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Abstract. Precipitation is one of the most important com-
ponents of the global water cycle. Precipitation data at high
spatial and temporal resolutions are crucial for basin-scale
hydrological and meteorological studies. In this study, we
propose a cumulative distribution of frequency (CDF)-based
downscaling method (DCDF) to obtain hourly 0.05◦× 0.05◦

precipitation data. The main hypothesis is that a variable with
the same resolution of target data should produce a CDF
that is similar to the reference data. The method was demon-
strated using the 3-hourly 0.25◦× 0.25◦ Climate Prediction
Center morphing method (CMORPH) dataset and the hourly
0.05◦× 0.05◦ FY2-E geostationary (GEO) infrared (IR) tem-
perature brightness (Tb) data. Initially, power function rela-
tionships were established between the precipitation rate and
Tb for each 1◦× 1◦ region. Then the CMORPH data were
downscaled to 0.05◦× 0.05◦. The downscaled results were
validated over diverse rainfall regimes in China. Within each
rainfall regime, the fitting functions’ coefficients were able to
implicitly reflect the characteristics of precipitation. Quanti-
tatively, the downscaled estimates not only improved spatio-
temporal resolutions, but also performed better (bias:−7.35–
10.35 %; correlation coefficient, CC: 0.48–0.60) than the
CMORPH product (bias: 20.82–94.19 %; CC: 0.31–0.59)
over convective precipitating regions. The downscaled re-
sults performed as well as the CMORPH product over re-
gions dominated with frontal rain systems and performed
relatively poorly over mountainous or hilly areas where oro-
graphic rain systems dominate. Qualitatively, at the daily

scale, DCDF and CMORPH had nearly equivalent perfor-
mances at the regional scale, and 79 % DCDF may perform
better than or nearly equivalently to CMORPH at the point
(rain gauge) scale. The downscaled estimates were able to
capture more details about rainfall motion and changes un-
der the condition that DCDF performs better than or nearly
equivalently to CMORPH.

1 Introduction

Precipitation is a critical component in the global water cycle
(Barrett and Martin, 1981; Smith et al., 1998; Tobler, 2004).
Precipitation data at spatio-temporal resolutions are favoured
mainly for two reasons. First, the poor representativeness and
uneven distribution of gauge stations make the data incapable
of reflecting the precipitation variation spatially (Hughes,
2006, Collischonn et al., 2008; Javanmard et al., 2010). Sec-
ond, ground radar systems can provide full coverage spatial
data for most regions, but RADAR is very weak in view of
the precipitation intensity and is subject to short time series.
Moreover, the validation poses a big challenge for hydrolog-
ical applications (Krajewski and Smith, 2002).

A number of techniques have been developed to esti-
mate or retrieve precipitation (Kidd and Levizzani, 2011).
Based on these technologies, precipitation datasets have
been produced at various resolutions, including the Global
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Precipitation Climatology Project (GPCP) (Huffman et al.,
1997, 2001, 2009), the Tropical Rainfall Measuring Mission
(TRMM) Multi-Satellite Precipitation (TMPA) (Huffman et
al., 2007), the Climate Prediction Center morphing method
(CMORPH) (Joyce et al., 2004) and the Global Satellite
Mapping of Precipitation (GSMaP) (Ushio et al., 2009), es-
pecially over the last 20 years. The typical spatial resolu-
tion of these products is 0.25◦× 0.25◦ (Dinku et al., 2007;
Ebert et al., 2007; Hirpa et al., 2010; Sohn et al., 2010; Bitew
and Gebremichael, 2011; Romilly and Gebremichael, 2011;
Thiemig et al., 2012; Hu et al., 2014). This coarse resolution
generally impedes the applications of the data for basin-scale
hydrological and meteorological studies (Mekonnen et al.,
2008). A downscaling procedure would therefore be highly
necessary to meet the requirements of small-scale (< 10 km)
applications.

Downscaling approaches were first used to interpolate
regional-scale atmospheric predictor variables to point-scale
meteorological series (Karl et al., 1990; Wigley et al., 1990;
Hay et al., 1991, 1992). Currently, downscaling approaches
are well developed and can be categorised into regression
methods, weather pattern approaches, stochastic weather
generators and limited-area climate modelling (Wilby and
Wigley, 1997; Cannon, 2008). Most methods are based on
meteorological or climate models, and assume that relation-
ships can be established between atmospheric parameters at
disparate temporal and/or spatial scales (Giorgi and Mearns,
1999; Willems and Vrac, 2011; Kenabatho et al., 2012).
Downscaling approaches can also be categorised into dy-
namical methods (using regional climate models to translate
large-scale weather evolution into physically consistent evo-
lution at a higher resolution) and statistical methods (based
on statistical relationships between the regional climate and
large-scale predictor variables) (Schmidli et al., 2006). At
present, these methods are generally available to downscale
data from general circulation models.

Various downscaling techniques have been developed to
improve the resolution of satellite precipitation data. Im-
merzeel et al. (2009) used an exponential relationship be-
tween the 1 km Normalized Difference Vegetation Index
(NDVI) and precipitation to downscale TRMM 3B43 pre-
cipitation data on the Iberian Peninsula. Jia et al. (2011)
used a linear regression relationship between a combination
of NDVI and a digital elevation model and precipitation to
downscale TRMM 3B43 precipitation data in the Qaidam
Basin of China. Duan and Bastiaanssen (2013) used a two-
degree polynomial regression model between NDVI and pre-
cipitation to downscale TRMM 3B43 precipitation data in
the Lake Tana basin, Ethiopia, and the Caspian Sea region,
Iran. These studies manifest the potential of downscaling
methods to obtain fine-resolution precipitation (< 10 km),
while mainly focusing on precipitation data with low tem-
poral resolutions (i.e. annual or monthly).

The main objective of this study is to develop a regression-
based downscaling method to obtain precipitation estimates

with a high spatio-temporal resolution (0.05◦, hourly). Bar-
rett et al. (1991) proposed a cumulative histogram method
to relate precipitation observations to satellite estimates in
an effort to avoid bias problems related to simple regression.
In this study, we propose a cumulative distribution of fre-
quency (CDF)-based downscaling method (DCDF) and per-
form preliminary validation using CMORPH and geostation-
ary (GEO) infrared (IR) temperature brightness (Tb) data.
This new method can (1) lead to a better understanding of
satellite precipitation data and (2) stimulate scientific inter-
ests to engender the development of precipitation data with
improved resolutions. The following section introduces study
areas and datasets. Section 3 introduces the principles, frame-
work and procedure of the downscaling method. Section 4
presents the major findings followed by discussion in Sect. 5.
Finally, Sect. 6 concludes.

2 Study areas and datasets

2.1 Study areas

Existing studies confirmed that the performances of satellite
precipitation estimates are highly dependent on the rainfall
regime (Arkin et al., 2006; Ebert et al., 2007; Gottschalck
et al., 2005), which varies with climate zone, latitude, longi-
tude and elevation. Thus, six 5◦× 5◦ regions were selected
for validation (Fig. 1). Their corresponding geographic and
climatic characteristics are listed in Table 1. These areas are
distributed from south to north and from east to west, and
they incorporate most rainfall regimes.

Among the six regions, regions SE (south-east), CE
(central-east) and NE (north-east) are located in the eastern
monsoon region. It is warm and rainy during the southeast
monsoon in June–August, and cold and dry during the north-
west monsoon in December–February. These three regions
feature low-elevation hills and plains. Regions CW (central-
west), NW (north-west) and TP (Tibetan Plateau) are located
in the non-monsoon region with a continental climate. CW
and NW belong to arid region, with 60–70 % precipitation
occurring in June–August. CW has a relatively high eleva-
tion, mainly covered by plateaus, mountains and basins. NW
is mainly covered by plateaus and basins. TP has a complex
climate, mainly covered by plateaus and mountains. The sea-
sonal precipitation distribution has two forms: a unimodal
distribution in summer (June–August), and a bimodal dis-
tribution in spring (March–May) and autumn (September–
November).
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Figure 1. Geographic and climate situations of the six regions. The locations of the rain gauges are superimposed on the map.

Table 1. Geographic and climatic situations of the six regions in China.

Region Longitude, Elevation Annual Climate zone
latitude range (m) precipitation (mm)

SE 110–115◦ E, 23–28◦ N 22–1405 1230 Subtropical humid Monsoon
CE 114–119◦ E, 33–38◦ N 6–1533 670 Warm temperate semi-humid Monsoon
NE 121–126◦ E, 46–51◦ N 147–740 460 Mid-temperate humid Monsoon
CW 99–104◦ E, 34–39◦ N 1368–8500 40 Warm temperate arid Non-monsoon
NW 82–87◦ E, 41–46◦ N 320–2458 70–140 Mid-temperate arid Non-monsoon
TP 89–94◦ E, 28–33◦ N 3552–8260 420 Temperature plateau Non-monsoon

2.2 Datasets

2.2.1 Meteorological data

Rain gauge data were obtained from the National Meteo-
rological Information Centre of the China Meteorological
Administration (CMA) (http://data.cma.cn/, last access: 10
April 2017). The datasets include daily precipitation records
at 137 rain gauge stations in 2014 (Fig. 1). Strict quality con-
trol has been applied to check extreme values (Ma, 1998).
There are 33, 29, 14, 31, 12 and 18 rain gauges in regions SE,
CE, NE, CW, NW and TP, respectively. In the case of more
than one station located within a pixel, the rain gauge val-
ues are averaged to represent the grid value. Statistical analy-
ses were used to evaluate precipitation estimates at the daily
scale. In addition, a disdrometer installed at Xingzi station
(29.45◦ N, 116.05◦ E) in Jiangxi Province (Fig. 1) provided
hourly data in 2014, except June and July when the instru-
ment was subject to a transmission error. Disdrometer data is
used to evaluate the precipitation estimates.

2.2.2 Satellite data

IR data (10.7 µm) were collected from the Stretched Vis-
ible and Infrared Spin Scan Radiometer (S-VISSR) on
board the FY2-E satellite. The data are available at the
National Satellite Meteorology Center (http://satellite.nsmc.
org.cn/portalsite/default.aspx, last access: 12 August 2017).
FY2-E provides hourly coverage of eastern Asia from 75◦ S
to 75◦ N. The IR Tb data were corrected for zenith angle
viewing effects.

CMORPH was developed and produced by the Cli-
mate Prediction Center (CPC) in the National Oceanic
and Atmospheric Administration (NOAA). CMORPH pro-
duces 0.25◦× 0.25◦ 3-hourly global precipitation data us-
ing PMW and IR data. PMW data are from the Mi-
crowave Imager (TMI) on TRMM, the Special Sensor Mi-
crowave Imager (SSM/I) on Defense Meteorological Satel-
lite Program (DMSP) satellites 13–15, the Advanced Mi-
crowave Scanning Radiometer Earth Observing System
(AMSR-E) on Aqua and the Advanced Microwave Sound-
ing Unit-B (AMSU-B) on NOAA satellite 15–18. Precipi-
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tation estimates are generated using the algorithms of Fer-
raro (1997) for SSM/I, Ferraro et al. (2000) for AMSU-
B and Kummerow et al. (2001) for TMI. IR data are
obtained from the GEO Operational Environmental Satel-
lites (GOES) 8/10, European Meteorological Satellites (Me-
teosat) 5/7 and Japanese GEO Meteorological Satellites
(GMS) 5. CMORPH uses motion vectors derived from GEO
satellite IR imagery to propagate the relatively high-quality
precipitation estimates derived from PMW data (Joyce et al.,
2004). Hence, quantitative precipitation estimates are based
solely on PMW data. GEO-IR data are not used to estimate
precipitation but rather to interpolate between two PMW-
derived precipitation rate fields.

3 Methodology

3.1 CDF matching

The CDF matching is a probability-based process. It assumes
a variable (v) should produce a similar CDF to the reference
variable (t). The frequencies of t and v are shown in Eqs. (1)–
(2), and the cumulative frequencies in Eqs. (3)–(4).

Pt = f1(t) (1)
Pv = f2(v) (2)

Ct (t)=

t∫
T1

f1(t)dt (3)

Cv(v)=

v∫
V1

f2(v)dv (4)

C−1
v [Ct (t)]

f3
−→ t, (5)

where Pt and Pv are the probability of t and v, f1(t) and
f2(v) are probability density functions of t and v and Ct (t)
and Cv(v) are the cumulative density functions of t and v,
respectively. f3(v) represents the relationship between t and
v.

The steps for CDF matching are summarised in Fig. 2.
First, t and v are shown in histograms (Fig. 2a, b). The fre-
quency of an arbitrary point ti (or vi) on the f1(t) [or f2(v)]
curve can be expressed as P(t = ti)= f1(ti) [or P(v = vi)=
f2(vi)]. Second, these histograms are transformed into cu-
mulative histograms (Fig. 2c, d). The cumulative frequency
of an arbitrary point ti (or vi) on the Ct (t) [or Cv(v)]
curve can be expressed as C(t < ti)=

∫ ti
T1
f1(t)dt [or C(v <

vi)=
∫ vi
V1
f2(v)dv]. Third, these cumulative histograms are

matched so that v has a cumulative histogram similar to t .
The matching process is implemented by a one-to-one map-
ping CDF of the variable onto that of the reference (Eq. 5).
Last, the v–t relationship is established (Eq. 5) (Fig. 2e).
Magnusson et al. (2015) demonstrated that CDF matching
works better than a histogram-matching method when low

values have high frequencies, which is generally the case for
precipitation.

3.2 Downscaling

Our method is based on the work of Barrett et al. (1991) and
Kidd and Levizzani (2011). Rainfall can be inferred from IR
imagery because heavy rainfall tends to be associated with
large, tall clouds with cold cloud tops. Therefore, empiri-
cal relationships between the precipitation rate and Tb are
derived (Arkin and Meisner, 1987; Greene and Morrissey,
2000; Prigent, 2010). However, these relationships are indi-
rect and exhibit significant variations during the lifetime of a
rainfall event. They also differ among rain systems and cli-
matological regimes, which causes large uncertainties in pre-
cipitation estimations (Kidd and Levizzani, 2011). Ba and
Gruce (2001) demonstrated that a two-degree polynomial
model is more effective for describing the relationship, and
that the coefficients of the model are region-dependent. Over-
all, the precipitation–Tb relationship is highly variable over
time and space.

Microwave (MW) radiation reflects the physical struc-
tures of clouds. Emission from rain droplets increases MW
radiation, and scattering by precipitating ice particles de-
creases MW radiation. Although MW techniques are phys-
ically more direct than those based on IR radiation, they
can both reflect rainfall events. Therefore, we assume that
an IR signal produces a similar frequency distribution of
precipitation rates to a MW signal over a certain region
during a certain period. Barrett et al. (1991) proposed a
cumulative-histogram-matching method to relate rainfall ob-
servations to satellite precipitation data. Kidd et al. (2003)
applied the same method to estimate rainfall using passive
microwave (PMW) and IR data over Africa.

The assumptions behind the downscaling method include
the following: (1) Tb has a similar cumulative frequency to
the precipitation rate at certain spatial and temporal scales,
and (2) satellite precipitation products provide relatively ac-
curate estimates with low spatial and temporal resolutions.
In contrast, GEO-IR data have a high spatio-temporal reso-
lution, yet low accuracy. Illustrated in Fig. 3, the downscal-
ing method explores the advantages of the satellite precipi-
tation product and GEO-IR data, specifically, (1) to aggre-
gate Tb (Tbh) from a high resolution to a low resolution (Tbl)

similar to the precipitation data (Eq. 6), and (2) to apply the
CDF matching to the Tbl and precipitation rate (Rl) to obtain
a Tbl–Rl relationship and a rain–no-rain threshold (Eq. 7).
The downscaled precipitation rates are estimated based on
the Tbl–Rl relationships (Eq. 8).

Tbl =
1
n

∑n

i=0
Tbh(i) (6)

Tbl =m×R
p

l (7)

Rh = (
Tbh

m
)1/e, (8)
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Figure 2. Schematic of the cumulative distribution of frequency (CDF) matching method.

where Tbh denotes high-resolution GEO-IR Tb data, Tbl de-
notes upscaled Tb data, Rl denotes the low-resolution precip-
itation product, Rh denotes the derived high-resolution es-
timates, m and e are coefficients of the Tb–R relationship
and n is the number of high-resolution pixels within a low-
resolution pixel.

Under the assumption that colder clouds are linked to
higher rainfall than warmer clouds, the downscaling method
assumes a monotonically increasing precipitation rate with
decreasing Tb. Therefore, cumulative histograms of the pre-
cipitation rate and Tb are matched, so that the occurrence
of the heaviest precipitation is associated with the Tb val-
ues linked to the heaviest rainfall. Decreasing Tb values are
assigned to increasing precipitation rates so that the final dis-
tribution of Tb assigned to the precipitation rates is the same
as that determined using precipitation rate data. Specially, all
precipitation rate (Tb) are sorted in ascending (descending)
order. Then both cumulative probability distributions are ob-
tained. The cumulative probability is defined as critical prob-
ability when the precipitation rate equals zero. The rain–no-
rain threshold is the Tb with a cumulative probability the
same as the critical probability. As shown in Fig. 2c and d (T

means precipitation rate; V represents Tb), the rain–no-rain
threshold is set at about vi , where the cumulative probability
equals Ci (critical probability).

The specific steps used for downscaling with CMORPH
and FY2-E IR data are described as follows.

a. Aggregate IR–Tb data (Tb0.05 ) from 0.05 to 0.25◦ by
pixel averaging (Tb0.25 ).

IR–Tb data (Tb0.05 ) were aggregated to a 0.25◦ grid
(Tb0.25) for each 3 h period (00:00–03:00, 03:00–06:00,
. . . , 21:00–24:00 UTC), in order to match the spatial
and temporal resolutions of CMORPH.

b. Generate the histogram database for CDF matching.

IR–Tb (Tb0.25) and the CMORPH precipitation rate
(R0.25) were recorded in a database. The sample area
for CDF matching was determined as follows. The
horizontal and temporal scales of stratiform precip-
itation range from 101 to 103 km and from hours to
days (Orlanski, 1975; Trapp, 2013), while those of
cumuliform precipitation range from a few kilometres
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Figure 3. Schematic of the CDF-based downscaling method
(DCDF) using CMORPH and FY2-E Tb in this study. R represents
the precipitation rate.

to tens of kilometres and from minutes to hours
(Orlanski, 1975; Rickenbach, 2008). In combination
with previous studies (Kidd et al., 2003; Huffman et
al., 2007), the downscaling procedure was conducted
at 1◦× 1◦ grids over a 10-day period. To reduce the
heterogeneity among grids, a 3× 3 window was used
for smoothing purposes.

c. Build relationships between the precipitation rate and
Tb.

The histograms of Tb–precipitation rate were gen-
erated and converted to cumulative histograms, and
then matched using the CDF matching. (As shown
in Fig. 2, the precipitation rate is denoted by T ; Tb
represents V ; vi is the rain–no-rain threshold.) A power
function relationship between the precipitation rate
(R0.25) and Tb (Tb0.25) was established for each 1◦× 1◦

area over a 10-day period. Meanwhile, various param-
eters, including coefficients of the Tb–R relationship,
rain–no-rain threshold and R2, were obtained.

d. Estimate the precipitation rate pixel by pixel at 1 h and
0.05◦.

All pixels in the Tb images (Tb0.05) were divided
into two categories, raining ones below the rain–no-rain
threshold and non-raining ones above the threshold.
Tb–R relationships were applied to these “raining”
pixels. Finally, CMORPH data were downscaled to 1 h
and 0.05◦× 0.05◦.

3.3 Variogram

A variogram describes how data correlate with distance. The
variogram function γ (h) is defined as half of the mean value
of the square of the difference between points separated by
a distance h (Matheron, 1963). A variogram is generally an
increasing function of distance h. The relationship between
γ (h) and h is commonly described using the nugget effect
(C0), sill (C0+C) and range (D). C0 denotes micro-scale
variations, equated to of γ (0). C0+C denotes the limit of
the variogram γ (+∞). D denotes the distance at which the
difference of the variogram from the sill becomes negligible.
A variogram is used here to describe the spatial structure of
satellite precipitation data.

4 Results

4.1 Tb–precipitation rate relationship

Figure 4 shows fitting functions between the precipitation
rate and Tb within each 1◦× 1◦ grid. It was observed that
Tb had a power function relationship with the precipitation
rate. With an increase in the precipitation rate, Tb decreased,
and the rate of change also reduced. The model fitting R2

values were all higher than 0.90. From the region SE to NE,
the precipitation rate decreases, mainly subject to latitude.
The maximum precipitation rate, rain–no-rain threshold and
R2 all showed decreasing trends. The maximum precipita-
tion rate was 19.9 mm h−1 in region SE, 9.8 mm h−1 in re-
gion CE and 4.3 mm h−1 in region NE. The corresponding Tb
values were 198, 202 and 210 K, respectively, and the rain–
no-rain threshold values were 265, 259 and 249 K. The prob-
ability of the precipitation rate was the largest for a given
Tb in region SE, followed by region CE and then region
NE. Regions CW and NW are arid, while TP is humid. The
maximum precipitation rate was 3.5 mm h−1 for both regions
CW and NW and 11 mm h−1 for region TP. The rain–no-
rain thresholds for regions CW and NW were approximately
230 K, while it was 254 K for region TP. The probability of
the precipitation rate was the largest for a given Tb in re-
gion TP because region TP has a complex rain system and
high elevation. Generally, the fitting relationships reflected
precipitation characteristics well.

4.2 Estimation results

Figure 5 shows a comparison of the spatial distributions of
CMORPH and DCDF precipitation estimates for regions SE,
NE and TP. The downscaled precipitation showed a similar
spatial distribution to CMORPH, yet it reflected more de-
tailed moving and changing processes of rainfall. To demon-
strate clouds captured through DCDF and CMORPH, re-
gion SE was exemplified (14:00 to 16:00, 21 June 2014).
Three cloud centres were observed in the southeastern and
mid-eastern parts at 14:00. One hour later, two centres in
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Figure 4. Examples of fitting of the precipitation rate and Tb for each region in China during 9–18 July 2014 for subregion SE (115◦35′ E,
27◦28′ N), subregion CE (115◦39′ E, 36◦14′ N), subregion NE (124◦20′ E, 51◦42′ N), subregion CW (101◦38′ E, 37◦31′ N), subregion NW
(85◦43′ E, 46◦47′ N) and subregion TP (91◦06′ E, 30◦29′ N).

the southeast moved eastward and joined together, while an-
other centre moved eastward. Two precipitation centres con-
tinued to move eastward at 16:00. In addition, D and sill val-
ues of DCDF (2.796 and 1.070) were higher than those of
CMORPH (1.614 and 0.489). Large range and sill values in-
dicate a high spatial dependence and high spatial variabil-
ity. Thus, the spatial dependence and variability for high-
resolution data were generally larger than those for low-
resolution data.

In region SE, clouds were relatively centralised with a
high precipitation rate and were small in size. In region NE,
clouds were discrete with a low precipitation rate and were
widely distributed. In region TP, both centralised and discrete
clouds appeared. Cumuliform cloud is the main type in re-
gion SE, while stratiform cloud is dominant in region NE,
and both are dominant in region TP. Thus, the cloud distri-
butions obtained through satellite data, especially using the
DCDF approach, were consistent with the local character-

istics. Sill for cumuliform clouds was larger than that for
stratiform clouds. A larger sill value was obtained for re-
gion SE (DCDF: 1.070; CMORPH: 0.489) than for region
NE (DCDF: 0.007; CMORPH: 0.008). These results indi-
cated that the DCDF method can reflect precipitation char-
acteristics among rain systems and climatological regimes.

4.3 Validation

Figure 6 shows a comparison among the DCDF, CMORPH
and disdrometer at the hourly scale. The DCDF and
CMORPH were able to capture rainfall events, although they
differed in magnitude from the reference data in some cases.
The DCDF effectively reflected the peak of each rainfall
event, but could not exactly identify same starting and ending
times of rainy events, resulting in somewhat delayed or ad-
vanced rainfall. The DCDF may detect non-rainy events as
rainy events, especially in dry seasons. CMORPH reported
low-rain events as non-rainy events. Both of the DCDF and

www.hydrol-earth-syst-sci.net/22/3685/2018/ Hydrol. Earth Syst. Sci., 22, 3685–3699, 2018
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Figure 5. CMORPH precipitation estimates at a nominal resolution of 0.25◦ and DCDF precipitation maps at a 0.05◦ resolution for regions
SE, NE and TP.
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Figure 6. Time series of disdrometer data, original CMORPH and DCDF precipitation at an hourly scale in 2014.

CMORPH estimates coincided with disdrometer data at pre-
cipitation rates ranging from 1 to 10 mm h−1, such as the
events from 10:00 to 14:00 on 9 February and from 21:00
on 13 May to 10:00 on 14 May.

To demonstrate the performance of the DCDF method, a
comparison of the DCDF and CMORPH estimates was con-
ducted at the regional scale and at the point (rain gauge)
scale. Figure 7 shows the average precipitation of each re-
gion derived from the rain gauge, DCDF and CMORPH. The
daily average precipitation over each region showed almost
identical temporal variations for DCDF and CMORPH. Both
DCDF and CMORPH showed similar temporal patterns to

the rain gauge observations, but they were probably subject
to overestimation for regions CW and NW and underestima-
tion for regions SE and TP. At the point (gauge) scale, the
better fit between DCDF and gauge data than that between
CMORPH and gauge data is 10 %. The nearly equivalent fit
is 69 %. The poorer fit was mainly evident in regions NW,
CW and TP. Figure 8 shows that cases of better fit in the
time series of DCDF were generally more consistent with
the rain gauge data than CMORPH, although the DCDF se-
ries occasionally deviated from gauge data or misreported
non-rainy events as rainy events. These results indicated that
both DCDF and CMORPH demonstrated nearly equivalent
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Figure 7. Time series of the average precipitation of each region derived from the gauge, DCDF and CMORPH at the daily scale in June
2014.

performances at the regional scale, and 79 % DCDF may
perform better than or nearly equivalent to CMORPH at the
point (gauge) scale.

Table 2 lists the seasonal statistics for the six regions
at the daily scale. Generally, DCDF performed better than
CMORPH in region SE, while it performed equivalently to
CMORPH in regions CE and NE. Both of the DCDF and
CMORPH showed better performances during the rainy sea-
son. The DCDF generally showed the smallest biases be-
tween−7.35 and 10.35 % (correlation coefficient, CC: 0.48–
0.60) in region SE, and overestimated precipitation by 2.66–
33.95 % (CC: 0.05–0.53) in regions CE and NE. CMORPH
underestimated precipitation by 20.82–94.19 % (CC: 0.31–
0.59) in region SE and showed biases between −93.2 and
6.78 % (CC: 0.00–0.50) in regions CE and NE. DCDF and
CMORPH both exhibited poor performances in regions CW,
NW and TP, and showed large biases (−73.75–2106 %), low
CC values (0.01–0.44) and high false alarm rate (FAR) val-
ues (0.33–1.00) during the winter. Further inspection showed
that the DCDF overestimation was due to high probability of
detection and FAR, which may be caused by a low rain–no-
rain threshold. The large biases for regions CW, NW and TP
were likely due to the insensitivity of precipitation data to
very low precipitation in arid regions and the inability to es-
timate precipitation over mountainous or hilly areas where
orographic rain systems dominate.

5 Discussion

Existing downscaling methods make an assumption that
local-scale patterns are driven by large-scale climatic fluc-
tuations (Wilby and Wigley, 1997; Wilby et al., 2002). Most
of these methods rely on meteorological or climate models
and utilise multiple parameters, such as temperature, humid-
ity, pressure, vorticity and geostrophic airflow. These meth-
ods are not used to downscale satellite precipitation prod-
ucts, possibly due to a diversity of parameters and complex-
ity of the meteorological and climate models. In contrast,
the DCDF method in this study assumes that the IR retrieval
should produce a frequency distribution of precipitation rates
similar to that produced by MW retrievals over a certain re-
gion during a certain period; that is, IR estimations and MW
retrievals from clouds have strong statistical frequency simi-
larities.

Due to high spatial and temporal variability of precipita-
tion, the DCDF method must be conducted over a certain
region during a certain period. The area and time period
must be large enough for a reasonable sample size, but small
enough to represent local characteristics. In the TMPA algo-
rithm, a relationship between IR and the precipitation rate is
built within a 1◦× 1◦ area by 3× 3 windows over the pe-
riod of a month (Huffman et al. 2007). Kidd et al. (2003)
obtained the relationship within a 1◦× 1◦ area with the use
of a 5◦× 5◦ Gaussian filter over a period of 5 days. Based
on the horizontal and temporal scales of stratiform and cu-
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Figure 8. Time series of rain gauge data, original CMORPH and DCDF precipitation for each randomly selected gauge. (a) Ganzhou station
(SE): 113.1667◦ E, 25.8667◦ N. (b) Jinan station (CE): 117.05◦ E, 36.6◦ N. (c) Tulihe station (NE): 121.6833◦ E, 50.4833◦ N. (d) Lanzhou
station (CW): 103.8833◦ E, 36.05◦ N. (e) Shihezi station (NW): 86.05◦ E, 44.3167◦ N. (f) Lasa station (TP): 91.1333◦ E, 29.6667◦ N.

muliform precipitation (Orlanski, 1975; Rickenbach, 2008,
Trapp, 2013) and previous studies (Kidd et al., 2003; Huff-
man et al. 2007), the DCDF method is applied within a
1◦× 1◦ area by 3× 3 windows over a 10-day period. Nev-
ertheless, the same gridded sample area is not the optimal
selection. The size of sample area is determined according to
local cloud type and varies over space and time. It likely is
our future work to improve the precipitation estimates’ algo-
rithm.

It seems that IR data are used twice, one for origi-
nal CMORPH generation and the other for downscaling
CMORPH. In fact, IR data serve as an intermediate variable
for an interpolation purpose in the first step, while IR data
serve as an ancillary variable in the second step for develop-
ing a precipitation–Tb relationship. The CMORPH product is
essentially derived from MW observations, and therefore the
use of IR data is reasonable. We selected CMORPH as ref-
erence precipitation data mainly for the following reasons.
Products with similar resolutions to GEO-IR data (0.05◦)
are not used, such as CMORPH at 0.072◦ and GSMaP at
0.1◦. TRMM 3B42 (RT) and the Naval Research Laboratory
blended product (NRLB) (Turk, 2005) algorithm combine
MW-calibrated IR estimates, which would result in IR reuse.

The DCDF method has two main disadvantages. The phys-
ical premise of the DCDF method is that cloud top temper-
ature in the IR imagery is a simple empirical function of
cloud top height, and that heavier rainfall tends to be asso-
ciated with larger, taller clouds with colder cloud tops. Un-

fortunately, not all cold clouds precipitate, and precipitation
does not always fall from cold clouds only (Barrett, 1970).
This phenomenon results in misreporting. In addition, the
rain–no-rain threshold is very critical for final precipitation
estimates. The size of the sample area and the indirect rela-
tionship between IR–Tb and the precipitation rate both affect
the rain–no-rain threshold. However, both of them have un-
certainties among rain systems and climatological regimes,
resulting in uncertainties of the rain–no-rain threshold.

Rain gauge measurements represent a space in a very
small area, while satellite precipitation products have a spa-
tial resolution of several kilometres or more. Thus, high-
resolution data are generally more similar to gauge data than
low-resolution data. Furthermore, the characteristic scale is
small for convective systems and large for frontal rain sys-
tems. Convective precipitation dominates in region SE, while
a frontal rain system dominates in regions CE and NE. Thus,
a rain gauge measurement can represent a space in a smaller
area in region SE than in regions CE and NE. Therefore,
discrepancies between rain gauge observations and satellite
estimates are lower in region SE than in regions CE and
NE. CMORPH performed poorly in regions NW and TP,
where orographic rain systems dominate (Hirpa et al., 2010;
Romilly and Gebremichael, 2011; Gao and Liu, 2013). Our
results are consistent with these findings.

It is expected that the DCDF method also applied to
reanalysis precipitation data (e.g. ERA-Interim, 0.75◦/6-
hourly). First, the assumption that Tb has a similar cumu-
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Table 2. Validation results of the daily precipitation for CMORPH and DCDF in 2014 in the six study regions.

Indexes Time Type SE CE NE CW NW TP

Bias (%) 1 year CMORPH −29.60 −12.82 −7.09 −5.57 120.22 26.41
DCDF −3.91 11.54 15.85 32.82. 145.43 52.33

SP CMORPH −20.82 −3.31 −45.50 45.44 159.02 83.32
DCDF −7.35 2.94 31.23 50.92 191.79 100.36

SU CMORPH −22.12 3.17 6.78 −43.92 143.11 −9.49
DCDF −10.47 2.66 5.94 25.91 217.04 7.53

FA CMORPH −57.75 −33.00 −16.90 10.90 114.44 43.22
DCDF 5.92 33.95 19.88 25.78 128.51 59.77

WI CMORPH −94.19 −32.83 −96.20 1042 −73.75 1655
DCDF 10.35 20.54 22.39 1874 54.58 2106

Root mean square error 1 year CMORPH 12.20 6.69 6.71 3.85 2.32 4.50
DCDF 7.94 4.38 5.16 4.74 3.96 6.08

SP CMORPH 16.23 4.79 3.13 2.81 2.41 2.70
DCDF 11.81 7.32 2.77 2.80 3.09 3.45

SU CMORPH 16.61 10.25 12.39 5.74 3.38 7.43
DCDF 13.83 10.95 10.64 6.98 5.13 10.27

FA CMORPH 6.14 6.90 3.89 3.93 1.94 3.46
DCDF 0.19 6.44 2.67 4.51 3.72 3.98

WI CMORPH 3.80 1.59 0.68 1.61 0.65 2.45
DCDF 2.86 2.05 0.41 2.47 1.14 3.49

CC 1 year CMORPH 0.52 0.32 0.32 0.17 0.33 0.28
DCDF 0.60 0.47 0.42 0.29 0.29 0.33

SP CMORPH 0.59 0.34 0.36 0.17 0.07 0.04
DCDF 0.66 0.40 0.38 0.17 0.05 0.04

SU CMORPH 0.36 0.19 0.25 0.17 0.40 0.23
DCDF 0.48 0.26 0.46 0.44 0.44 0.37

FA CMORPH 0.40 0.50 0.36 0.07 0.32 0.11
DCDF 0.52 0.53 0.46 0.10 0.21 0.08

WI CMORPH 0.31 0.02 0.00 0.05 0.03 0.06
DCDF 0.52 0.17 0.05 0.01 0.02 0.15

Probability of detection 1 year CMORPH 0.64 0.59 0.51 0.76 0.52 0.80
DCDF 0.77 0.74 0.62 0.80 0.69 0.87

SP CMORPH 0.68 0.52 0.45 0.82 0.51 0.70
DCDF 0.80 0.66 0.60 0.95 0.63 0.72

SU CMORPH 0.86 0.69 0.78 0.82 0.80 0.91
DCDF 0.99 0.85 0.91 0.87 0.90 1.00

FA CMORPH 0.50 0.67 0.46 0.71 0.80 0.72
DCDF 0.65 0.75 0.59 0.84 0.92 0.89

WI CMORPH 0.22 0.19 0.00 0.28 0.59 0.14
DCDF 1.00 1.00 1.00 1.00 1.00 1.00

False alarm rate 1 year CMORPH 0.30 0.63 0.48 0.65 0.76 0.65
DCDF 0.35 0.59 0.55 0.72 0.81 0.64

SP CMORPH 0.17 0.76 0.63 0.71 0.85 0.78
DCDF 0.21 0.70 0.73 0.81 0.92 0.85

SU CMORPH 0.31 0.53 0.36 0.33 0.68 0.30
DCDF 0.43 0.52 0.41 0.57 0.79 0.38

FA CMORPH 0.46 0.52 0.58 0.69 0.68 0.73
DCDF 0.48 0.58 0.66 0.89 0.66 0.91

WI CMORPH 0.54 0.90 1.00 0.96 0.76 0.99
DCDF 0.61 0.95 1.00 1.00 0.97 1.00

Heidke skill score 1 year CMORPH 0.43 0.25 0.34 0.08 0.14 0.13
DCDF 0.39 0.31 0.35 0.14 0.08 0.09

SP CMORPH 0.41 0.13 0.23 0.00 0.09 0.01
DCDF 0.44 0.21 0.29 0.03 0.11 0.07

SU CMORPH 0.38 0.29 0.40 0.25 0.17 0.22
DCDF 0.32 0.35 0.37 0.33 −0.08 0.16

FA CMORPH 0.38 0.39 0.27 −0.02 0.17 0.04
DCDF 0.39 0.48 0.34 0.01 −0.06 0.01

WI CMORPH 0.14 0.00 −0.01 −0.06 0.16 −0.06
DCDF 0.21 0.07 0.03 −0.11 0.29 −0.16
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lative frequency to the precipitation rate at certain spatial
and temporal scales is also applied to reanalysis data. Sec-
ond, most average R2 values between Tb and CMORPH are
higher than 0.90, which may infer that the poor performance
of the DCDF approach in winter and in mountainous regions
is mainly caused by the low accuracy of CMORPH. There-
fore, using reanalysis data for downscaling may be better
than satellite products.

6 Conclusions

Precipitation data with high spatial and temporal resolutions
are highly needed in basin-scale hydrological and meteoro-
logical studies. Based on the works by Barrett et al. (1991)
and Kidd and Levizzani (2011), this study proposed a DCDF
method to obtain precipitation data at the hourly, 0.05◦ scale.
The method was demonstrated using the CMORPH dataset
and FY2-E GEO-IR Tb data for 2014. With the establish-
ment of a power function relationship, improved precipita-
tion estimates at hourly and 0.05◦ resolution were produced.
The DCDF precipitation estimates were validated using rain
gauge data from six 5◦× 5◦ regions in China with different
climate and geographical conditions.

There are three key points of the DCDF method. First, it
explores the advantages of satellite precipitation estimates
and GEO-IR data. The DCDF method assumes a monoton-
ically decreasing Tb rate with an increase of precipitation
rate, and it assumes that Tb data have the same cumulative
frequency as that of the precipitation rate for certain spatial
and temporal scales. The matching process is implemented
by quantile-mapping the CDF of Tb onto that of the precip-
itation rate. Second, the sample area where the CDF match-
ing was conducted needs to be large enough for a reasonable
sample size, but small enough to represent the local charac-
teristics. In this study, the size of the sample area was 1◦× 1◦

grid over a 10-day period, based on the characteristic scale of
precipitation clouds. Third, a power function relationship be-
tween the precipitation rate and Tb was established for each
sample area. Meanwhile, a rain–no-rain threshold was ob-
tained as the Tb value with the same cumulative frequency
as that of the precipitation rate defined at the critical point of
rain–no-rain. Generally, the threshold was the maximum Tb
in the CDF-matching procedure.

The established fitting relationships generally reflected the
precipitation characteristics well in the six validation regions.
For the distributions of precipitation clouds, the DCDF pre-
cipitation estimates showed a similar spatial distribution to
that produced by CMORPH, but it reflected more detailed
moving and changing processes of rainfall under the con-
dition that DCDF performed better than or nearly equiva-
lent to CMORPH. The DCDF method can effectively reflect
the precipitation characteristics among rain systems and cli-
matological regimes. At the hourly scale, both DCDF and
CMORPH coincided with the disdrometer data at precipita-

tion rates ranging from 1 to 10 mm h−1. The DCDF effec-
tively reflected the peak of each rainfall event, but could not
exactly identify the starting and ending times of rainy events.
The DCDF may detect non-rainy events as rainy events es-
pecially in dry seasons, while CMORPH reported low-rain
events as non-rainy events. At the daily scale, DCDF and
CMORPH had nearly equivalent performances at the re-
gional scale, and 79 % DCDF may perform better than or
nearly equivalent to CMORPH at the point (rain gauge) scale.
Generally, the DCDF performed better (bias: 7.35–10.35 %;
CC: 0.48–0.60) than the original CMORPH product (bias:
20.82–94.19 %; CC: 0.31–0.59) over the regions where con-
vective precipitation dominates. It performed as well as the
CMORPH product over the regions where frontal rain sys-
tems dominate and relatively poorly over mountainous or
hilly areas where orographic rain systems dominate.

Data availability. The data used to produce the results of this paper
may be obtained by contacting the corresponding author.

Author contributions. RG and YL developed the method. HZ
and YZ were involved in the data processing. RG prepared the
manuscript and all co-authors were asked to review the manuscript.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This work was partially supported by the
State Key Program of the National Natural Science Foundation of
China under grant 41430855 and by the National High Technology
Research and Development Program under grant 2013AA12A301.
The authors would like to thank Chris Kidd for providing a report
of SSM/I rainfall algorithms, and Pingping Xie for his guidance
at the University of Maryland. The authors would like to thank
research associates Bo Zhong and Shanlong Wu for data collection
and processing at the Institute of Remote Sensing and Digital Earth
(RADI), Chinese Academy of Sciences.

Edited by: Matthias Bernhardt
Reviewed by: two anonymous referees

References

Arkin, P. A. and Meisner, B. N.: The relationship between
large-scale convective rainfall and cold cloud over the west-
ern hemisphere during 1982–1984, Mon. Weather Rev., 115,
https://doi.org/10.1175/1520-0493(1987)115<0051:TRBLSC>
2.0.CO;2, 1987.

Arkin, P., Turk, J., Ebert, B., Bauer, P., and Sapiano, M.: Evaluation
of high resolution precipitation forecasts and analyses from satel-
lite observations, in: AGU Fall Meeting, American Geophysical
Union, 1:4, 2006.

www.hydrol-earth-syst-sci.net/22/3685/2018/ Hydrol. Earth Syst. Sci., 22, 3685–3699, 2018

https://doi.org/10.1175/1520-0493(1987)115<0051:TRBLSC>


3698 R. Guo et al.: An evaluation over six climate regions

Ba, M. B. and Gruber, A.: GOES multispectral
rainfall algorithm (GMSRA), J. Appl. Meteo-
rol., 40, 1500–1514, https://doi.org/10.1175/1520-
0450(2001)040<1500:GMRAG>2.0.CO;2, 2001.

Barrett, E. C.: The Estimation of Monthly Rainfall from Satel-
lite Data, Mon. Weather Rev., 98, https://doi.org/10.1175/1520-
0493(1970)098<0322:TEOMRF> 2.3.CO;2, 1970.

Barrett, E. C. and Martin, D. W.: The Use of Satellite Data in Rain-
fall Monitoring, Academic Press, London, 1981.

Barrett, E. C., Beaumont, M. J., Brown, K. A., and Kidd, C.: Devel-
opment and testing of SSM/I rainfall algorithms for regional and
global use: NA86AA-H-RA001, Final Rep. to the U.S. Dept. of
Commerce, Washington, DC, 77, 1991.

Bitew, M. M. and Gebremichael, M.: Assessment of satellite rainfall
products for streamflow simulation in medium watersheds of the
Ethiopian highlands, Hydrol. Earth Syst. Sci., 15, 1147–1155,
https://doi.org/10.5194/hess-15-1147-2011, 2011.

Cannon, A. J.: Probabilistic Multisite Precipitation Downscaling by
an Expanded Bernoulli–Gamma Density Network, J. Hydrom-
eteor., 9, 1284–1300, https://doi.org/10.1175/2008JHM960.1,
2008.

Chen, S., Hong, Y., Cao, Q., Gourley, J. J., Kirstetter, P.
E., Yong, B., Tian, Y., Zhang, Z., Shen, Y., Hu, J., and
Hardy, J.: Similarity and difference of the two successive
v6 and v7 trmm multisatellite precipitation analysis perfor-
mance over china, J. Geophys. Res.-Atmos., 118, 13060–13074,
https://doi.org/10.1002/2013JD019964, 2013

Collischonn, B., Collischonn, W., Carlos, E., and Morelli,
T.: Daily hydrological modeling in the Amazon basin us-
ing TRMM rainfall estimates, J. Hydrol., 360, 207–216,
https://doi.org/10.1016/j.jhydrol.2008.07.032, 2008.

Dinku, T., Ceccato, P., Lemma, M., Connor, S. J., and Ro-
pelewski, C. F.: Validation of satellite rainfall products over east
africa’s complex topography, Int. J. Remote Sens, 28, 1503–
1526, https://doi.org/10.1080/01431160600954688, 2007.

Duan, Z. and Bastiaanssen, W. G. M.: First results from Version 7
TRMM 3B43 precipitation product in combination with a new
downscaling-calibration procedure, Remote Sens. Environ., 131,
1–13, https://doi.org/10.1016/j.rse.2012.12.002, 2013.

Ebert, E. E., Janowiak, J. E., and Kidd, C.: Comparison of
near real time precipitation estimates from satellite observa-
tions and numerical models, B. Amer. Meteor. Soc., 88, 47–64,
https://doi.org/10.1175/BAMS-88-1-47, 2007.

Ferraro, R. R., Weng, F., Grody, N. C., and Zhao, L.:
Precipitation characteristics over land from the noaa-
15 amsu sensor, Geophys. Res. Lett., 27, 2669–2672,
https://doi.org/10.1029/2000GL011665, 2000.

Ferraro, R. R.: Special sensor microwave imager derived global
rainfall estimates for climatological applications, J. Geophys.
Res., 102, 16715–16736, https://doi.org/10.1029/97JD01210,
1997.

Gao, Y. C. and Liu, M. F.: Evaluation of high-resolution satel-
lite precipitation products using rain gauge observations over
the Tibetan Plateau, Hydrol. Earth Syst. Sci., 17, 837–849,
https://doi.org/10.5194/hess-17-837-2013, 2013.

Giorgi, F. and Mearns, L. O.: Introduction to special section: re-
gional climate modeling revisited, J. Geophys. Res., 104, 6335–
6352, https://doi.org/10.1029/98JD02072, 1999.

Gottschalck, J., Meng, J., Rodell, M., and Houser, P.: Anal-
ysis of multiple precipitation products and preliminary as-
sessment of their impact on global land data assimilation
system land surface states, J. Hydrometeor., 6, 573–598,
https://doi.org/10.1175/JHM437.1, 2005.

Greene, J. S. and Morrissey, M. L.: Validation and uncertainty anal-
ysis of satellite rainfall algorithms, Prof. Geogr., 52, 247–258,
https://doi.org/10.1111/j.0033-0124.2000.t01-1-.x, 2000.

Hay, L. E., Mccabe, G. J., Wolock, D. M., and Ayers, M. A.: Sim-
ulation of precipitation by weather type analysis, Water Resour.
Res., 27, 493–501, https://doi.org/10.1029/90WR02650, 1991.

Hirpa, F. A., Gebremichael, M., and Hopson, T.: Evaluation of
High-Resolution Satellite Precipitation Products over Very Com-
plex Terrain in Ethiopia, J. Appl. Meteorol. Clim., 49, 1044–
4051, https://doi.org/10.1175/2009JAMC2298.1, 2009.

Hu, Q., Yang, D., Li, Z., Mishra, A. K., Wang, Y., and
Yang, H.: Multi-scale evaluation of six high-resolution satel-
lite monthly rainfall estimates over a humid region in china
with dense rain gauges, Int. J. Remote Sens, 35, 1272–1294,
https://doi.org/10.1080/01431161.2013.876118, 2014.

Huffman, G. J., Adler, R. F., Arkin, P. A., Chang, A., Fer-
raro, R., Gruber, A., Janowiak, J., Mcnab, A., Rudolf,
B., and Schneider, U.: The Global Precipitation Climatol-
ogy Project (GPCP) combined precipitation data set, B.
Amer. Meteor. Soc., 78, 5–20, https://doi.org/10.1175/1520-
0477(1997)078<0005:TGPCPG> 2.0.CO;2, 1997.

Huffman, G. J., Adler, R. F., Bolvin, D. T., and Gu, G.: Improving
the global precipitation record: GPCP version 2.1, Geophys. Res.
Lett., 36, L17808, https://doi.org/10.1029/2009GL040000, 2009.

Huffman, G. J., Adler, R. F., Morrissey, M. M., Curtis, S., Joyce,
R. J., McGavock, B., and Susskind, J.: Global precipitation
at one-degree daily resolution from multi-satellite observa-
tions, J. Hydrometeor., 2, 36–50, https://doi.org/10.1175/1525-
7541(2001)002<0036:GPAODD>2.0.CO;2, 2001.

Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin,
E. J., Bowman, K. P., Hong, Y., Stocker, E. F., and
Wolff, D. B.: The TRMM multisatellite precipitation analy-
sis (TMPA): Quasi-global, multiyear, combined-sensor precip-
itation estimates at fine scales, J. Hydrometeor., 8, 38–55,
https://doi.org/10.1175/JHM560.1, 2007.

Hughes, D. A.: Comparison of satellite rainfall data with observa-
tions from gauging station networks, J. Hydrol., 327, 399–410,
https://doi.org/10.1016/j.jhydrol.2005.11.041, 2006.

Immerzeel, W. W., Rutten, M. M., and Droogers, P.: Spatial down-
scaling of TRMM precipitation using vegetative response on
the Iberian Peninsula, Remote Sens. Environ., 113, 362–370,
https://doi.org/10.1016/j.rse.2008.10.004, 2009.

Javanmard, S., Yatagai, A., Nodzu, M. I., BodaghJamali, J., and
Kawamoto, H.: Comparing high-resolution gridded precipita-
tion data with satellite rainfall estimates of TRMM_3B42 over
Iran, Adv. Geosci., 25, 11-9-125, https://doi.org/10.5194/adgeo-
25-119-2010, 2010.

Jia, S. F., Zhu,W. B., Lu, A. F., and Yan, T. T.: A statistical spatial
downscaling algorithm of TRMM precipitation based on NDVI
and DEM in the QaidamBasin of China, Remote Sens. Envi-
ron., 115, 3069–3079, https://doi.org/10.1016/j.rse.2011.06.009,
2011.

Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.: CMORPH: A
method that produces global precipitation estimates from passive

Hydrol. Earth Syst. Sci., 22, 3685–3699, 2018 www.hydrol-earth-syst-sci.net/22/3685/2018/

https://doi.org/10.1175/1520-0450(2001)040<1500:GMRAG>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<1500:GMRAG>2.0.CO;2
https://doi.org/10.1175/1520-0493(1970)098<0322:TEOMRF>
https://doi.org/10.1175/1520-0493(1970)098<0322:TEOMRF>
https://doi.org/10.5194/hess-15-1147-2011
https://doi.org/10.1175/2008JHM960.1
https://doi.org/10.1002/2013JD019964
https://doi.org/10.1016/j.jhydrol.2008.07.032
https://doi.org/10.1080/01431160600954688
https://doi.org/10.1016/j.rse.2012.12.002
https://doi.org/10.1175/BAMS-88-1-47
https://doi.org/10.1029/2000GL011665
https://doi.org/10.1029/97JD01210
https://doi.org/10.5194/hess-17-837-2013
https://doi.org/10.1029/98JD02072
https://doi.org/10.1175/JHM437.1
https://doi.org/10.1111/j.0033-0124.2000.t01-1-.x
https://doi.org/10.1029/90WR02650
https://doi.org/10.1175/2009JAMC2298.1
https://doi.org/10.1080/01431161.2013.876118
https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>
https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>
https://doi.org/10.1029/2009GL040000
https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
https://doi.org/10.1175/JHM560.1
https://doi.org/10.1016/j.jhydrol.2005.11.041
https://doi.org/10.1016/j.rse.2008.10.004
https://doi.org/10.5194/adgeo-25-119-2010
https://doi.org/10.5194/adgeo-25-119-2010
https://doi.org/10.1016/j.rse.2011.06.009


R. Guo et al.: An evaluation over six climate regions 3699

microwave and infrared data at high spatial and temporal resolu-
tion, J. Hydrometeor., 5, 487–503, https://doi.org/10.1175/1525-
7541(2004)005<0487:CAMTPG>2.0.CO;2, 2004.

Karl, T. R., Wang, W. C., Schlesinger, M. E., Knight,
R. W., and Portman, D.: A method of relating gen-
eral circulation model simulated climate to the ob-
served local climate. part I: seasonal statistics, J.
Climate, 3, 1053–1079, https://doi.org/10.1175/1520-
0442(1990)003<1053:AMORGC>2.0.CO;2, 1990.

Kenabatho, P. K., Parida, B. P., and Moalafhi, D. B.: The value
of large-scale climate variables in climate change assessment:
The case of Botswana’s rainfall, Phys. Chem. Earth Parts, 50–
52, https://doi.org/10.1016/j.pce.2012.08.006, 2012.

Kidd, C. and Levizzani, V.: Status of satellite precipita-
tion retrievals, Hydrol. Earth Syst. Sci., 15, 1109–1116,
https://doi.org/10.5194/hess-15-1109-2011, 2011.

Kidd, C., Kniveton, D. R., Todd, M. C., and Bellerby,
T. J.: Satellite rainfall estimation using combined
passive microwave and infrared algorithms, J. Hy-
drometeor., 4, 1088, https://doi.org/10.1175/1525-
7541(2003)004<1088:SREUCP>2.0.CO;2, 2003.

Krajewski, W. F. and Smith, J. A.: Radar hydrology: rain-
fall estimation, Adv. Water Resour., 25, 1387–1394,
https://doi.org/10.1016/S0309-1708(02)00062-3, 2002.

Kummerow, C., Hong, Y., Olson, W. S., Yang, S., Adler, R. F.,
Mccollum, J., Ferraro, R., Petty, G., Shin, D. B., and Wil-
heit, T. T.: The evolution of the goddard profiling algorithm
(gprof) for rainfall estimation from passive microwave sensors,
J. Appl. Meteorol, 40, 1801–1820, https://doi.org/10.1175/1520-
0450(2001)040<1801:TEOTGP>2.0.CO;2, 2001.

Ma, Y. Z., Liu, X. N., and Xu, S: The description of Chinese radi-
ation data and their quality control procedures, Meteorol. Sci. 2,
53–56, 1998.

Magnusson, M., Vaskevicius, N., Stoyanov, T., Pathak, K.,
and Birk, A.: Beyond points: evaluating recent 3d scan-
matching algorithms, IEEE Int. Conf. Robot., 3631–3637,
https://doi.org/10.1109/ICRA.2015.7139703, 2015.

Mekonnen, G., Witold, F. K., Tomas, M. O., Yukarin, T., Phillip,
A., and Katayama, M.: Scaling of tropical rainfall as ob-
served by TRMM precipitation radar, Atmos. Res., 88, 337–354,
https://doi.org/10.1016/j.atmosres.2007.11.028, 2008.

Orlanski, I.: A rational division of scales for atmospheric processes,
B. Am. Meteor. Soc., 56, 527–530, 1975.

Prigent, C.: Precipitation retrieval from space: an
overview, Comptes Rendus Geosciences, 342, 380–389,
https://doi.org/10.1016/j.crte.2010.01.004, 2010.

Rickenbach, T. M.: Convection in TOGA COARE: Hor-
izontal Scale, Morphology, and Rainfall Production, J.
Atmos. Sci., 55, 2715–2729, https://doi.org/10.1175/1520-
0469(1998)055<2715:CITCHS>2.0.CO;2, 1998.

Romilly, T. G. and Gebremichael, M.: Evaluation of satellite rain-
fall estimates over Ethiopian river basins, Hydrol. Earth Syst.
Sci., 15, 1505–1514, https://doi.org/10.5194/hess-15-1505-2011,
2011.

Schmidli, J., Frei, C., and Vidale, P. L.: Downscaling from
gcm precipitation: a benchmark for dynamical and statis-
tical downscaling methods, Int. J. Climatol., 26, 679–689,
https://doi.org/10.1002/joc.1287, 2006.

Smith, E. A., Lamm, J. E., Adler, R., Alishouse, J., Aonashi,
K., Barrett, E. C, Bear, W., Chang, A., Ferraro, R., Ferri-
day, J., Goodman, S., Grpdy, N., Kidd, C., Kniveton, D.,
Kummerow, C., Liu, G., Marzano, F., Mugnai, A., Olson,
W., Petty, G., Shibata, A., Spencer, R., Wentz, F., Wilheit,
T., and Zipser, E.: Results of the WetNet PIP-2 Project,
J. Atmos. Sci., 55, 1483–1536, https://doi.org/10.1175/1520-
0469(1998)055<1483:ROWPP>2.0.CO;2, 1998.

Sohn, B. J., Han, H. J., and Seo, E. K.: Validation of satellite-based
high-resolution rainfall products over the korean peninsula using
data from a dense rain gauge network, J. Appl. Meteorol. Clim.,
49, 367–370, https://doi.org/10.1175/2009JAMC2266.1, 2010.

Thiemig, V., Rojas, R., Zambranobigiarini, M., Levizzani, V., and
De Roo, A.: Validation of satellite-based precipitation products
over sparsely gauged african river basins, J. Hydrometeor., 13,
1760–1783, https://doi.org/10.1175/JHM-D-12-032.1, 2012.

Tobler, W.: On the first law of geography: A reply, Ann. As-
soc. Amer. Geog., 94, 304–310, https://doi.org/10.1111/j.1467-
8306.2004.09402009.x, 2004.

Trapp, R. J.: Mesoscale-convective processes in the atmosphere,
Cambridge University Press, New York, USA, 346, 2013.

Turk, F. J. and Miller, S. D.: Toward improved characterization
of remotely sensed precipitation regimes with modis/amsr-e
blended data techniques, IEEE T. Geosci. Remote, 43, 1059–
1069, https://doi.org/10.1109/TGRS.2004.841627, 2005.

Ushio, T., Sasashige, K., Kubota, T., Shige, S., Okamoto, K.,
Aonashi, K., Inoue, T., Takahashi, N., and Iguchi, T., Kachi,
M, Oki, R., Morimoto, T., and Kawasaki, Z. I.: A Kalman
filter approach to the Global Satellite Mapping of Precipi-
tation (GSMaP) from combined passive microwave and in-
frared radiometric data, J. Meteorol. Soc. Japan, 87, 137–151,
https://doi.org/10.2151/jmsj.87A.137, 2009.

Wigley, T. M. L., Jones, P. D., Briffa, K. R., and Smith, G.: Obtain-
ing sub-grid-scale information from coarse-resolution general
circulation model output, J. Geophys. Res.-Atmos., 95, 1943–
1953, https://doi.org/10.1029/JD095iD02p01943, 1990.

Wilby, R. L. and Wigley, T. M. L.: Downscaling gen-
eral circulation model output: a review of meth-
ods and limitations, Prog. Phys. Geog., 21, 530–548,
https://doi.org/10.1177/030913339702100403, 1997.

Wilby, R. L., Dawson, C. W., and Barrow, E. M.: Sdsm-
a decision support tool for the assessment of regional cli-
mate change impacts, Environ. Modell. Softw., 17, 145–157,
https://doi.org/10.1016/S1364-8152(01)00060-3, 2002.

Wilks, D. S.: Statistical Methods in the Atmospheric Science, Aca-
demic, San Diego, Calif, 465, 1995.

Willems, P. and Vrac, M.: Statistical precipitation down-
scaling for small-scale hydrological impact investiga-
tions of climate change, J. Hydrol., 402, 193–205,
https://doi.org/10.1016/j.jhydrol.2011.02.030, 2011.

www.hydrol-earth-syst-sci.net/22/3685/2018/ Hydrol. Earth Syst. Sci., 22, 3685–3699, 2018

https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
https://doi.org/10.1175/1520-0442(1990)003<1053:AMORGC>2.0.CO;2
https://doi.org/10.1175/1520-0442(1990)003<1053:AMORGC>2.0.CO;2
https://doi.org/10.1016/j.pce.2012.08.006
https://doi.org/10.5194/hess-15-1109-2011
https://doi.org/10.1175/1525-7541(2003)004<1088:SREUCP>2.0.CO;2
https://doi.org/10.1175/1525-7541(2003)004<1088:SREUCP>2.0.CO;2
https://doi.org/10.1016/S0309-1708(02)00062-3
https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2
https://doi.org/10.1109/ICRA.2015.7139703
https://doi.org/10.1016/j.atmosres.2007.11.028
https://doi.org/10.1016/j.crte.2010.01.004
https://doi.org/10.1175/1520-0469(1998)055<2715:CITCHS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1998)055<2715:CITCHS>2.0.CO;2
https://doi.org/10.5194/hess-15-1505-2011
https://doi.org/10.1002/joc.1287
https://doi.org/10.1175/1520-0469(1998)055<1483:ROWPP>2.0.CO;2
https://doi.org/10.1175/1520-0469(1998)055<1483:ROWPP>2.0.CO;2
https://doi.org/10.1175/2009JAMC2266.1
https://doi.org/10.1175/JHM-D-12-032.1
https://doi.org/10.1111/j.1467-8306.2004.09402009.x
https://doi.org/10.1111/j.1467-8306.2004.09402009.x
https://doi.org/10.1109/TGRS.2004.841627
https://doi.org/10.2151/jmsj.87A.137
https://doi.org/10.1029/JD095iD02p01943
https://doi.org/10.1177/030913339702100403
https://doi.org/10.1016/S1364-8152(01)00060-3
https://doi.org/10.1016/j.jhydrol.2011.02.030

	Abstract
	Introduction
	Study areas and datasets
	Study areas
	Datasets
	Meteorological data
	Satellite data


	Methodology
	CDF matching
	Downscaling
	Variogram

	Results
	Tb--precipitation rate relationship
	Estimation results
	Validation

	Discussion
	Conclusions
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	References

