definition

The LS factor of the universal soil loss equation (USLE) was
determined by slope gradient (slp) and slope length (L) of
individual HRUs:

USLE_LS=
{

L

22.1

}m

·

(
65.41 · sin2(a)+ 4.56 · sin(a)

+0.065) , (2)

where m is the equation exponent and a is the angle of the
slope (in degrees). The exponent m is calculated by

m= 0.6 · (1− exp[−35.835 · slp]), (3)
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where slp is in units of meters per meter (m m−1). For the de-
cision support tool, slope length L equal to the length of the
grid side and slope gradient was determined by the Slope tool
in ArcGIS. The sediment–delivery ratio was not considered
in the decision support tool application to BBW. We assumed
that annual sediment loadings from grid cells in the decision
support tool were all exported to the outlet of BBW. How-
ever, when the decision support tool was applied to LRW, the
sediment–delivery ratio was used to correct estimates of sed-
iment loading at the watershed outlet. The sediment loadings
at the outlet of LRW (sed) were determined by

sed= SDR · sed∼, (4)

where sed∼ is the sediment loading calculated with the sed-
iment loading equation (one for each BMP and land use
group), and SDR is determined by the following (Vanoni,
1975):

SDR= 0.37 ·D−0.125, (5)

where D (km−2) is the drainage area. For annual discharge
and nutrient loadings, we assumed their delivery ratios are
equal to 1.0 for all grid cells in LRW.

2.4 Decision support tool assessment

Inputs to the decision support tool included the six continu-
ous explanatory variables and land use groups as well as in-
formation on management practices, e.g., contour tillage and
FDT implementation. Simulations from each grid cell were
summarized at the outlet of the study watersheds. We first
tested the impact of cell size on simulations of water quan-
tity and quality at the outlet of BBW. The cell size range was
determined by considering different farmland sizes in the
watershed. We assumed that farmland-based grid cells can
sufficiently represent basic hydrological processes, land use
change, and management practice implementations for hy-
drological modeling. Simulated annual water flow and sed-
iment and nutrient loadings with the decision support tool
were compared with those produced with the calibrated ver-
sion of the enhanced SWAT. Subsequently, the decision sup-
port tool was applied to LRW, and the simulations were com-
pared with the results of the uncalibrated and calibrated ver-
sions of SWAT. The purpose of this was to test if the decision
support tool (i.e., land use and BMP assessment tool; LBAT)
performed better, or at least as well, as both the uncalibrated
and calibrated version of SWAT.

Model performance in terms of water quantity and quality
at the outlet of the study watersheds was assessed based on
the coefficient of determination (R2) and relative error (RE),

Figure 3. LBAT-produced simulations of annual stream discharge
and sediment, NO3–N, and Sol–P loadings determined for different
DEM grid-cell sizes (i.e., 25, 50, 100, 200, and 400 m).

i.e.,

R2
=


n∑

i=1

(
Oi −Oavg

)
·
(
Pi −Pavg

)
[

n∑
i=1

(
Oi −Oavg

)2
·

n∑
i=1

(
Pi −Pavg

)2]0.5


2

,

RE=

(
Pavg−Oavg

)
Oavg

· 100%, (6)

where Oi , Pi , Oavg, and Pavg are the observed and predicted
and averages of the observed (O) and predicted (P ) values.

2.5 FDT assessment in LRW

A series of FDT-implementation scenarios were set up for
LBAT based on six slope classes to assess the impact of FDT
on water quantity and quality on agricultural lands in LRW
(Fig. 3; Table 3). From scenarios one (S1) to six (S6), the to-
tal area protected by FDT gradually increased until all agri-
cultural lands were protected (Table 3). Mean annual simu-
lations of total discharge and sediment, NO3–N, and Sol–P
loadings from LRW from 2001 to 2010 were compared with
those of the baseline scenario (FDT= 0 %) for each scenario
using two performance indicators, i.e., mean difference (MD)
and percentage relative difference (PRD), given as follows:

1. MD= output with FDT− output without FDT, and

2. PRD (%)=MD/output without FDT× 100.
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Table 3. Slope classes and corresponding areas in the agricultural
land of LRW.

Scenario Slope (%) Area Agricultural
protected lands (%)

by FDT
(ha)

S1 ≥ 5 624 10
S2 ≥ 4 1328 22
S3 ≥ 3 2224 37
S4 ≥ 2 3680 61
S5 ≥ 1 5360 89
S6 ≥ 0 6048 100

3 Results and discussion

3.1 Statistical equations (decision rules)

3.1.1 Model structure and coefficients

Linear regression equations and their explanatory variables
for annual discharge and sediment, NO3–N, and Sol–P load-
ings under different combinations of land use groups and
BMP scenarios are provided in Tables 4 and 5. In total, three
discharge models (Dis1, Dis2, and Dis3) and five sediment
(Sed1_1, Sed1_2, Sed1_3, Sed2, and Sed3), NO3–N (N1_1,
N1_2, N1_3, N2, and N3), and Sol–P (P1_1, P1_2, P1_3,
P2, and P3) loading models were developed. Data transfor-
mations (via logarithm and power transformations) were ap-
plied to sediment, NO3–N, and Sol–P loadings to meet the
assumption of normality in multiple regression analysis (Ta-
ble 4). The contour tillage and FDT were applied only to agri-
cultural lands (including general crops, grains, and grasses;
Table 4). For the no-BMP scenario, three separate sediment,
NO3–N, and Sol–P loading models were developed for agri-
cultural lands, nonvegetated lands, and forestry, and one dis-
charge model (Dis1) for all land use groups (Table 4). It is
worth noting that the sediment loading model, Sed3, was a
modified version of Sed1_1 (multiplied by TERR_P) for the
FDT+ contour tillage scenario (Table 4), and the values of
TERR_P (Qi et al., 2017b) used for Sed3 were the same as
the calibrated values in SWAT for BBW (Qi et al., 2017b).
Also, NO3–N and Sol–P loadings (N1_2 and P1_2) for non-
vegetated lands were determined as constants, which were
equal to the calculated means of NO3–N and Sol–P loadings
determined by SWAT (i.e., 24 and 0.61 kg ha−1, respectively;
Table 4).

In model development, three new land use groups
(i.e., land-use-groups_1, land-use-groups_2, and land-use-
groups_3) were formulated by combining general crops,
grains, and grasses (Tables 4 and 5). For example, land-use-
groups_2 was derived by combining general crops, grains,
and grasses on total discharge (i.e., Dis1 model). Individ-
ual model structures are shown in Table 4, whereas the ex-

planatory variables for these models appear in Appendix A.
The coefficients estimated for the explanatory variables and
their interactions, and their t-test results are also shown in
Appendix A. Most of the p values for these explanatory
variables were < 0.001, except for several that were be-
tween 0.001 and 0.08, which were also taken as acceptable.

3.1.2 Statistical equation assessment

Simulations based on the statistical equations and the calcu-
lated outputs from individual HRUs for the different BMPs
are compared in Table 6. In general, discharge models were
able to reproduce SWAT simulations for the three BMPs,
with R2 ranging from 0.86 to 0.9. Mean discharge sim-
ulated with the statistical equations was equal to that of
SWAT (Table 6). Mean discharge (636 mm) for the no-BMP-
case (BMP 3) was greater than that for BMPs using contour
tillage and FDTs (619 and 628 mm for BMP 1 and 2, respec-
tively), suggesting that contour tillage and FDTs can cause
evapotranspiration to increase.

Models Sed1_2 and Sed1_3 were able to reproduce sim-
ulations with SWAT (yielding R2

= 0.71 and 0.57, respec-
tively), and simulated mean sediment loadings were close to
that of SWAT (Table 6). Models Sed1_1 and Sed2 tended
to underestimate results from SWAT (Table 6), with an
overall lower mean sediment loading of 10.78 vs. 12.84
and 8.31 vs. 9.4 t ha−1, respectively. Mean sediment load-
ing with Sed3 (0.89 t ha−1) was slightly greater than that of
SWAT (0.84 t ha−1), because Sed3 only took into account
TERR_P, whereas SWAT took into account TERR_CN and
the impact of grassed waterways. Results from the statistical
equations showed that the mean sediment loading for BMP 2
(8.31 t ha−1) was significantly different than that for BMPs 1
and 3, with mean loading of 0.89 and 10.78 t ha−1 (Table 6).
The smallest mean sediment loading (0.09 t ha−1) was found
to occur with the forestry land use grouping (Table 6).

The four NO3–N and Sol–P loading equations explained
∼ 50 % of the variation in the SWAT simulations for the same
variables, with R2 ranging from 0.33 to 0.59 (Table 6). Mean
NO3–N and Sol–P loadings with the statistical equations
were all slightly less than the values produced with SWAT for
the different BMPs (Table 6). Mean NO3–N loadings were
greater for BMP 1 (44 kg ha−1) than those for BMPs 2 and 3
with both giving 39 kg ha−1 (Table 6), due to increased in-
filtration with FDT. Mean Sol–P loading (0.8 kg ha−1) was
less for BMP 3 than for BMP 2 (0.89 kg ha−1), but much
greater than for BMP 1 (0.43 kg ha−1). Although contour
tillage can help reduce sediment loading by modifying mi-
crotopography and reducing erosion runoff (the reason we
set USLE_P < 1), Sol–P transported with surface runoff in-
creased due to reduced residue cover protecting the soil sur-
face during winter and during the snowmelt season. When
FDT was implemented with tillage, however, less surface
runoff was generated due to increased infiltration, leading to
a reduction in Sol–P loading. Mean NO3–N and Sol–P load-
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Figure 4. Impact of grid-cell size on LBAT simulation of sediment
loading. Mean annual sediment loadings and standard errors (verti-
cal bars) from 1992 to 2011 are indicated.

ings for the forestry land grouping (10 vs. 0.06 kg ha−1) were
much less than those of the crop groups (including general
crops, grains, and grasses), 39 vs. 0.8 kg ha−1 (Table 6).

3.2 LBAT assessment

3.2.1 Impact of grid cell size on LBAT simulation

Simulations of water quantity and quality by LBAT with
different grid-cell sizes (i.e., 25, 50, 100, 200, and 400 m)
for BBW are shown in Fig. 3. Statistical tests indicated
that grid-cell size had a significant effect on sediment load-
ing (p value < 0.01), with no effect observed for discharge
and NO3–N and Sol–P loadings (p values > 0.99). Increas-
ing cell size (i.e., slope length) increased sediment loading.
However, the mean slope gradient was reduced. As a result,
the mean sediment loadings were correlated nonlinearly with
cell size, as shown in Fig. 4. The highest mean sediment load-
ing was found with a cell size of 100 m (5.86 t ha−1), whereas
the lowest was found to occur with a cell size of 25 and 400 m
(3.37 t ha−1). The LBAT with a cell size of 25 and 400 m was
able to generate sediment loadings consistent with field mea-
surements. Considering computational efficiency, we chose
a grid-cell size of 400 m as the basic LBAT-simulation unit
for LRW.

3.2.2 LBAT vs. SWAT in LRW

Simulations of water quantity and quality with LBAT and the
uncalibrated and calibrated versions of SWAT are compared
with field measurements for LRW (Fig. 5). Model assess-
ments for different simulation periods (depending on mea-
surement availability) are shown in Table 7. It is worth not-
ing that, to eliminate unrealistic results, USLE_LS was con-
strained in Sed1_2 to the nonvegetated lands:

USLE_LS=
{

Eq. (2) USLE_LS≤ 1.28,

1.28 USLE_LS > 1.28,
(7)

where 1.28 is the maximum USLE_LS for BBW.

Figure 5. Simulations of annual stream discharge and sediment,
NO3–N, and Sol–P loadings with LBAT and SWAT compared with
field measurements at the outlet of LRW.

In general, the two versions of SWAT and LBAT slightly
underestimated annual stream discharge, capturing its varia-
tion reasonably well (R2 > 0.54; Fig. 5a). The uncalibrated
and calibrated versions of SWAT had the least and largest ab-
solute values of RE (RE=−2 and−9), whereas LBAT RE=
−6 (Table 7). The uncalibrated version of SWAT severely
overestimated annual sediment and NO3–N loading (RE=
212 and 87, respectively; Fig. 5b and c), whereas the cal-
ibrated version of SWAT and LBAT underestimated sedi-
ment loading (RE=−32 and −52, respectively) and over-
estimated NO3–N loading (RE= 22 and 27, respectively;
Table 7). In general, the calibrated version of SWAT and
LBAT captured the variation in annual NO3–N loadings rea-
sonably well (R2 > 0.35; Fig. 5c). However, the two ver-
sions of SWAT and LBAT failed to capture the variation
in annual sediment and Sol–P loadings (low R2; Fig. 5b
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Table 4. Statistical models based on land use groups and BMP scenarios.

BMP scenario Land use groupsa Model Model structure and variable

No-BMP crop-groups_2, nonvegetated lands, forestry Dis1 Discharge= f (PCP, TMP, SOL_K, land-use-groups_2)
Tillage general crops, grains, grasses Dis2 Discharge= f (PCP, TMP, SOL_K)
FDT+ tillage general crops, grains, grasses Dis3 Discharge= f (PCP, TMP, SOL_K)

No-BMP crop-groups_1, grasses Sed1_1 Sediment(1/10)
= f (USLE_LS, PCP, TMP, SOL_K, land-use-groups_1)

nonvegetated lands, Sed1_2 Sediment(1/10)
= f (USLE_LS, PCP)

forestry Sed1_3 Sediment(1/10)
= f (USLE_LS, PCP, SOL_K)

Tillage crop-groups_1, grasses Sed2 Sediment(1/10)
= f (USLE_LS, PCP, TMP, SOL_K, land-use-groups_1)

FDT+ tillage general crops, grains, grasses Sed3 Sediment= Sed1_1×TERR_P

No-BMP general crops, grains, grasses N1_1 log(NO3−N)= f (N_APP, PCP, TMP, SOL_K, land use groups)
nonvegetated lands, N1_2b NO3−N= 24 kg ha−1

forestry N1_3 log(NO3−N)= f (PCP, TMP, SOL_K)
Tillage general crops, grains, grasses N2 log(NO3−N)= f (N_APP, PCP, TMP, SOL_K, land use groups)
FDT+ tillage crop-groups_3, grains N3 log(NO3−N)= f (N_APP, PCP, TMP, SOL_K, land-use-groups_3)

No-BMP crop-groups_1, grasses P1_1 log(Sol−P)= f (P_APP, PCP, TMP, SOL_K, land-use-groups_1)
nonvegetated lands, P1_2b Sol−P= 0.61 kg ha−1

forestry P1_3 log(Sol−P)= f (PCP, TMP, SOL_K)
Tillage crop-groups_1, grasses P2 log(Sol−P)= f (P_APP, PCP, TMP, SOL_K, land-use-groups_1)
FDT+ tillage general crops, grains, grasses P3 log(Sol−P)= f (P_APP, PCP, TMP, SOL_K, land use groups)

a General crops and grains are combined into one group, namely crop-groups_1 in land-use-groups_1; general crops, grains, and grasses are combined into one group, namely crop-groups_2 in
land-use-groups_2; general crops and grasses are combined into one group, namely crop-groups_3 in land-use-groups_3. b Variable is set constant.

Table 5. Explanatory variables determined for statistical analysis.

Variable Unit Meaning

land use groups – Including general crops, grains, grasses, forestry, and nonvegetated lands
land-use-groups_1 – General crops and grains are combined into a new group: crop-groups_1
land-use-groups_2 – General crops, grains, and grasses are combined into a new group: crop-groups_2
land-use-groups_3 – General crops and grasses are combined into a new group: crop-groups_3
N_APP kg ha−1 Annual N application rate
P_APP kg ha−1 Annual P application rate
PCP mm Annual precipitation
SOL_K mm h−1 Mean saturated hydraulic conductivity of soil
TERR_P – P factor for FDT
TMP ◦ Annual mean air temperature
USLE_LS – LS factor of USLE

and d). The LBAT had the smallest absolute value of RE (i.e.,
RE=−16), while the uncalibrated and calibrated versions of
SWAT had larger values (RE=−59 and −55, respectively).
These results suggested that the LBAT and the calibrated
version of SWAT performed fairly equivalently in simulat-
ing annual streamflow and sediment and NO3–N loadings,
with LBAT performing slightly better for annual Sol–P load-
ing. LBAT performed noticeably better than the uncalibrated
version of SWAT, especially for annual sediment and NO3–
N loadings. Poor performance for both versions of SWAT
and LBAT on simulation of annual sediment and Sol–P load-
ings in LRW might be attributable to a lack of detailed man-
agement practice and fertilizer application information from
agricultural lands. We only had 1 year of data for LRW and
made assumptions about rotation and management practices

for other years based on information from BBW, which could
introduce major input uncertainty.

Since LBAT is based on decision rules (statistical equa-
tions in this study) that were derived from SWAT simulations
for BBW, its usage should be constrained to areas with soil,
landscape, and land use characteristics similar to BBW. Input
characteristics exceeding the range of SWAT data could lead
to large errors in predictions. LBAT is flexible in its structure,
and with thoughtful development of decision rules, it can be
applied to diverse environments.

3.2.3 FDT assessment in LRW

Mean annual water quantity and quality simulated with
LBAT for agricultural lands of LRW are shown in Table 8.
The mean annual discharge for the baseline scenario was
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Table 6. Comparisons of simulations of statistical models and outputs from SWAT for different land use groups and BMPs based on mean
and standard deviation for the entire simulation period (1992–2011).

No-BMP Tillage FDT+ tillage

Variable Index Crop groups Nonvegetated lands Forestry Crop groups Crop groups

SWAT Fitted SWAT Fitted SWAT Fitted SWAT Fitted SWAT Fitted

Discharge Mean → → 636 636 ← ← 619 619 628 628
(mm) SD → → 144 133 ← ← 140 132 151 143

R2
→ → 0.86 (Dis1) ← ← 0.88 (Dis2) 0.90 (Dis3)

Sediment Mean 12.84 10.78 1.80 1.71 0.10 0.09 9.40 8.31 0.84 0.89
(t ha−1) SD 11.86 9.44 1.94 1.95 0.14 0.16 8.28 7.38 2.72 1.18

R2 0.48 (Sed1_1) 0.71 (Sed1_2) 0.57 (Sed1_3) 0.56 (Sed2) –

NO3–N Mean 43 39 24 – 10 10 43 39 47 44
(kg ha−1) SD 24 14 16 – 6 3 24 14 29 21

R2 0.40 (N1_1) – 0.33 (N1_3) 0.39 (N2) 0.59 (N3)

Sol–P Mean 0.88 0.80 0.61 – 0.08 0.06 0.98 0.89 0.49 0.43
(kg ha−1) SD 0.49 0.32 0.46 – 0.06 0.03 0.59 0.38 0.33 0.23

R2 0.47 (P1_1) – 0.38 (P1_3) 0.48 (P2) 0.52 (P3)

Note: crop groups include general crops, grains, and grasses; the statistics for discharge in no-BMP scenario are based on crop groups, nonvegetated lands, and forestry.

Table 7. Statistical assessments of LBAT and SWAT for annual stream discharge and sediment, NO3–N, and Sol–P loadings at the outlet of
LRW for different simulation periods.

Period Variable Index Measurement SWAT- SWAT- LBAT
uncalibrated calibrated

01–07 Discharge Mean 704 691 638 664
(mm) RE (%) – −2 −9 −6

R2 – 0.63 0.69 0.54

01–10 Sediment Mean 0.95 2.95 0.65 0.45
(t ha−1) RE (%) – 212 −32 −52

R2 – 0.01 0.01 0.04

03–10 NO3–N Mean 12 22 14 15
(kg ha−1) RE (%) – 87 22 27

R2 – 0.59 0.45 0.35

03–10 Sol–P Mean 0.31 0.13 0.14 0.26
(kg ha−1) RE (%) – −59 −55 −16

R2 – 0.02 0.11 0.01

626 mm greater than that for the six FDT scenarios (Table 8).
When all agricultural lands were protected (S6), there was a
2 % reduction in discharge (equivalent to 11 mm; Table 8).
With the steepest areas protected (accounting for 10 % of the
total land base; S1), the mean annual sediment loading was
reduced by as much as 43 % (equivalent to 4.5 t ha−1; Ta-
ble 8) and by as much as 81 % (i.e., 8.57 t ha−1) with all agri-
cultural lands protected (S6; Table 8). Mean annual Sol–P
loading was reduced by 51 % (equivalent to 0.47 kg ha−1; Ta-
ble 8). In contrast, increased usage of FDT tended to increase

the mean annual loading of NO3–N by about 6 % when used
across all agricultural lands (equivalent to 1.73 kg ha−1).

Percentage change (based on PRD) of water quantity and
quality were plotted against percentage area of FDT for
potato and barley in Fig. 6. Increasing the usage of FDT
helped to reduce discharge and sediment and Sol–P load-
ings for both crop types (Fig. 6a–c). It is worth noting that
sediment loading decreased with increasing usage of FDT
(Fig. 6b). An opposite trend was observed for potato and
barley with respect to the impact of FDT on NO3–N load-
ing. With the increased usage of FDT, NO3–N loadings in-
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Table 8. Impact of FDT on mean annual discharge and sediment, NO3–N, and Sol–P loadings simulated with LBAT under different FDT,
provided in Table 3.

Variable Index Baseline S1 S2 S3 S4 S5 S6

Discharge Mean 626 625 623 622 619 616 615
(mm) MD – −1 −2 −4 −7 −10 −11

PRD (%) – 0 0 −1 −1 −2 −2

Sediment Mean 10.54 6.04 4.94 4.02 3.04 2.26 1.97
(t ha−1) MD – −4.50 −5.60 −6.52 −7.50 −8.28 −8.57

PRD (%) – −43 −53 −62 −71 −79 −81

NO3–N Mean 29.70 29.86 30.02 30.34 30.82 31.22 31.42
(kg ha−1) MD – 0.16 0.32 0.64 1.13 1.52 1.73

PRD (%) – 1 1 2 4 5 6

Sol–P Mean 0.94 0.89 0.83 0.76 0.65 0.52 0.46
(kg ha−1) MD – −0.05 −0.11 −0.17 −0.28 −0.42 −0.47

PRD (%) – −5 −11 −19 −30 −45 −51

Figure 6. Percentage change in discharge and sediment, NO3–N,
and Sol–P loadings as a function of % area, where FDTs were used.

creased linearly for potato, while it decreased for barley. The
increase for potato was nearly twice as much as the reduc-
tion for barley (Fig. 6d). Seemingly the interaction between
barley and FDT had positive impacts on nitrate retention in
soils, whereas the interaction between potato and FDT had
an opposite effect.

These results are consistent with the results from previous
studies (Yang et al., 2010, 2012), which used SWAT to as-
sess the impact of FDT on water quantity and quality within
BBW. When using SWAT, greater efforts are needed to pre-
pare basic inputs, such as daily weather records, to proceed

with its calibration and validation, involving complex sce-
nario setup and analysis. For every new watershed, SWAT
needs dedicated effort and time for its setup. LBAT, in con-
trast, can be used for multiple watersheds as long as they
have similar environmental conditions. Scenario analysis can
be directly conducted with different combinations of land use
and BMPs using fewer inputs than what is required by SWAT.
Also, once developed, LBAT does not require additional cal-
ibration.

4 Conclusion

The present study addresses the development of a decision
support tool to assess the impact of land use change and
BMPs on water quantity and quality for ungauged water-
sheds. An enhanced version of SWAT was calibrated and
validated for a small experimental watershed. Multiple re-
gression analyses were used to develop statistical equations
based on simulations from SWAT. In total, three discharge
and five sediment, NO3–N, and Sol–P loading models were
developed for different combinations of land use groups and
BMP scenarios. Only four common predictors (i.e., annual
precipitation, annual mean air temperature, mean saturated
hydraulic conductivity of soil, and land use groups) and three
unique predictors (LS factor and annual nitrogen and phos-
phorus application rates for sediment, NO3–N, and Sol–P
loading models, respectively) are required.

With the aid of ArcGIS, statistical equations were inte-
grated into the decision support tool, i.e., the land use and
BMP assessment tool (LBAT), whose basic simulation units
are the DEM grid cell. The LBAT was used to simulate an-
nual water flow and sediment and nutrient loadings at the
outlet of a larger watershed, i.e., LRW. These simulations
were compared with those of SWAT. Results indicated that
LBAT and the calibrated version of SWAT performed equiv-
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alently with respect to annual stream discharge and sediment
and NO3–N loadings. LBAT performed slightly better, when
Sol–P loading was considered. Compared with the uncali-
brated version of SWAT, LBAT performed better. The im-
pact of FDT on water quantity and quality was evaluated
with LBAT for LRW; its results were consistent with the re-
sults generated with SWAT for the same region in previous
studies. LBAT has fewer input requirements than SWAT and
can be applied to multiple watersheds without additional cal-
ibration. Also, scenario analyses can be directly conducted
with LBAT without complex setup procedures. We recom-
mend using LBAT for economic analysis and management
decision making for watersheds with similar environmental
conditions of New Brunswick. The LBAT developed in this
study may not be directly applied to other regions; however,
the approach in developing LBAT can be applied to other re-
gions of the world because of its flexible structure.

Data availability. Data used in the present study are not publicly
accessible and can be required through personal contact, i.e., email:
sheng.li@agr.gc.ca.
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Appendix A

Table A1. Coefficient values for the three discharge models.

Model variable Estimate Standard error t value p value

Dis1

Intercept −1565 24.04 −65.089 < 0.001
PCP 1.933 0.02176 88.837 < 0.001
TMP 282.7 6.091 46.402 < 0.001
SOL_K 0.06338 0.00992 6.389 < 0.001
Forestry 30.79 14.16 2.175 0.030
Nonvegetated lands 162.2 14.51 11.181 < 0.001
PCP: TMP −0.2488 0.005487 −45.352 < 0.001
PCP: forestry 0.04684 0.01191 3.934 < 0.001
PCP: nonvegetated lands −0.0535 0.01224 −4.37 < 0.001
TMP: forestry 9.723 1.684 5.775 < 0.001
TMP: nonvegetated lands 4.506 1.731 2.603 0.009
SOL_K: forestry −0.3769 0.03403 −11.076 < 0.001
SOL_K: nonvegetated lands −0.2959 0.032 −9.248 < 0.001

Dis2

Intercept −1633 27.29 −59.84 < 0.001
PCP 1.995 0.02472 80.69 < 0.001
TMP 302.2 6.87 43.98 < 0.001
SOL_K 0.08696 0.01167 7.45 < 0.001
PCP: TMP −0.2662 0.006199 −42.94 < 0.001

Dis3

Intercept −1666 36.58 −45.54 < 0.001
PCP 2.007 0.03305 60.713 < 0.001
TMP 298 9.351 31.865 < 0.001
SOL_K 0.09353 0.01573 5.946 < 0.001
PCP: TMP −0.2606 0.008406 −31.004 < 0.001
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Table A2. Coefficient values for the four sediment loading models.

Model variable Estimate Standard error t value p value

Sed1_1

Intercept 0.2749 0.06125 4.488 < 0.001
USLE_LS 0.1201 0.02224 54.018 < 0.001
PCP 0.000788 5.54× 10−5 14.218 < 0.001
TMP 0.1117 0.01528 7.307 < 0.001
SOL_K 0.000568 0.00022 2.585 0.010
Grasses −0.0353 0.00881 −4.007 < 0.001
USLE_LS: SOL_K −0.00014 4.69× 10−5

−3.045 0.002
USLE_LS: grasses −0.02623 0.006826 −3.842 < 0.001
PCP:TMP −0.00011 1.38× 10−5

−7.967 < 0.001
PCP: SOL_K −4.6× 10−7 1.91× 10−7

−2.406 0.016

Sed1_2

Intercept 0.8575 0.008826 97.15 < 0.001
PCP 0.000123 7.82× 10−6 15.67 < 0.001
PCP: USLE_LS 0.000209 5.02× 10−6 41.65 < 0.001

Sed1_3

Intercept 0.3992 0.02267 17.613 < 0.001
USLE_LS 0.07935 0.01967 4.034 < 0.001
PCP 0.000204 1.96× 10−5 10.371 < 0.001
SOL_K 0.000545 5.71× 10−5 9.534 < 0.001
USLE_LS: PCP 4.94× 10−5 1.71× 10−5 2.9 0.004
USLE_LS: SOL_K −0.00067 4.89× 10−5

−13.718 < 0.001

Sed2

Intercept 0.2591 0.05228 4.956 < 0.001
USLE_LS 0.12 0.001898 63.218 < 0.001
PCP 0.000767 4.73× 10−5 16.212 < 0.001
TMP 0.1162 0.01304 8.907 < 0.001
SOL_K 0.000746 0.000188 3.981 < 0.001
Grasses −0.06937 0.01648 −4.211 < 0.001
USLE_LS: SOL_K −0.00013 4× 10−5

−3.137 0.002
USLE_LS: grasses −0.02662 0.005829 −4.567 < 0.001
PCP: TMP −0.00011 1.18× 10−5

−9.522 < 0.001
PCP: SOL_K −6.3× 10−7 1.63× 10−7

−3.846 < 0.001
TMP: grasses 0.007415 0.003664 2.024 0.043
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Table A3. Coefficient values for the four NO3–N loading models corresponding to land use and BMPs described in Table 4.

Model variable Estimate Standard error t value p value

N1_1

Intercept 1.44 0.1753 8.213 < 0.001
N_APP −0.00862 0.000699 −12.325 < 0.001
PCP 0.000543 0.00016 3.4 < 0.001
TMP 0.1363 0.03357 4.059 < 0.001
SOL_K −0.00344 9.78× 10−5

−35.163 < 0.001
Grains −1.117 0.1021 −10.937 < 0.001
Grasses −1.97 0.1562 −12.611 < 0.001
N_APP: PCP 5.31× 10−6 6.45× 10−7 8.233 < 0.001
N_APP: TMP 0.000963 7.45× 10−5 12.929 < 0.001
N_APP: SOL_K 9.6× 10−6 6.4× 10−7 15.024 < 0.001
PCP: grains 0.000677 9.38× 10−5 7.215 < 0.001
PCP: grasses 0.001029 0.000143 7.201 < 0.001
PCP: TMP −0.00025 2.64× 10−5

−9.467 < 0.001
TMP: grains 0.1 0.01134 8.817 < 0.001
TMP: grasses 0.2132 0.01651 12.912 < 0.001

N1_3

Intercept −1.411 0.3087 −4.573 < 0.001
PCP 0.001875 0.000279 6.710 < 0.001
TMP 0.4437 0.07831 5.666 < 0.001
SOL_K −0.00104 0.000116 −8.979 < 0.001
PCP: TMP −0.00032 7.06× 10−5

−4.484 < 0.001

N2

Intercept 1.429 0.1757 8.134 < 0.001
N_APP −0.00858 0.000701 −12.233 < 0.001
PCP 0.000548 0.00016 3.425 < 0.001
TMP 0.1376 0.03365 4.089 < 0.001
SOL_K −0.00345 9.8× 10−5

−35.223 < 0.001
Grains −1.11 0.1023 −10.849 < 0.001
Grasses −1.962 0.1566 −12.526 < 0.001
N_APP: PCP 5.3× 10−6 6.47× 10−7 8.187 < 0.001
N_APP: TMP 0.000957 7.46× 10−5 12.82 < 0.001
N_APP: SOL_K 9.65× 10−6 6.4× 10−7 15.067 < 0.001
PCP: grains 0.000674 9.41× 10−5 7.167 < 0.001
PCP: grasses 0.001026 0.000143 7.162 < 0.001
PCP: TMP −0.00025 2.64× 10−5

−9.456 < 0.001
TMP: grains 0.09934 0.01137 8.738 < 0.001
TMP: grasses 0.2122 0.01655 12.821 < 0.001

N3

Intercept −0.3595 0.1718 −2.092 0.037
N_APP −0.00131 0.000435 −3.011 0.003
PCP 0.001621 0.00015 10.806 < 0.001
TMP 0.3977 0.03857 10.312 < 0.001
SOL_K −0.00386 0.000505 −7.641 < 0.001
Grains −0.2133 0.07504 −2.842 0.005
N_APP: PCP 1.65× 10−6 3.59× 10−7 4.61 < 0.001
N_APP: TMP 0.000281 4.74× 10−5 5.939 < 0.001
N_APP: grains 0.000716 0.000292 2.453 0.014
PCP: TMP −0.00035 3.32× 10−5

−10.506 < 0.001
PCP: SOL_K 1.21× 10−6 4.36× 10−7 2.781 0.005
PCP: grains 0.000267 5.82× 10−5 4.577 < 0.001
TMP: grains −0.04685 0.008004 −5.853 < 0.001
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Table A4. Coefficient values for four Sol–P models.

Model variable Estimate Standard error t value p value

P1_1

Intercept −3.711 0.1306 −28.416 < 0.001
P_APP 0.002341 0.000623 3.757 < 0.001
PCP 0.003195 0.000117 27.286 < 0.001
TMP 0.5542 0.03197 17.337 < 0.001
SOL_K 0.00298 0.000472 6.305 < 0.001
Grasses −0.4321 0.0382 −11.312 < 0.001
P_APP: PCP −2.4× 10−6 5.2× 10−7

−4.64 < 0.001
P_APP: TMP 0.000829 7.7× 10−5 10.797 < 0.001
PCP: TMP −0.00052 2.9× 10−5

−18.297 < 0.001
PCP: SOL_K −1.2× 10−6 3.97× 10−7

−3.095 0.002
TMP: SOL_K −0.00026 5.7× 10−5

−4.526 < 0.001
TMP: grasses 0.03787 0.00941 4.024 < 0.001

P1_3

Intercept −4.43817 0.589848 −7.512 < 0.001
PCP 0.002509 0.000534 4.701 < 0.001
TMP 0.417306 0.1496445 2.789 0.005
SOL_K 0.001247 0.000222 5.622 < 0.001
PCP: TMP −0.0003 0.000135 −2.253 0.024

P2

Intercept −3.667 0.1357 −27.017 < 0.001
P_APP 0.003461 0.000663 5.218 < 0.001
PCP 0.003017 0.000122 24.783 < 0.001
TMP 0.5149 0.03304 15.584 < 0.001
SOL_K 0.003531 0.000488 7.233 < 0.001
Grasses −0.2039 0.09001 −2.265 0.024
P_APP: PCP −2.4× 10−6 5.54× 10−7

−4.305 < 0.001
P_APP: TMP 0.000432 7.93× 10−5 5.445 < 0.001
P_APP: grasses −0.03304 0.007019 −4.707 < 0.001
PCP: TMP −0.00044 2.95× 10−5

−14.952 < 0.001
PCP: SOL_K −1.4× 10−6 4.1× 10−7

−3.446 < 0.001
PCP: grasses −0.00025 7.66× 10−5

−3.25 0.001
TMP: SOL_K −0.00025 5.87× 10−5

−4.184 < 0.001
TMP: grasses 0.05117 0.009839 5.201 < 0.001

P3

Intercept −2.817 0.2548 −11.054 < 0.001
P_APP −0.01363 0.001854 −7.352 < 0.001
PCP 0.002778 0.000178 15.609 < 0.001
TMP 0.1406 0.06523 2.155 0.031
SOL_K 0.00651 0.000702 9.279 < 0.001
Grains −0.9386 0.1378 −6.812 < 0.001
Grasses −0.9931 0.1813 −5.478 < 0.001
P_APP: TMP 0.003562 0.000491 7.252 < 0.001
P_APP: grains 0.007736 0.002179 3.549 < 0.001
P_APP: grasses −0.05489 0.01295 −4.24 < 0.001
PCP: TMP −0.0003 4.42× 10−5

−6.763 < 0.001
PCP: SOL_K −3.7× 10−6 5.78× 10−7

−6.359 < 0.001
PCP: grains 0.000112 5.1× 10−5 2.192 0.028
PCP: grasses −0.00019 0.000109 −1.74 0.082
TMP: SOL_K −0.00021 8.8× 10−5

−2.4 0.016
TMP: grains 0.1798 0.03332 5.397 < 0.001
TMP: grasses 0.247 0.03581 6.898 < 0.001
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