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Abstract. Timely and skilful seasonal streamflow forecasts
are used by water managers in many regions of the world
for seasonal water allocation outlooks for irrigators, reservoir
operations, environmental flow management, water markets
and drought response strategies. In Australia, the Bayesian
joint probability (BJP) statistical approach has been deployed
by the Australian Bureau of Meteorology to provide seasonal
streamflow forecasts across the country since 2010. Here we
assess the BJP approach, using antecedent conditions and cli-
mate indices as predictors, to produce Kharif season (April–
September) streamflow forecasts for inflow to Pakistan’s two
largest upper Indus Basin (UIB) water supply dams, Tarbela
(on the Indus) and Mangla (on the Jhelum). For Mangla, we
compare these BJP forecasts to (i) ensemble streamflow pre-
dictions (ESPs) from the snowmelt runoff model (SRM) and
(ii) a hybrid approach using the BJP with SRM–ESP forecast
means as an additional predictor. For Tarbela, we only assess
BJP forecasts using antecedent and climate predictors as we
did not have access to SRM for this location. Cross validation
of the streamflow forecasts shows that the BJP approach us-
ing two predictors (March flow and an El Niño Southern Os-
cillation, ENSO, climate index) provides skilful probabilis-
tic forecasts that are reliable in uncertainty spread for both
Mangla and Tarbela. For Mangla, the SRM approach leads to
forecasts that exhibit some bias and are unreliable in uncer-
tainty spread, and the hybrid approach does not result in bet-
ter forecast skill. Skill levels for Kharif (April–September),

early Kharif (April–June) and late Kharif (July–September)
BJP forecasts vary between the two locations. Forecasts for
Mangla show high skill for early Kharif and moderate skill
for all Kharif and late Kharif, whereas forecasts for Tarbela
also show moderate skill for all Kharif and late Kharif, but
low skill for early Kharif. The BJP approach is simple to ap-
ply, with small input data requirements and automated cali-
bration and forecast generation. It offers a tool for rapid de-
ployment at many locations across the UIB to provide prob-
abilistic seasonal streamflow forecasts that can inform Pak-
istan’s basin water management.

1 Introduction

The Asian Development Bank rates water security in Pak-
istan as “hazardous” (the lowest of five classes), ranking it
46th out of 48 countries in the Asia–Pacific region, with
only Kiribati and Afghanistan ranked lower (Asian Devel-
opment Bank, 2016). Other studies confirm Pakistan’s rela-
tively high levels of exploitation of river flows and ground-
water, associated water stress and resultant exposure to cli-
mate change (Döll et al., 2009; Wada et al., 2011; Schlosser
et al., 2014; Kirby et al., 2017). Given the high demands on
the main water source, the Indus River, its year-to-year flow
variability has a significant impact on security of supply in
the Indus Basin Irrigation System (IBIS) of Pakistan. Better
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management outcomes could be achieved if a reliable un-
derstanding of Kharif (April–September, “all Kharif”) wa-
ter availability at the beginning of the season were available.
This would improve IBIS water allocation planning, a critical
need given the highly seasonal flows (∼ 80 % annual flow oc-
curs in the Kharif season), limited storage capacity (10 % of
inflows) and increasing water demand for agriculture and en-
ergy production. Thus we assess methods for providing sea-
sonal streamflow forecasts for the two largest water supply
dams, Tarbela (on the Indus) and Mangla (on the Jhelum), in
the upper Indus Basin (UIB) of Pakistan.

Seasonal streamflow forecasts can be a valuable source
of information for water resource managers (Chiew et al.,
2003; Anghileri et al., 2016), with both statistical and dynam-
ical forecasting approaches developed and implemented in-
ternationally (Yuan et al., 2015). Sources of seasonal stream-
flow predictability come from initial hydrological or an-
tecedent conditions (e.g. water held in storage in a catch-
ment, in the soil, as ground water, in surface stores or as
snow/ice) and also from the skill of seasonal climate fore-
casts (Bennett et al., 2016; Doblas-Reyes et al., 2013; Li
et al., 2009; Shukla and Lettenmaier, 2011; Shukla et al.,
2013; van Dijk et al., 2013; Koster et al., 2010; Wood et
al., 2015; Yossef et al., 2013). Statistical approaches relate
antecedent catchment conditions and/or climate indices to
streamflow using techniques such as multiple linear regres-
sion (Maurer and Lettenmaier, 2003). Statistical approaches
require predictor–predictand records of sufficient length to
determine robust relationships, stationarity in the relation-
ships and rigorous cross-validation to avoid over-fitting or
an inflated skill assessment (Robertson and Wang, 2012;
Schepen et al., 2012). Dynamical approaches use hydrolog-
ical models initialised with observed inputs up to the begin-
ning of the forecast season (to account for antecedent con-
ditions) that can be driven either by historical or modelled
climate inputs (Yuan et al., 2015; Zheng et al., 2013). For
example, in ensemble streamflow prediction (ESP), hydro-
logical models are driven by each historical season’s pre-
cipitation and temperature series to produce an ensemble of
flow forecasts, with this ensemble providing a distribution
of plausible flows for the forecast period (Wood and Let-
tenmaier, 2008). ESP forecasts can also be used as an input
predictor to statistical techniques (Robertson et al., 2013).
Dynamical (i.e. climate model) forecasts of precipitation and
temperature are often not sufficiently skilful in this region.
For example, Kim et al. (2012) assessed retrospective sea-
sonal forecasts of the Asian summer monsoon from ECMWF
System 4 (Molteni et al., 2011) and NCEP CFSv2 (Saha et
al., 2014), finding low skill for precipitation prediction and
poor simulations of the Indian summer monsoon circula-
tion. Cash et al. (2017) assessed monthly North American
Multi-Model Ensemble (Kirtman et al., 2013) hindcasts ini-
tialised on 1 May for May to November for South Asia, in-
cluding the mountainous areas of Afghanistan and Pakistan.
They concluded that the multi-model ensemble-mean tem-

perature and precipitation forecasts, while generally exceed-
ing the skill of any individual model, provided little benefit
over climatology. Given these findings, we have not investi-
gated the use of dynamical forecasts in this assessment. Al-
ternatively, statistically based forecast methods using robust
relationships between climate drivers, antecedent catchment
conditions and resultant streamflow can be valuable research
and management tools when properly implemented (Plum-
mer et al., 2009; Schepen et al., 2016). Thus in this assess-
ment, we assess three statistically based forecast options for
their practical feasibility in developing seasonal streamflow
forecasting models for the study region:

1. a statistical approach using the Bayesian joint proba-
bility (BJP) model with predictors accounting for an-
tecedent basin conditions and climate drivers;

2. an ESP approach using the snowmelt runoff
model (SRM);

3. a hybrid approach using option (1) with an additional
predictor – the mean ESP forecasts from (2).

The study is reported as follows: Sect. 2 outlines the study
area, details of the case studies and data used and climate
influences; Sect. 3 presents the BJP statistical approach, the
SRM–ESP approach and the verification metrics used to as-
sess forecast skill, bias, reliability and robustness; Sect. 4
presents the results of the BJP and SRM skill scores and per-
formance diagnostics. Section 5 discusses the performance
of the forecast approaches and Sect. 6 concludes with the
main findings and recommendations.

2 Case study and data

2.1 Upper Indus Basin

Pakistan’s water supply, crucial for its extensive irrigated
agriculture industry, hydropower generation and industrial
and municipal water supply, is predominantly sourced from
Indus river flow, with groundwater a secondary although im-
portant contributor to most demands (with the exception of
hydropower). The glaciated and snow covered sub-basins
of the UIB, encompassing glaciated headwater catchments
within the northern Hindu Kush, Karakoram and western Hi-
malayan mountain ranges, dominate water generation within
the Indus Basin (Alford et al., 2014). The UIB’s tributaries
include the Indus at Kharmong: Shigar, Shyok and Astore
in the Karakoram Himalaya; the Jhelum, Chenab, Ravi and
Sutlej in the western Himalaya; the Hunza, Gilgit, Kabul,
Swat and Chitral in the Hindu Kush mountains (Fig. 1).
These basins can be classified as having a flow regime that
is either glacier-melt dominated (Hunza, Shigar and Shyok)
or snowmelt dominated (Jhelum, Kabul, Gilgit, Astore and
Swat; Hasson et al., 2014). The predominant source of flow
in the UIB is snowmelt, with glacier melt a secondary source,
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Figure 1. Map of UIB showing sub-basins and location of major dams.

Figure 2. Annual cycle of mean precipitation, PET and inflow for (a) Jhelum at Mangla and (b) Indus at Tarbela (note different volume
scales).

with 80 % of flow occurring during the June–September sum-
mer period. Interannual flow variability is thus controlled by
two processes, snow accumulation as determined by win-
ter precipitation and temperature and meltwater generation
as determined by summer temperatures. Hence snowmelt-
generated flow is a function of winter precipitation and tem-
perature and also summer temperature, whereas glacier melt
is primarily a function of summer temperature, although
glacier melt is also influenced by snow cover (Charles, 2016).

Inflows to two major reservoirs, Tarbela Dam on the Up-
per Indus and Mangla Dam on the Jhelum River, a major
tributary to the Indus system, are investigated (Fig. 1). Daily
inflow data from 1975 to 2015 were obtained from Pak-
istan Water and Power Development Authority (WAPDA).
Figure 2 presents the seasonal hydroclimatic cycle for these

two basins, showing double-peaked (winter and summer)
precipitation with inflow peaking in May for Mangla and
July for Tarbela. The Tarbela Dam on the main stem of
the Indus is one of the largest individual storages in the
UIB, crucial for hydropower generation and irrigation supply
(Ahmed and Sanchez, 2011). Annual inflows to Tarbela con-
stitute 70 % melt water, of which snowmelt contributes 44 %
and glacial melt contribute 26 % (Mukhopadhyay and Khan,
2015). The Mangla Dam on the Jhelum River is (since en-
largement) a similarly sized storage as Tarbela and one of the
most important resources in Pakistan for electricity genera-
tion and water supply for irrigation (Mahmood et al., 2015).
For the Jhelum, the area upstream of Mangla is reported as
33 500 km2 with an elevation range from 300 to 6285 m and
mean of nearly 2400 m, the relatively low altitude ensures
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that there is only 0.7 % coverage by glaciers or perennial
snow according to GLIMS glacier database as cited by Bo-
gacki and Ismail (2016). In contrast, the Indus upstream of
Tarbela is over 5 times larger (173 345 km2) with higher ele-
vation (to 8238 m, as reported by Immerzeel et al., 2009) and
11.5 % is covered by perennial glaciers (Ismail and Bogacki,
2018), such that (as noted above and evident in Fig. 2, show-
ing inflow exceeding precipitation) glacier ice melt makes a
significant contribution to annual flow.

2.2 Climate influences

Useful climate indices should be related to the weather prior
to the forecast season, providing an indication of snow ac-
cumulation, and also to the weather within the forecast sea-
son, influencing temperature and hence snow and glacier
melt rates. A literature review identified indices related to
the North Atlantic Oscillation (NAO) and El Niño South-
ern Oscillation (ENSO) as the most likely to provide skill
for the UIB (Charles, 2016). These both influence the direc-
tion of prevailing winds bringing moisture into the region
and thus determine precipitation and temperature conditions
influencing the depth and areal extent of snow accumulation
in the winter and early spring preceding the Kharif (April–
September) high-flow season.

The NAO is a measure of the strength of the pressure gra-
dient between the subtropics and polar regions in the North
Atlantic, representing a dominant source of variability in cir-
culation and winds influencing the region (Hurrell, 1995;
Bierkens and van Beek, 2009). It has a direct influence on
the interannual variability of the westerly winds (westerly
disturbances) and their water content traversing Europe, the
Mediterranean and the Middle East region into the moun-
tains of the UIB (Yadav et al., 2009a; Syed et al., 2010; Fil-
ippi et al., 2014). Indices of the NAO have been linked with
UIB weather station winter precipitation (Archer and Fowler,
2004; Afzal et al., 2013; Filippi et al., 2014), western Indus
Basin’s winter snow cover and weather station precipitation
(Hasson et al., 2014), Pakistan weather station temperature
(del Río et al., 2013) and winter precipitation in north-west
India (Kar and Rana, 2014).

ENSO is a dominant pattern of multi-year variability
driven by ocean–atmosphere interactions in the tropical Pa-
cific (Wolter and Timlin, 2011), influencing climate glob-
ally including the variability of both western disturbances
and monsoon processes experienced by the region. The com-
monly used SOI (Southern Oscillation Index) has been linked
with winter Hindu Kush Himalayan region precipitation
(Afzal et al., 2013), Indian Summer Monsoon precipitation
(Ashok et al., 2004; Ashok and Saji, 2007), central south-
west Asian winter precipitation (Syed et al., 2006), Pak-
istan weather station temperature (del Río et al., 2013) and
north-west India winter precipitation (Kar and Rana, 2014).
Stronger links have been reported between ENSO, western

disturbances and interannual winter precipitation variability
in recent decades (Yadav et al., 2009a, b).

3 Methods

3.1 BJP forecasting models

The statistical seasonal forecasting model used is the
Bayesian joint probability (BJP) approach of Wang et
al. (2009). The BJP has state-of-the-art capabilities in devel-
oping seasonal forecast models that optimally utilise infor-
mation available on antecedent catchment conditions, large-
scale climate forcing (through climate indices) and flow fore-
cast scenarios from hydrological models (Robertson et al.,
2013; Robertson and Wang, 2012; Schepen et al., 2012;
Wang and Robertson, 2011). The BJP models simulate
predictor–predictand relationships using conditional multi-
variate normal distributions, with predictor and predictand
data transformed to normal using either a log-sinh (Wang et
al., 2012b) or Yeo–Johnson (Yeo and Johnson, 2000) trans-
formation. BJP parameters are inferred using Markov chain
Monte Carlo (MCMC) methods to account for parameter un-
certainty, which can be due to factors such as short data
records. Probabilistic (ensemble) forecasts are produced by
generating samples from the estimated conditional multi-
variate normal distributions. When predictor–predictand re-
lationships are weak, the BJP produces reliable forecasts that
approximate climatology. The full technical details of the
BJP modelling approach are presented in Wang et al. (2009)
and Wang and Robertson (2011).

3.2 SRM forecasting model

The Snowmelt Runoff Model (SRM) of Martinec et
al. (2008) has been used in several studies in the basin (Butt
and Bilal, 2011; Romshoo et al., 2015; Tahir et al., 2011; Bo-
gacki and Ismail, 2016; Ismail and Bogacki, 2018). WAPDA
has procured a version of SRM implemented in Excel©, “Ex-
celSRM”, and for their 2012 case study for Jhelum inflow
into the Mangla Reservoir (NESPAK et al., 2012), Excel-
SRM was calibrated using data for 2003 to 2010 and subse-
quently validated against inflows for 2000 to 2002 and 2007
and 2011 (Bogacki and Ismail, 2016). In contrast to the prob-
abilistic forecasts produced by the BJP, the SRM is a deter-
ministic model and so produces a single forecast for a given
set of inputs.

Given the inadequacy of seasonal meteorological forecasts
for the region (Bogacki and Ismail, 2016; Cash et al., 2017;
Ismail and Bogacki, 2018), an ESP approach is used to fore-
cast a range of possible Kharif season inflows. That is, SRM
is initiated with snow cover observed at the end of March,
and then run to produce 6-month Kharif season scenarios us-
ing the P and T inputs from each year in the available his-
torical record, together with the modified depletion curve ap-
proach (Rango and Martinec, 1982) to simulate snow cover
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depletion as a function of that scenario year’s degree-days
series. This approach results in an ensemble of simulated in-
flows and, as well as assessing the SRM–ESP forecasts them-
selves (from a research version of ExcelSRM we obtained
in 2015; i.e. not the current version used operationally), this
study has used the mean of the ensemble members for each
year as an additional predictor series for input to the BJP (op-
tion 3 as outlined in the Introduction).

3.3 Verification

BJP forecast model performance is verified using leave-one-
out cross-validated results (Wang and Robertson, 2011). That
is, to avoid artificially inflating the skill, for each Kharif sea-
son the calibration and assessment does not use that season’s
data for BJP parameter estimation. The cross-validated BJP
forecast performance was assessed for 1975–2015 (41 sea-
sons), with the BJP models calibrated on a seasonal basis
(i.e. 40 data points) using 1000 MCMC samples for each of
the leave-one-out calibrations.

As noted, the BJP can also use hydrological model simu-
lated flow as an additional predictor (Robertson et al., 2013)
and in this case we have SRM simulations for the Mangla
inflow for a subset of the investigation period (2001–2015).
The SRM is an exception to the leave-one-out cross valida-
tion as it is calibrated using all data for the 2003 to 2010 pe-
riod, with parameters manually tuned “. . . in order to keep
parameters at smooth values and to maintain a reasonable
trend in time” (NESPAK et al., 2012). The mean flow simu-
lations obtained from driving each year’s SRM with all years’
available precipitation and temperature are therefore not in-
dependent forecasts, and so it is not surprising that for the
2003 to 2010 period the SRM forecasts are closer to the ob-
served flows than the median cross-validated BJP estimates.
When used as a predictor to the BJP, SRM forecasts are ap-
plied with leave-one-out cross validation i.e. for each year
in the 2001–2015 period, simulations from all of the other
14 years are used to produce an ESP with the resulting mean
used as a predictor for that year. Note the BJP is able to ex-
tract skill from biased dynamic hydrological model forecasts,
as long as the hydrological model simulation bias is system-
atic and stationary (i.e. not random or with a trend).

Verification assesses the overall skill and the bias, reliabil-
ity and robustness of the forecasts. This includes assessing
whether the bias and reliability of the forecasts vary for dif-
ferent periods of the record (temporal stability) or for differ-
ent event sizes, e.g. whether there is a limitation in forecast-
ing high- or low-flow seasons. Skill scores, quantifying the
skill of the forecasts, allow the direct comparison of the per-
formance of forecasting models that use different sets of pre-
dictors. Two common skill scores used here are the root mean
squared error (RMSE), which assesses the forecast median,
and the continuous ranked probability score (CRPS), which
assesses the reduction in error of the whole forecast probabil-
ity distribution (Robertson and Wang, 2013). The skill scores

are reported as percentage reductions in error scores of the
forecasts relative to the observed historical (climatological)
median, for RMSE, and relative to the full distribution of the
observed historical (climatological) events, for CRPS. The
“sharpness” of a probabilistic forecast distribution (i.e. a nar-
rower peaked distribution rather than a wide, flat distribution)
is also a characteristic relevant to forecast skill (Gneiting
et al., 2007). Sharp forecasts with narrow forecast intervals
reduce the range of possible outcomes that are anticipated,
increasing their usefulness for decision makers (Li et al.,
2016). This skill can be quantified, for example, as the per-
centage reduction in the inter-quartile range (IQR) between
the forecast’s distribution and the observed historical (cli-
matological) distribution (Crochemore et al., 2017). RMSE,
CRPS and IQR skill scores are interpreted as “How are the
skill score categories defined?” from http://www.bom.gov.
au/water/ssf/faq.shtml (last access: 27 June 2018):

– 0 is considered to be a forecast with no skill (equivalent
skill to predicting using historical averages or historical
reference);

– less than 5 is considered to be a forecast with very low
skill;

– 5–15 is considered to be a forecast with low skill;

– 15–30 is considered to be a forecast with moderate skill;

– greater than 30 is considered to be a forecast with high
skill.

Reliability refers to the statistical similarity between the fore-
cast probabilities and the relative frequencies of events in the
observations, which can be verified using probability integral
transforms (PITs). The PIT represents the non-exceedance
probability of observed streamflow obtained from the cumu-
lative distribution function of the ensemble forecast. If the
forecast ensemble spread is appropriate and free of bias then
observations will be contained within the forecast ensemble
spread, with reliable forecasts having PIT values that follow
a uniform distribution between 0 and 1 (Laio and Tamea,
2007). Thus PIT plots are an efficient diagnostic to visually
evaluate whether the forecast probability distributions are too
wide or too narrow or are biased (under or over estimating)
in their prediction of the observed distribution (Wang and
Robertson, 2011). As outlined by Thyer et al. (2009), PIT
plot points falling on the 1 : 1 line indicate that the predicted
distribution is a perfect match to the observed; observed PIT
values of 0.0 or 1.0 indicate the corresponding observed data
falls outside the predicted range, hence the predictive uncer-
tainty is significantly underestimated; PIT values clustered
around the mid-range (i.e. a low slope in the 0.4–0.6 uniform
variate range) indicate the predictive uncertainty is overesti-
mated; PIT values clustered around the tails (i.e. a high slope
in the 0.4–0.6 uniform variate range) indicate the predictive
uncertainty is underestimated; if PIT values at the theoretical
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median are higher than those of the uniform variate the pre-
dictions have an underprediction bias; if they are lower than
the uniform variate, then the predictions have an overpredic-
tion bias.

4 Results

4.1 Skill scores

BJP models were trialled with combinations of predictors
accounting for antecedent flow (flow immediately preced-
ing the forecast season, i.e. March flow for the Kharif fore-
cast) and NAO- or ENSO-based climate indices identified
from the literature, as introduced in Sect. 2.2 (Charles, 2016).
MODIS (Hall et al., 2010) snow-cover area and GLDAS-
2.1 (Rodell et al., 2004) snow-water equivalent (SWE), addi-
tional measures of antecedent conditions, were also assessed
as potential predictors. A significant limitation is the shorter
record lengths for MODIS and GLDAS, as available data
for both start in 2000. This is of particular concern for the
BJP’s leave-one-out cross-validation, as using short records
to identify dynamical mechanisms is susceptible to spuri-
ous skill. Correlation analysis, cognisant of the short 2000–
2015 period, found that these snow products have a simi-
lar or lower correlation with Kharif flow (QKharif) compared
to March flow (QMarch), and are relatively highly correlated
with QMarch. Thus the limitation of short record length, lack
of higher correlation with flow than that of the QMarch predic-
tor, and relatively high cross-correlation with QMarch, leads
us to conclude that they would not be expected to provide
additional skill as a predictor for the BJP.

SRM–ESP scenario-mean forecasts were an additional
predictor trialled for Jhelum at Mangla. Higher skill was
generally obtained for predictor combinations using a flow
predictor (March flow) together with either the Multivariate
ENSO index (MEI; http://www.esrl.noaa.gov/psd/enso/mei/
index.html, last access: 27 June 2018; Wolter and Timlin,
1998) or the Southern Oscillation signal index (SSI; http://
www.cgd.ucar.edu/cas/catalog/climind/soiAnnual.html, last
access: 27 June 2018; Trenberth, 1984) as a climate predic-
tor. The seasons of the trialled climate predictors (i.e. their
time-lag preceding the forecast season) were selected based
on their highest linear correlations with flow (not shown).
Table 1 presents cross-validated BJP forecast skill scores us-
ing the trialled combinations of antecedent flow and climate
predictors for the Kharif season for Jhelum at Mangla, to-
gether with bootstrapped 10th to 90th percentile ranges to
assess model uncertainty. These ranges were obtained by re-
sampling 1000 random sequences of years of the same length
as the observed record, i.e. with replacement, and calculat-
ing skill scores for each sample. Combinations including the
SRM forecasts (ESP mean) as a predictor are included; how-
ever, because the SRM results are only available for the 15-
year period 2001–2015, they are only providing skill during

the 2001–2015 period when included as a BJP predictor for
the full 41-year period (1975–2015). These results show

– The antecedent predictor (March flow, QMarch) provides
greater skill than any of the individual climate predic-
tors used.

– Two-predictor models using QMarch and the SRMKharif
predictor give poorer skill scores compared to using
QMarch alone.

– Two-predictor models using QMarch and one climate
predictor slightly improve (in most cases) the skill
scores compared to using QMarch alone.

– Given the large uncertainty in skill scores, we do not
aim to select a “best” model. However, as there are
many models with positive skill (i.e. better than clima-
tology), using skilful models is plausible. Ideas on how
to do this are discussed in Sect. 5.

Addition of the SRMKharif predictor to the two-predictor
models using QMarch and one climate predictor does not im-
prove skill scores. Table 2 presents the skill scores for the
Kharif season forecasts for the Indus at Tarbela, also using
the antecedent flow and climate predictors but without SRM
forecasts in this case (as SRM was not available for Indus at
Tarbela for this study). Similarly to the results for the Jhelum
at Mangla, for the Indus at Tarbela BJP forecasts:

– The antecedent predictor (March flow, QMarch) provides
greater skill than any of the climate predictors used.

– On the whole, a single climate predictor produces low
skill compared to that obtained using QMarch, with a no-
table exception that the MEIMayJun (i.e. the year before)
predictor produces skill scores comparable to those ob-
tained using QMarch. The selection of MEIMayJun as a
predictor is discussed further in Sect. 5.

– Two-predictor models using QMarch and one climate
predictor improve the skill scores compared to using
QMarch alone.

– Given there is large uncertainty in skill scores we do
not aim to select a “best” model. However, as there are
many models with positive skill (i.e. better than clima-
tology) then using skilful models is plausible. Ideas on
how to do this are discussed in Sect. 5.

In addition to calibration for the full Kharif season, BJP cal-
ibrations were also undertaken for the early Kharif (April–
June) and the late Kharif (July–September) using the relevant
flow and ENSO-based predictors (e.g. for late Kharif the June
flow was used as an antecedent predictor). A comparison of
the resulting skill scores are shown in Fig. 3 for the BJP mod-
els that gave the highest skill gain relative to climatology for
the Kharif, early Kharif and late Kharif periods. It is inter-
esting to contrast the performance for the two locations, with
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Table 1. Cross-validated skill scores of BJP forecasts for Kharif season for Jhelum at Mangla. Bootstrap 10th to 90th percentile resampling
ranges are shown in brackets.

Predictor combination Skill scores 2001–2015 Skill scores 1975–2015

Flowa Climateb Modelc SSCRPS SSRMSE SSCRPS SSRMSE

QMarch – – 21.0 (−9.5–41.3) 17.5 (−13.8–39.6) 26.9 (15.7–35.8) 26.0 (14.5–35.3)
QMarch – SRMKharif 15.8 (−12.6–36.0) 13.2 (−13.2–32.4) 25.6 (15.2–34.9) 25.4 (15.0–34.2)
– NAOSepOctNov – −3.2 (−19.5–10.5) −7.1 (−22.6–7.3) −0.6 (−4.8–2.9) −2.3 (−7.3–1.8)
– MEIFebMar – 14.7 (−1.3–28.2) 10.3 (−5.8–26.2) 14.2 (5.8–21.8) 11.7 (3.1–19.9)
QMarch MEIFebMar – 22.6 (−5.0–42.9) 18.5 (−9.0–40.7) 25.5 (13.8–35.0) 24.7 (13.0–33.9)
– MEIFebMar SRMKharif 24.1 (5.2–38.2) 21.2 (1.6–36.2) 17.7 (7.6–26.5) 15.4 (4.5–24.4)
QMarch MEIFebMar SRMKharif 18.0 (−6.7–38.0) 14.8 (−10.0–34.8) 23.9 (12.5–34.0) 23.2 (11.5–32.6)

SSIMarch – 11.4 (−5.3–27.5) 7.0 (−9.2–27.9) 7.9 (0.6–14.8) 6.0 (−1.7–13.6)
QMarch SSIMarch – 24.3 (−2.5–44.9) 20.2 (−7.2–42.5) 26.2 (15.7–35.8) 25.1 (14.4–34.5)

SSIMarch SRMKharif 24.2 (2.2–41.3) 20.5 (−3.2–39.5) 12.9 (3.0–21.7) 10.3 (−0.4–19.6)
QMarch SSIMarch SRMKharif 22.5 (−5.2–42.5) 19.1 (−8.0–39.0) 24.9 (13.3–34.8) 24.4 (13.4–33.7)

SRM Scenariosd 25.3 20.4 – –

a 1976–2015; b 1975–2015; c 2001–2015 SRM–ESP mean, with L1OCV; d 2001–2015 SRM–ESP with L1OCV.

Table 2. Cross-validated skill scores of BJP forecasts for Kharif season for Indus at Tarbela. Bootstrapped 10th to 90th percentile resampling
ranges are shown in brackets.

Predictor combination Skill scores 1975–2015

Flowa Climateb Modelc SSCRPS SSRMSE

QMarch – – 16.6 (9.0–24.0) 18.9 (11.8–26.0)
– NAOd

SepOctNov – 6.1 (1.1–11.1) 8.2 (2.8–13.7)

QMarch NAOd
SepOctNov – 18.8 (11.9–27.0) 21.0 (14.2–28.4)

– MEIFebMar – 7.6 (2.5–12.7) 10.3 (4.2–15.9)
QMarch MEIFebMar – 18.6 (9.9–25.9) 20.8 (12.0–28.1)
– MEId

MayJun – 15.6 (7.2–23.2) 17.1 (7.9–25.8)
QMarch MEId

MayJun – 25.0 (15.1–33.6) 25.0 (14.2–34.6)
– SSIMarch – 1.4 (−1.6–4.6) 4.9 (0.3–9.0)
QMarch SSIMarch – 16.9 (9.1–24.6) 19.3 (11.3–26.6)

a 1976–2015; b 1975–2015; c no SRM for Indus; d denotes lag to calendar year before flow season.

Kharif and late Kharif giving similar results across the two
locations, whereas for early Kharif a marked difference is
seen, with high skill for Jhelum at Mangla contrasting the
low skill for Indus at Tarbela. Determining the underlying
physical reasons for this contrast would require further in-
vestigation, with possible causes discussed in Sect. 5.

4.2 Performance diagnostics

Here we assess the cross-validated performance of forecasts
from BJP models using an antecedent and climate predictor
combination (option 1) selected on the basis of skill scores
and, for Mangla, we compare these with the SRM–ESP fore-
casts (option 2). We do not compare results for the BJP mod-
els using the SRM–ESP mean as an additional predictor (op-
tion 3), as the addition of this predictor added little or no skill
to BJP forecasts (Table 1).

We use PIT plots for verification of the reliability and ro-
bustness of the forecast probability distributions, to assess

Figure 3. BJP cross-validated skill scores, % skill gain relative to
climatology, for CRPS, RMSE and IQR. Less than 5 is considered
to be a forecast with very low skill. Between 5 and 15 is consid-
ered low skill. Between 15 and 30 is considered moderate skill, and
higher than 30 is considered to be a forecast with high skill.

www.hydrol-earth-syst-sci.net/22/3533/2018/ Hydrol. Earth Syst. Sci., 22, 3533–3549, 2018



3540 S. P. Charles et al.: Seasonal streamflow forecasting in the upper Indus Basin of Pakistan

whether there are biases in the forecasts, or whether the
forecast probability distributions are too wide or too narrow
(Laio and Tamea, 2007). For reliable forecasts, the PIT val-
ues should follow a uniform distribution and hence follow a
1 : 1 line when plotted against a standard uniform variate. For
the BJP forecasts for the full 1975–2015 period, both Jhelum
at Mangla (Fig. 4a) and Indus at Tarbela (Fig. 5a) are reli-
able (i.e. forecast probability distributions are unbiased and
of appropriate spread), evidenced by the forecast’s PIT val-
ues plotting close to the 1 : 1 lines and within the Kolmogorov
5 % significance band. Comparison of Jhelum at Mangla BJP
and SRM–ESP forecasts, for the shorter 2001–2015 period
for which SRM results are available, show a contrast between
reliable BJP forecasts (Fig. 6a) and biased SRM forecasts, in-
cluding five values of 0 or 1 indicating that the SRM forecast
distribution is too narrow (Fig. 7a).

A feature of robust forecasts is their stability across the full
period of record and range of flow magnitudes. Figures 4b
and 5b show a uniform spread of PIT values and hence sta-
bility across the full period of record, for Jhelum at Mangla
and Indus at Tarbela BJP forecasts respectively. Similarly,
forecast stability across the range of flow magnitudes is veri-
fied by the uniformity of PIT values against forecast median,
as shown in Figs. 4c and 5c for Jhelum at Mangla and Indus
at Tarbela respectively. For the Jhelum at Mangla BJP and
SRM–ESP comparison, stability across time and flow mag-
nitude are harder to assess given the short 15-year sample
size. Figure 6b and c show reasonable stability of the BJP
forecasts, although there is a trend over time for this part of
the record. The equivalent SRM plots (Fig. 7b and c) are not
as robust, with (as noted previously) five values at 0 or 1
(from the chronological plot: 2001 is at 0, and 2010, 2012,
2014 and 2015 are at 1).

Robustness is also assessed by plotting forecast quan-
tile ranges and observed flows against the forecast median
(Figs. 4d and 5d) and chronologically (Figs. 4e and 5e, for
Jhelum at Mangla and Indus at Tarbela respectively). These
show that BJP forecasts reasonably account for the range of
observed variability for both locations. The relatively less ro-
bust SRM–ESP forecasts are shown in Fig. 7d and e, again
highlighting the overly narrow forecast distribution range for
this version of SRM.

Overall, the performance shown in these figures highlight
the reliability and robustness of the BJP forecasts for the
Kharif season for Jhelum at Mangla and Indus at Tarbela. For
the Jhelum at Mangla BJP and SRM–ESP forecasts for the
shorter 2001–2015 period, the results contrast with the reli-
able and robust BJP against some limitations from the SRM,
which will be discussed further in the next section.

5 Discussion

The SRM forecasts are examples of the commonly applied
ESP approach (Shi et al., 2008; Shukla and Lettenmaier,
2011; Wood et al., 2005). As such, Wood and Schaake (2008)
note

One strength of the ESP approach is that it ac-
counts for uncertainty in future climate, which in
some seasons is the major component of forecast
uncertainty, by assuming that historical climate
variability is a good estimate of current climate un-
certainty. A weakness of the approach, however, is
that when the uncertainty of the current (“initial”)
hydrologic state is a significant component of the
overall forecast uncertainty . . . , the deterministic
estimate of the forecast ensemble’s initial hydro-
logic state leads to an overconfident forecast – that
is, one having a spread that is narrower than the
total forecast uncertainties warrant.

This can be seen in the poor verification performance of
SRM–ESP shown in Sect. 4.2, with the SRM–ESP from the
15-year sample unable to account for the observed range
of flows, i.e. the ESP range is too narrow, even though in
terms of overall RMSE and mean absolute percentage er-
ror (MAPE) statistics the SRM–ESP mean and BJP median
are comparable (18.7 % RMSE and 14.3 % MAPE for BJP
median; 18.4 % RMSE and 12.7 % MAPE for SRM–ESP
mean). Given that the observed climate of each individual
year would, in most cases, be within the range of the ensem-
ble of climate inputs used to produce the ESP, this indicates
SRM formulation could be too strongly reliant on antecedent
conditions at the beginning of the forecast season. An addi-
tional source of bias, as evidenced by the years of poorest
performance being outside the years used for parameter esti-
mation, could be over-fitting with the model parameters tied
too closely to the range of observed predictor–predictand re-
lationships in the 2003–2010 calibration period.

The poorer BJP performance for Indus at Tarbela, as seen
in the skill scores relative to Jhelum at Mangla (Fig. 3), could
be related to the differences in flow generation mechanisms.
As the predictors are the source of skill in the statistical BJP
approach, examination of correlations between the predictors
and flow for the individual months within the Kharif season
is insightful. Table 3 shows the (intuitively) expected pattern
for Jhelum at Mangla of QMarch having a maximum correla-
tion with April flow (0.84) and then maintaining a relatively
high correlation until July (0.62) before dropping off for Au-
gust (0.12). A different process appears to be influencing In-
dus at Tarbela, as the initial highest QMarch correlation with
April flow (0.66) drops immediately to 0.18 for May before
oscillating between 0.25 (August) and 0.55 (September) for
subsequent Kharif months. Similarly, the climate predictor’s
correlations with the individual month’s flows show more of
a gradual reduction for Jhelum at Mangla (high for the first
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Figure 4. BJP cross-validated forecasts for Jhelum at Mangla Kharif for 1975–2015; (a) PIT uniform probability plot (1 : 1 black line,
theoretical uniform distribution; grey lines, Kolmogorov 5 % significance bands; blue points, PIT values of forecast streamflow); (b) chrono-
logical PIT plot; (c) median PIT plot; (d) forecast quantiles and observed plotted according to forecast median (1 : 1 line, forecast median;
dark vertical line, forecast [0.25, 0.75] quantile range; light and dark vertical line, forecast [0.10, 0.90] quantile range; dots, observed inflow);
(e) chronological forecast quantile range and observations (dark blue, forecast [0.25, 0.75]; light and dark blue, forecast [0.10, 0.90]; crosses,
forecast median; dots, observed).
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Figure 5. As in Fig. 4 for BJP cross-validated forecasts for Indus at Tarbela Kharif for 1975–2015.

4 months), whereas for Indus at Tarbela again an oscilla-
tory relationship is seen. These higher correlations in the late
Kharif (relative to the early Kharif) for Indus at Tarbela could
be related to the correspondingly higher relative skill scores

shown in Fig. 3 for late Kharif, corresponding to late-season
glacier melt processes that are a significant component of the
inflow to Tarbela but not Mangla (Mukhopadhyay and Khan,
2015). Future research could investigate whether dynamical
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Figure 6. As in Fig. 4 for BJP cross-validated forecasts for Jhelum at Mangla Kharif for SRM period of 2001–2015, except for (e) see
2001–2015 period of Fig. 4e.

seasonal forecasts of temperature have skill of relevance to
forecasting glacier melt; however, as noted above such skill
has not been determined to date (e.g. Cash et al., 2017), and
is beyond the scope of this assessment given our focus of
developing practical and easily implementable forecast tools
using readily available inputs.

It is also interesting to reflect on the relative performance
of the NAO climate predictor, which does not provide any
skill for inflow to Mangla (Table 1) but offers comparable
skill to several of the ENSO indices trialled for Tarbela (Ta-
ble 2). This indicates NAO may have some skill with re-
gard to late season glacier melt. Overall, these results con-
cur with investigations showing a stronger relationship be-
tween ENSO and precipitation and weaker relationship be-
tween NAO and precipitation in recent decades (Yadav et al.,
2009a, b) resulting in the prevalence of ENSO as the better
predictor of winter snowpack magnitude.

For Mangla, the predictor combination that gave the
best Kharif season cross-validated skill scores included an

Table 3. Correlation between the flow of the individual months of
the Kharif season and the predictors used by BJP (values in bold
significant at p < 0.05).

Jhelum at Mangla Indus at Tarbela

QMonth QMarch SSIMarch QMarch MEI∗MayJun

Apr 0.84 –0.50 0.66 0.41
May 0.77 –0.41 0.18 0.22
Jun 0.62 –0.32 0.44 0.28
Jul 0.62 –0.38 0.34 0.42
Aug 0.12 −0.03 0.25 0.37
Sep 0.18 −0.27 0.55 0.30

∗ year before.

ENSO-based predictor (SSIMarch) immediately before the
season (Table 1), which makes sense intuitively as it rep-
resents a climate driver of both the snow accumulation be-
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Figure 7. As in Fig. 4 for SRM ESP forecasts for Jhelum at Mangla Kharif for SRM period of 2001–2015.

fore the Kharif season and precipitation conditions during.
In contrast, for Tarbela a much earlier ENSO-based predictor
(MEIMayJun, i.e. May–June the year before) provides higher
skill scores than the equivalent predictor immediately be-

fore the season (MEIFebMar; Table 2). To try to understand
the dynamical mechanism by which MEIMayJun is provid-
ing skill in forecasting QKharif, we compared MEI corre-
lations with GLDAS SWEMarch, QMarch and QKharif. Re-
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sults were inconclusive, and perhaps impeded by the short
record lengths given SWE is only available from 2000, as
while MEIMayJun has a higher correlation with QKharif than
MEIFebMar (0.76 versus 0.63 respectively), it has a slightly
lower correlation with SWEMarch (0.48 versus 0.52 respec-
tively). Hence MEIMayJun does not appear to be a long-lead
predictor of snow accumulation, and so the differences in
skill scores may be due to spurious correlations. Therefore
we recommend comparing and assessing both this model and
the QMarch and MEIFebMar model for future events. More
generally, the skill score uncertainty ranges presented in Ta-
bles 1 and 2 highlight that no “best” forecast model can be
selected for either basin. Attempting to select a best model
would ignore model uncertainty and thus not make best use
of forecast skill across the range of models trialled. To ad-
dress this, probabilistic forecasts from multiple BJP models
can be combined using Bayesian model averaging to pro-
duce combined forecasts with higher skill than that obtain-
able from any individual model (Wang et al., 2012a). Thus
trialling a Bayesian model averaging (BMA) approach is rec-
ommended, although it is beyond the scope of this current
work.

6 Conclusion

This study has assessed the performance and practical
feasibility of three options for producing Kharif (April–
September) seasonal streamflow forecasts for the Jhelum
River inflows to the Mangla Dam in the UIB of Pakistan:
option 1, the BJP statistical forecasting technique; option 2,
the SRM physically based model run in ESP mode; option 3,
a hybrid of option 1 with the mean ESP forecasts from op-
tion 2 used as an additional predictor for input to the BJP.
The option 1 BJP forecast model used antecedent catchment
and climatic predictors, with the predictors selected based on
BJP skill score performance. The selected predictors repre-
sent hydrological conditions immediately preceding the fore-
cast season (i.e. flow of the preceding month – March in
this case) and ENSO-based climate indices related to drivers
of winter snow accumulation. For an additional comparison,
the option 1 BJP approach was also undertaken for the Indus
River inflows to the Tarbela Dam.

Overall findings were as follows:

– The best performing BJP models for Tarbela and
Mangla inflows are consistent in that both used an an-
tecedent flow predictor and a climate predictor repre-
senting ENSO.

– For Tarbela the QMarch and MEIMayJun model gave the
best skill; however, because we could not determine the
dynamical mechanism(s) by which the relatively long
lag between MEIMayJun influences snowpack accumula-
tion and flow, we cannot rule out the possibility that the
skill is due to spurious correlation. Therefore we rec-

ommend comparing and assessing both this model and
the QMarch and MEIFebMar model for future events and,
more generally, that BMA be trialled in future research
to combine the skill of multiple BJP models as, for ex-
ample, undertaken in Australia in Pokhrel et al. (2013).

– There are pragmatic benefits to selecting a BJP model
using only antecedent and climate predictors, rather
than including SRM mean ESP as an additional predic-
tor even in cases when SRM does provide skill, given
that flow and climate predictors are readily available and
thus BJP forecasts are easily and quickly produced. The
SRM, being a deterministic model, is a much more tech-
nically involved and data-intensive approach to forecast
generation (Bogacki and Ismail, 2016; Ismail and Bo-
gacki, 2018).

– Cross-validated performance of the BJP seasonal fore-
casts for the 1975 to 2015 Kharif seasons, as shown
in the diagnostic and verification statistics presented,
highlight that the BJP produces forecasts that are sta-
tistically unbiased, robust and reliable. In contrast, the
SRM–ESP forecasts show bias particularly for the most
recent years outside the SRM calibration period, poten-
tially indicating limitations with the SRM due to lack
of cross-validated calibration and resultant over-fitting.
Thus SRM–ESP forecasts are overly confident, under-
estimating the full uncertainty that is captured by the
BJP approach.

– High skill was obtained for BJP forecasts of early
Kharif flow for Jhelum at Mangla. Moderate skill was
obtained for the full and late Kharif season forecasts for
both Jhelum at Mangla and Indus at Tarbela. Lower skill
was seen for early Kharif for Indus at Tarbela.

In future research, BJP forecast models could readily be de-
veloped and assessed for other tributaries, e.g. the Chenab
and Kabul, subject to availability of flow data. This would
allow an overall assessment of UIB flow forecasting for the
major contributing basins. The present method used by the
Indus River System Authority (IRSA) to forecast UIB Kharif
streamflow is based on historical analogues. The IRSA use
their database of the previous 60 years of flow to select years
where the historic March flows are within 5 % of the cur-
rent March flow and use the corresponding historical Kharif
flows (within 5 %) for their forecast scenario. The selection
of the historical scenario is also informed by forecasts from
the Pakistan Meteorological Department, forecasts provided
by WAPDA (e.g. SRM forecasts) and present snow condi-
tions in the catchment. The forecasts are continuously revised
as the season progresses.

Sufficiently skilful BJP forecasts could also inform sce-
nario selection, providing for the first time a probabilistic ap-
proach to forecasts in contrast to a single forecast as cur-
rently used. However probabilistic forecasts (such as the
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BJP) can be misinterpreted if the water management profes-
sionals using them to inform decisions are unfamiliar with
them (Pagano et al., 2002; Ramos et al., 2013; Rayner et
al., 2005; Whateley et al., 2015). Hence the successful trans-
fer of BJP forecast tools to operational use within Pakistan
would require guidance for building BJP models and gener-
ating forecasts, test cases with example results, face-to-face
training and on-going support.
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