Component of the model

Formulation

For <i>m</i> storms with $P_{\rm G}$ insufficient to saturate the canopy $(P_{\rm G} < P_{\rm G}')$	$(1 - p - p_t) \sum_{j=1}^{m} P_{G,j}$
Wetting up the canopy with <i>n</i> storms large enough to saturate the canopy $(P_G \ge P'_G)$	$n(1-p-p_t)P'_G - nS$
Evaporation from the saturated canopy during rainfall	$\bar{E}/\bar{R} \sum_{j=1}^{n} (P_{G,j} - P'_G)$
Evaporation after rainfall event	nS
Evaporation from trunks for q storms large enough to saturate trunk storage ($P_{\rm G} \ge S_{\rm t}/p_{\rm t}$)	$q S_{t}$
Evaporation from trunks for small storms unable to saturate the trunk storage ($P_G < S_t/p_t$)	$p_{t}\sum_{j=1}^{m+n-q}P_{\mathrm{G},j}$