
Hydrol. Earth Syst. Sci., 22, 3453–3472, 2018
https://doi.org/10.5194/hess-22-3453-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Seasonal streamflow forecasts for Europe – Part I: Hindcast
verification with pseudo- and real observations
Wouter Greuell1, Wietse H. P. Franssen1, Hester Biemans2, and Ronald W. A. Hutjes1,2

1Water Systems and Global Change, Wageningen University, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands
2Water and Food, Wageningen Environmental Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands

Correspondence: Wouter Greuell (wouter.greuell@wur.nl)

Received: 17 November 2016 – Discussion started: 30 November 2016
Revised: 18 May 2018 – Accepted: 3 June 2018 – Published: 28 June 2018

Abstract. Seasonal predictions of river flow can be exploited
among others to optimise hydropower energy generation,
navigability of rivers and irrigation management to decrease
crop yield losses. This paper is the first of two papers dealing
with a physical model-based system built to produce proba-
bilistic seasonal hydrological forecasts, applied here to Eu-
rope. This paper presents the development of the system and
the evaluation of its skill. The variable infiltration capacity
(VIC) hydrological model is forced with bias-corrected out-
put of ECMWF’s seasonal forecast system 4. For the assess-
ment of skill, we analysed hindcasts (1981–2010) against a
reference run, in which VIC was forced by gridded meteo-
rological observations. The reference run was also used to
generate initial hydrological conditions for the hindcasts.

The skill in run-off and discharge hindcasts is analysed
with monthly temporal resolution, up to 7 months of lead
time, for the entire annual cycle. Using the reference run out-
put as pseudo-observations and taking the correlation coef-
ficient as metric, hot spots of significant theoretical skill in
discharge and run-off were identified in Fennoscandia (from
January to October), the southern part of the Mediterranean
(from June to August), Poland, northern Germany, Romania
and Bulgaria (mainly from November to January), western
France (from December to May) and the eastern side of Great
Britain (January to April). Generally, the skill decreases with
increasing lead time, except in spring in regions with snow-
rich winters. In some areas some skill persists even at the
longest lead times (7 months).

Theoretical skill was compared to actual skill as deter-
mined with real discharge observations from 747 stations.
Actual skill is generally substantially less than theoretical
skill. This effect is stronger for small basins than for large

basins. Qualitatively, the use of different skill metrics (cor-
relation coefficient; relative operating characteristics, ROC,
area; and ranked probability skill score, RPSS) leads to
broadly similar spatio-temporal patterns of skill, but the level
of skill decreases, and the area of skill shrinks, in the follow-
ing order: correlation coefficient; ROC area below-normal
(BN) tercile; ROC area above-normal (AN) tercile; ranked
probability skill score; and, finally, ROC near-normal (NN)
tercile.

1 Introduction

Society may benefit from seasonal hydrological forecasts,
i.e. hydrological forecasts for future time periods from more
than 2 weeks up to about 1 year (Doblas-Reyes et al., 2013).
Such predictions can, for example, be exploited to optimise
hydropower energy generation (Hamlet et al., 2002), nav-
igability of rivers in low-flow conditions (Li et al., 2008)
and irrigation management (Ghile and Schulze, 2008; Mush-
taq et al., 2012) to decrease crop yield losses. In order to
be of any value in decision-making processes in such sec-
tors, forecasts must be credible, i.e. be skilful in predict-
ing anomalous system states, in addition to being relevant
to the decision-making process and acceptable for the user
(e.g. Bruno Soares and Dessai, 2016). In this paper we
will introduce WUSHP (Wageningen University Seamless
Hydrological Prediction system), a dynamical, model-based
system (see Yuan et al., 2015) that was built around the
variable infiltration capacity (VIC) hydrological model and
ECMWF’s seasonal forecast system 4, to produce seasonal
hydrological forecasts. It will be applied to Europe. The use-
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fulness of the system depends partially on the level of its skill
and the paper will therefore focus on an extensive assessment
of the skill of WUSHP. The usual method of assessing skill of
predictive systems is by analysing hindcasts, a strategy that
will be adopted here as well.

During recent years, a number of systems for making sea-
sonal hydrological forecasts have been developed. Exam-
ples are the University of Washington’s surface water mon-
itor (SWM; Wood and Lettenmaier, 2006) and the African
drought monitor (Sheffield et al., 2014). Seasonal hydrologi-
cal forecasting systems for the entire continent of Europe are
scarce (Bierkens and van Beek, 2009; Thober et al., 2015),
but a few more concentrate on smaller domains such as the
British Isles (Svensson et al., 2015), Iberia (Trigo, 2004) or
France (Céron et al., 2010; Singla et al., 2012).

Thober et al. (2015) forced a mesoscale hydrological
model with meteorological hindcasts from the North Ameri-
can Multi-Model Ensemble (NMME) to investigate the pre-
dictability of soil moisture in continental Europe, excluding
Fennoscandia. Evaluating at seasonal resolution a number of
forecasting techniques that produced distinct variations in the
magnitude of skill, they found that spatial patterns in skill
were remarkably similar among the different techniques, as
well as comparable to the spatial patterns of the autocorrela-
tion (persistence) of reference soil moisture. High skill was
found in eastern Germany and Poland, Romania, the southern
Balkans and eastern Ukraine as well as northwestern France.
Less skill was found in the mountainous areas of the Alps and
the Pyrenees, the northern Adriatic and Atlantic coast of the
Iberian Peninsula. Most skill was found for winter months
(DJF) and the least for autumn (SON), with this minimum
shifting to summer (JJA) at long lead times (6 months).

Bierkens and van Beek (2009) developed an analogue
events method to select annual ERA40 meteorological forc-
ing on the basis of annual SST anomalies in the northern At-
lantic and then made hydrological forecasts with a global-
scale hydrological model applied to Europe. Evaluating only
skill for winter and summer half-year mean discharge, they
found wintertime skill in large parts of Europe with max-
ima in eastern Spain and in a zone beginning in the southern
Balkans and Romania, running through eastern Poland and
western Russia, and ending in the Baltic states and Finland.
Summertime skill was lower, generally by about 50 % and
even more around the Alps and the Adriatic. A climate fore-
cast based on the North Atlantic Oscillation (NAO) added
significant skill only in limited areas, such as Scandinavia,
the Iberian Peninsula, the Balkans and around the Black Sea.

Svensson et al. (2015) found skilful winter river flow fore-
casts across the whole of the UK due to a combination of
skilful winter rainfall forecasts for the north and west and
a strong persistence of initial hydrological conditions in the
south and east. Strong statistical correlations between the
NAO index and winter precipitation in Iberia lead to skil-
ful forecasts of JFM river flow and hydropower produc-
tion (Trigo et al., 2004). Céron et al. (2010) and Singla et

al. (2012) set up a high-resolution river flow forecasting sys-
tem (8 km) over France, for which the seasonal climate fore-
cast improved the MAM skill over northern France, but wors-
ened it over southern France (compared to a river flow model
with proper initialisation of soil moisture, snow, etc., but
random atmospheric forcing). Demirel et al. (2015) found
that both two physical models and one neural network over-
predict run-off during low-flow periods using ensemble sea-
sonal meteorological forcing for the Moselle basin. As a re-
sult forecasts of more extreme low flows are less reliable than
forecasts of more moderate ones.

It is quite common in seasonal hydrological forecasting
(e.g. Shukla and Lettenmaier, 2011; Singla et al., 2012; Mo
and Lettenmaier, 2014; and Thober et al., 2015) but also in
medium range forecasting (i.e. 14 days in Alfieri et al., 2014)
to determine prediction skill by comparing the hindcasts with
the output from a reference simulation. A reference simula-
tion is a simulation made with the same hydrological model
as the hindcasts, except that the forcing is taken from mete-
orological observations or from a gridded version of meteo-
rological observations. The reference simulation can best be
regarded as a simulation that attempts to make a best estimate
of the true conditions (for instance, in terms of discharge,
soil moisture and evapotranspiration), using the modelling
system. We will refer to the output of such a reference simu-
lation as pseudo-observations (alternatively named “true dis-
charge” in Bierkens and Van Beek, 2009, “synthetic truth”
in Shukla and Lettenmaier, 2011, “reanalysis” in Singla et
al., 2012, and “a posteriori estimates” in Shukla et al., 2014).
We prefer the term “pseudo-observations” over “reanalysis”
since the latter has a meteorological connotation that often
implies the use of some form of (variational) data assimila-
tion. We did not attempt any form of assimilating observed
hydrological variables, such as discharge, in our reference
run.

Pseudo-observations have the important advantages of be-
ing complete in the spatial and the temporal domain and be-
ing available for all model variables. Also, they are suitable
for the quantification of small sensitivities, e.g. to bias cor-
rection of the meteorological forcing, which would be hard
to detect with real observations. Finally, assessment of skill
based on pseudo-observations reduces model errors from the
analysis to a minimum, which is especially useful when ad-
dressing various sources of skill (Wood et al., 2016), some-
thing we will do in the companion paper (Greuell et al.,
2016).

The downside of pseudo-observations is, of course, that
they are not equal to real observations. In this paper we
will determine the performance of the prediction system not
only with pseudo-observations, but also with real observa-
tions of discharge (like e.g. Koster et al., 2010 and Yuan et
al., 2013) and compare the skill found with the two differ-
ent approaches (theoretical and actual skill, according to Van
Dijk et al., 2013). Such a comparison was previously made
by Bierkens and Van Beek (2009) and Van Dijk et al. (2013)
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and they found that theoretical skill generally exceeds actual
skill. This is in line with the fact that the pseudo-observations
are obtained with the same model as the hindcasts, which
should logically lead to an overestimation of the skill when
the pseudo-observations are used for verification. We thus
hypothesise that theoretical skill exceeds actual skill. In this
paper we will not only analyse the difference between the
skills obtained with the two different types of data but also
discuss in some detail conceptual differences between using
pseudo- and real observations for verification.

This paper aims to analyse to what extent WUSHP is able
to predict run-off and discharge in Europe over the full an-
nual cycle and for lead times up to 7 months. We aim to as-
sess skill at monthly resolution instead of seasonal or semi-
annual aggregates. Where many studies use the correlation
coefficient as a main skill metric we will also assess skill
using two probabilistic metrics, namely ROC (relative op-
erating characteristics) area and RPSS (ranked probability
skill score; see Sect. 2.3). The second aim of the paper is
to get a better understanding of the effects of using pseudo-
observations, as opposed to using actual observations, for the
verification of hindcasts. In the next section we describe the
concept and details of our modelling (Sect. 2.1) and anal-
ysis approach (Sects. 2.2 and 2.3). We will start the result
section by assessing theoretical skill of the run-off hindcasts
(Sect. 3.1) and then proceed to theoretical skill of the dis-
charge hindcasts and a comparison between theoretical skill
of discharge and run-off in Sect. 3.2. Differences between
theoretical and actual skill of discharge will be presented
(Sect. 3.3) followed by an analysis of differences in skill de-
termined with various metrics in Sect. 3.4. The discussion
starts with a conceptual analysis of reasons for differences in
actual and theoretical skill (Sect. 4.1), followed by a discus-
sion of uncertainties (Sect. 4.2) and implications (Sect. 4.3).

In a companion paper (Greuell et al., 2016) we analyse
the reasons for the presence or lack of skill discussed in the
present paper, using two different methods. Firstly, skill in
the forcing and other directly related hydrological variables,
such as evapotranspiration, are analysed. Secondly, a number
of experiments similar to the conventional ensemble stream-
flow prediction (ESP) and reverse-ESP experiments, which
isolate different causes of predictability, are discussed. In the
results and discussion sections of the present paper we will
occasionally look forward to the identified causes of skill.

2 System, models, data and methods of analysis

In the following subsections we will describe the various
components of WUSHP (2.1), the real discharge observa-
tions (2.2) and the methods of analysis (2.3). Figure 1 pro-
vides an outline of the system, which consists of the hind-
casts themselves (middle box in the figure) and a model refer-
ence run (lower box). The hindcasts will be verified by means
of the pseudo-observations, which are generated by the refer-

ence simulations, and by real discharge observations, which
are “generated” in the real world (upper box). Differences
between these two types of verifications will be discussed in
Sect. 4.1.

2.1 The model, workflow and forcing data for the
hindcasts and the reference simulation

WUSHP consists of two simulation branches: a single refer-
ence simulation (lower box in Fig. 1) and the hindcasts them-
selves (middle box in same figure). In both branches, terres-
trial hydrology is simulated with the variable infiltration ca-
pacity model (VIC, see Liang et al., 1994), which runs on a
domain extending from 25◦W to 40◦ E and from 35 to 72◦ N,
including 5200 land-based cells of 0.5◦× 0.5◦ (see maps in
e.g. Fig. 2). VIC is forced by a gridded data set of daily me-
teorological data (7 variables: precipitation, minimum and
maximum temperature, atmospheric humidity, wind speed,
and incoming short- and long wave radiation).

In the reference simulation VIC is forced by the WATCH
Forcing Data ERA-Interim (WFDEI; Weedon et al., 2014)
for the period of 1979–2010, of which the first 2 years were
used to spin up the states of snow, soil moisture and discharge
and were not used in further analysis. The reference simula-
tion has the dual aim to create the pseudo-observations for
verification purposes (lower box in Fig. 1) and to create a
best estimate of the temporally varying model state, which is
then used for the initialisation of the hindcasts (flow from the
upper left in the middle box of Fig. 1).

The second branch, the hindcasts, consists of three steps.
Seasonal predictions of the same set of 7 meteorological vari-
ables (see above) are taken from ECMWF’s seasonal fore-
cast system 4 (S4 hereafter) at daily resolution. These are
then bias corrected using WFDEI as the reference data set.
Finally, VIC is run with the bias-corrected S4 hindcasts as
forcing, taking initial states from the reference simulation.

The S4 hindcasts used in the present study include 15
members, cover the period from 1981 to 2010 and consist
of simulations with a duration of 7 months, starting and ini-
tialised on the first day of every month (see Molteni et al.,
2011, and the ECMWF seasonal forecast user guide, online).
The S4 ensemble is constructed by combining a five-member
ensemble analysis of the ocean initial state with SST pertur-
bations of that state and with activation of stochastic physics.

All seven meteorological forcing variables were regrid-
ded with bilinear interpolation from the 0.75× 0.75◦ lati-
tude and longitude grid of the S4 hindcasts to a 0.5× 0.5◦

grid. Since bias correction generally improves forecasting
skill, the quantile mapping method of Themeßl et al. (2011)
was applied to bias-correct the forcing variables, taking the
WFDEI as reference. For each variable and grid cell, 84 cor-
rection functions were established and applied by separating
the data according to target month (12) and lead month (7).
Such empirical distribution mapping of daily values has been
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Figure 1. Set-up of the present study. The lower two dashed boxes summarise the set-up of the forecast system itself. The upper dashed box
represents the real world. The filled arrows on the right-hand side represent verification of hindcasts (in the middle) with pseudo-observations
(bottom) and with observations of real discharge (top). In each box the flow at the upper left represents the creation of initial conditions while
the flow below that (a single arrow) represents the meteorological forcing.

successful in improving especially forecast reliability (rather
than sharpness and accuracy; Crochemore et al., 2016).

VIC was run for the period of the S4 hindcasts (1981–
2010). Additionally, for the reference simulation 2 extra
years (1979–1980) were simulated to spin up the states of
snow, soil moisture and discharge. The hindcast simulations
were initialised with states of soil moisture and snow from
the reference simulation, so for these variables spin up was
not needed. However, due to the set-up of the routing module
of VIC, the state of discharge could not be saved and loaded.
Hence, to spin up discharge, each 7-month hindcast simu-
lation was preceded by a 1-month simulation with WFDEI
forcing. Since the hindcasts cover 30 years with 12 initiali-
sation dates each and consist of 15 members, a total of 5400
hindcast simulations was carried out.

VIC is run in so-called “energy balance mode”, which re-
quires resolving the diurnal cycle. Therefore, internally the
model temporally disaggregates the daily input to 3-hourly
data and runs with a time step of 3 h. The output of all vari-
ables is again at a daily resolution. Because snow may con-
tribute significantly to the seasonal predictability of other hy-
drological variables, VIC was run with the option of subgrid
elevation bands. This means that for each grid cell, calcula-
tions were carried out at up to 16 different elevations, with
the aim of simulating the elevation gradient of snow. VIC
was run in natural flow mode, i.e. river regulation, irrigation
and other anthropogenic influences were not considered.

Simulations of historic discharge made with VIC (and
four other hydrological models) were validated with obser-
vations from large European rivers by Greuell et al. (2015)
and Roudier et al. (2016). VIC exhibits a fairly small average

bias (across 46 stations) of+23 mm yr−1 (=7 %) and overall
differentiates well between low and high specific discharge
basins with a spatial correlation coefficient of 0.955. How-
ever, specific discharge is overestimated in the Mediterranean
and underestimated in northern Fennoscandia. Annual cycles
are fairly well reproduced across Europe, though VIC some-
what overestimates their amplitude. In northern Fennoscan-
dia the spring peak is too late and lasts too long. Annual cy-
cles are best reproduced for rain-fed rivers in central Europe,
while those for rivers with significant snow dynamics are
good (Alps). However, the annual cycle is more poorly repro-
duced in basins with strong soil freezing dynamics (northern
Fennoscandia) or strong damping of discharge amplitudes by
large lakes (southern Finland).

Perhaps more relevant in the present context is the model’s
capability to reproduce inter-annual variations in discharge.
On average across 22 discharge stations, the standard de-
viation of simulated annual discharge was 9 % higher than
observed and the spatial correlation coefficient between the
two was 0.94. Like most models, VIC is better in simulat-
ing high flows (95 percentile: Q95) than low flows (Q5); the
first is slightly overestimated and the second more seriously
underestimated. The inter-annual variation in Q5 is overesti-
mated in central Europe and the Alps, but underestimated in
Fennoscandia (overall spatial correlation coefficient across
Europe 0.40). The inter-annual variation in Q95 shows no
clear spatial pattern and the overall spatial correlation coeffi-
cient is 0.70.

All validation results discussed in these two paragraphs
are for the VIC model forced by E-OBS (v9, Haylock et
al., 2008). Our forcing, WFDEI, shows higher precipitation
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(+104 mm yr−1) across most of Europe, except for the Alps,
Scotland and westernmost Norway. According to Greuell et
al. (2015) this leads to higher mean discharge, higher inter
annual variability and higher Q95 (but not Q5) of simulated
discharge for almost all stations.

2.2 Discharge observations

For the assessment of skill with real discharge observa-
tions, two data sets with daily resolution were acquired
from the Global Runoff Data Centre, 56068 Koblenz, Ger-
many (GRDC): the GRDC data set and the European Wa-
ter Archive (EWA) data set. We mapped these two station
data sets onto the VIC grid with its resolution of 0.5◦× 0.5◦

and aggregated the daily data at a time step of a month. To
enable the investigation of the effect of basin size on some
of our results, we made two subclasses of observations. The
first comprised observations for basins larger than 9900 km2

(called large basins hereafter) and the second contained
basins smaller than the area of the grid cells, i.e. smaller than
about 2530 km2 in southern Europe (at 35◦ N) and 1050 km2

at 70◦ N (called smaller basins hereafter).
Initially, in many cases the location of observation stations

did not match with the corresponding river in the digital river
network used in the routing calculations (DDM30, see Döll
and Lehner, 2002). We corrected for this issue by matching
the observations with the simulations by means of basin size.
The size of the model basins (called model basin area here-
after) was determined by the DDM30 network. The size of
the basins upstream of the observation stations (called sta-
tion basin area hereafter) was taken from the metadata of
the observations. First the station basin area was compared
to the model basin area of the cell that is nearest to the sta-
tion (called nearest model cell basin area hereafter). After
this first step the mapping procedure for each observation
differed between the two classes of basins.

For large basins we proceeded as follows:

– If the station and the nearest model cell basin area dif-
fered by less than 15%, the observations were matched
with the model calculations for the nearest model cell.

– Otherwise, the station basin area was compared with the
model basin area of the eight cells surrounding the near-
est model cell.

– The minimum of the eight differences was determined.

– If that minimum was less than 15%, the simulations for
the corresponding cell were matched with the observa-
tions.

– Otherwise, the station was discarded.

For small basins we proceeded as follows:

– If the nearest model cell did not have an influx from any
of the neighbouring cells, its simulations were matched
with the observations.

– Otherwise, all of the eight neighbouring cells without
influx were selected.

– Their simulations were averaged and matched with the
observations.

We further discarded all observations with less than 21 years
of data within the simulation period (1981–2010) for any of
the months of the year. The final data set within our Euro-
pean domain contained 111 cells with observations for large
basins and 636 cells with observations for basins smaller than
a model grid cell.

These data sets do not include any variable or parameter
characterising the level of human impact. To enable analysis
of the effect of anthropogenic flow modifications on predic-
tive skill, we quantified the human impact by performing two
model simulations with the Lund–Potsdam–Jena managed
Land (LPJmL) model (Rost et al., 2008; Schaphoff et al.,
2013). This model was operated at the same spatial resolu-
tion (0.5◦× 0.5◦) and with the same river network (DDM30)
as VIC, but LPJmL does include dams (GRanD database;
Lehner et al;. 2011) and associated reservoir management.
From the discharge output of a natural LPJmL run and an
LPJmL run with reservoir operation and irrigation, the hu-
man impact at cell level was quantified by computing the so-
called amended annual proportional flow deviator (AAPFD;
see Marchant and Hehir, 2002). For the analysis in Sect. 3.3,
we selected all discharge observations for large basins with
an AAPFD < 0.3, i.e. basins with a relatively small degree
of human impact (about half of all 111 basins).

2.3 Methods of analysis

From the model output, consisting of daily means, monthly
mean values were computed, which were then used for the
analysis. The analysis is restricted to run-off, defined here as
the amount of water leaving the model soil either along the
surface or at the bottom, and discharge, defined here as the
flow of water through the largest river in each grid cell. Dis-
charge accumulates all run-off from cells that are upstream in
the model river network, with delays due to transport inside
cells and through the river network. Hence, whereas run-off
represents only local hydrological processes, discharge ag-
gregates hydrological processes occurring in the entire basin
upstream of a particular cell.

Instead of analysing skill per target season and/or for a
number of consecutive lead months, we analysed skill for ev-
ery combination of the 12 target and the 7 lead months. The
thus achieved higher temporal resolution of the skill metrics
enables a more accurate determination of the beginning and
end of periods of skill. Moreover, skill at a monthly resolu-
tion provides the possibility to determine the consistency of
the skill where we define consistent skill as skill that persists
during at least two consecutive target or lead months. In ac-
cordance with Hagedorn et al. (2005) we designated the first
month of the hindcasts as lead month zero, so target month
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number is equal to the number of the month of initialisation
plus the lead month number.

Three skill metrics (see Mason and Stephensen, 2008, for
a good discussion of the why and how of these) were com-
puted for each target and lead month separately: (i) the cor-
relation coefficient between the observations and the median
values of the hindcasts (referred to as the correlation coeffi-
cient or R), (ii) the area beneath the relative operating char-
acteristics curve (ROC area) and (iii) the ranked probability
skill score. The ROC area is computed for three categories of
the observations and hindcasts with an equal number of val-
ues, namely the categories containing the one-third highest,
lowest and the remaining values (upper, lower and middle
tercile, respectively; above-, below- and near-normal – AN,
BN and NN – categories). The same subdivision of obser-
vations and hindcasts in terciles was made to compute the
RPSS. Since none of these metrics is sensitive to systematic
biases in the forecasting system, no attempt was made to cor-
rect simulated run-off or discharge for any such errors prior
to computing the skill metrics. So we focus our evaluation on
the models’ capability to predict river flow anomalies rather
than absolute river flows.

All three skill metrics quantify, though in different ways,
how well the ranking of the hindcasts matches the ranking
of the observations. The correlation coefficient is a measure
of the association between (pseudo-) observation and fore-
cast ensemble median; we used the Pearson correlation co-
efficient. The ROC area is a measure of resolution or dis-
crimination and indicates whether the forecast probability
of an event (i.e. value falling in the considered tercile) is
higher when such an event occurs compared to when not.
The RPSS is a measure of accuracy and summarises in a sin-
gle number the skill of a forecast system to make forecasts
with the correct percentage of ensemble members falling in
any of the defined terciles. Perfect forecasts have values of
1 for all three skill metrics. Climatological forecasts (prob-
abilistic forecasts that in our case each year predict a 1/3
chance of a high or low anomaly occurring) lead to values
of 0 for R, 0.5 for the ROC area and 0 for the RPSS. In
the computation of significance of the RPSS, sampling er-
rors, i.e. the limited number of ensemble members, consti-
tute a problem. They cause a bias in the RPSS when clima-
tology is used as reference (Mason and Stephenson, 2008).
Therefore, the reference for the calculation of the RPSS was
generated by sampling randomly from the multinomial dis-
tribution with p = (1/3,1/3,1/3) and N = 15 (the number
of ensemble members). In the present paper each metric is
designated as significant for p values less than 0.05. For a
data set of 30 years, this implies R is significant for values
> 0.31, ROC area for values > 0.69 and RPSS for values that
vary depending on the outcome of the random draw for the
reference. We checked these procedures to determine signif-
icance by analysing hindcasts that have no skill. Such hind-
casts indeed produced for all metrics a fraction of cells with

significant skill near the expected value of 0.05 (the p value),
indicating that the procedures are correct.

To a large extent, we found that our results and conclu-
sions, in terms of spatio temporal patterns of skill, are in-
dependent of the chosen metric. Hence, and because among
the three metrics the correlation coefficient is the easiest to
understand, we will discuss results mostly in terms of the
correlation coefficient, which is in line with Doblas-Reyes et
al. (2013). The sensitivity to the chosen metric and signifi-
cant differences between these metrics will be discussed in
Sect. 4.2.

All metrics were computed using the low- and high-
level R packages SpecsVerification (Siegert et al., 2014) and
easyVerification (Bhend et al., 2016), respectively. Metrics
cannot be computed (because they become ill-defined) if ob-
servations or hindcasts within the entire 30-year period con-
sist of more than one-third zeros or one-sixth ties (i.e. equal
values). Such skill gaps (i.e. the white terrestrial cells in
Figs. 2 and 3) mainly occur in the far north due to rivers that
are frozen for at least a month in winter.

3 Results

3.1 Spatio-temporal variation of skill in run-off
forecasts

A total of 84 maps of the skill of the run-off hindcasts
were produced for all 12 initialisation months and all 7 lead
months (all are presented in the Supplement Fig. S1). Two
cross-cuts through that collection are shown in Fig. 2 (for
a single initialisation month) and Fig. 3 (for a single lead
month). The seven panels of Fig. 2 show the skill of the hind-
casts initialised on 1 April as a function of lead time. Cells
with an insignificant amount of skill are tinted yellow; cells
where no metric could be computed remain white. In lead
month 0, significant skill is found across almost the entire
domain (99 % of the cells). After the first lead month, the
fraction of cells with significant skill gradually decreases to
reach 16 % at the longest lead time (lead month 6). This is
more than expected for the case of completely unskilful sim-
ulations (5 % of the cells), so at the end of the hindcast sim-
ulations significant skill that does not occur due to chance is
still present in some regions. The general impression is that
the pattern of skill does not move in space but that skill is
fading, i.e. for individual grid cells R is mostly decreasing
with increasing lead time. The same holds for initialisation
in other months (see Fig. S1 in the Supplement), with im-
portant exceptions better identified with Fig. 5 and discussed
there.

The 12 panels of Fig. 3 show the annual cycle of the skill
of the hindcasts for lead month 2, which is selected (also
in Figs. 6, 7 and 9) because at that lead time approximately
50 % of the cells have significant skill. Consistent skill (per-
sistent during at least 2 consecutive target months) is found
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Figure 2. The skill of the run-off hindcasts initialised on 1 April for all 7 lead months. The skill is measured in terms of the Pearson correlation
coefficient between the median of the hindcasts and the observations (R). The threshold of significant skill lies at 0.31, so yellow cells have
insignificant skill while darker cells have significant skill. White, terrestrial cells correspond to cells where observations or hindcasts consist
of more than one-third zeros or one-sixth ties. The legend provides the fraction of cells with significant values of R (at the 5 % level) and the
domain-averaged value of R.

in the following regions (causes of skill are reproduced here
from the companion paper, Greuell et al., 2016):

– Fennoscandia. Much skill is present during the entire
year, except for target months November and December,
and there is a dip in the skill in April. Most of the skill
is due to initial conditions of soil moisture. On average
across the entire region, the skill reaches a maximum
in May and June, i.e. at the end of the melting season,
which is, as shown in the companion paper, largely due
to initialising snow. Compared to the rest of the penin-
sula, there is generally less skill along the Scandinavian
mountain range. The companion paper shows some ev-
idence that this may be due to high variability of oro-
graphic rain, ill-represented in the S4 hindcasts.

– Poland and northern Germany. The core period lasts
from November to January, but it is extended with pe-

riods of less skill into October and the months from
February to May. Here the initialisation of soil mois-
ture is the dominant cause of skill. Snow initialisation
contributes in April and May.

– Western France, more or less from Paris to Brittany and
roughly from December to May. Skill derives from the
initialisation of soil moisture.

– The eastern side of Great Britain from January to April.
Also here the skill derives from soil moisture initialisa-
tion.

– Romania and Bulgaria. The core and the whole period
are the same as that for Poland and northern Germany.

– The southern part of the Mediterranean region from
June to August. The high amounts of skill are limited
to the coastal parts of northern Africa, Sicily, southern
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Figure 3. Annual cycle of skill (R) of run-off hindcasts for 12 target months, initialised at the beginning of the second month before (lead
month 2). More explanation is given in the caption of Fig. 2.

Greece, Turkey, Syria and Lebanon. This skill is due to
initialisation of soil moisture.

– The Iberian peninsula in March and August with smaller
amounts of skill in months in between. The skill derives
mainly from soil moisture in the initialisation. In March
there is a minor contribution from skill in the forecasts
of precipitation.

From Fig. S1 we broadly conclude that regions with skill for
lead month 2 retain their skill for other (longer) lead times
but that the magnitude of skill decreases with increasing lead
time as demonstrated in Fig. 2 (keep in mind that a change
in lead time corresponds to a change in target time by the

same amount). To give an example, for lead month 3 patterns
in the skill maps look similar to those provided in Fig. 3 but
colours are fainter and target months shift by 1 month ahead.
There are many exceptions to this general rule, e.g. skill due
to snow melt that suddenly appears at the end of the melt
season at longer lead times while it was not present during
the lead months before (see Fig. 5 and the companion paper).
A more detailed regional analysis of some of these features
is left for future case studies.

Figure 4 displays a synthesis in the form of six maps with
the number of the 12 months of the year with significant
skill for lead months from 1 to 6. In accordance with what
was also illustrated by Fig. 2, the amount of significant skill
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Figure 4. Number of months in a year with significant skill (R) in the run-off forecasts of lead months 1–6.

degrades with increasing lead time. There is generally more
skill throughout the year towards the north and the northeast.
Many of the regions with very little or no skill are coastal
regions (e.g. northern coast of Spain), especially coastal re-
gions on the western side of land masses (e.g. western coasts
of Denmark, southern Norway, Italy, Croatia and the British
Isles), and mountain regions (e.g. the Alps, except for their
southern fringe, mountains in northern Norway and Sweden
and the Tatras on the border of Poland and Slovakia). The
British Isles exhibit little skill, except for the eastern coast of
Great Britain in late winter and early spring (JFMA). Many
of the regions that were listed before as having consistent
skill for lead month 2 also appear as foci of skill during the
whole year, namely Fennoscandia, northeast Germany and
northwest Poland, Romania and Bulgaria, western France
and the eastern side of Great Britain. The companion paper
shows that for regions with skill during a large part of the
year, this skill is due to initial conditions of snow and/or soil
moisture.

These pan-European results can be compared to those of
Bierkens and Van Beek (2009). They found maxima in pre-
dictability of winter discharge in northern Sweden, Finland,
the region between Moscow and the Baltic Sea, Romania and
Bulgaria, and eastern Spain. For the winter there is crude
agreement with the current study about northern Sweden,
Romania and Bulgaria, but not about the other regions. For
the summer, Bierkens and Van Beek (2009) compute max-
ima in skill for southern Spain, Sardinia, western Turkey and
southwestern Finland, a pattern that broadly agrees with the
locations of the summertime maxima in skill we find (most
of Fennoscandia and southern part of the Mediterranean re-
gion).

Singla et al. (2012) found considerable skill in the Seine
basin for low flows from June to September – a bit more east-
ern from the region where we found skill. Trigo et al. (2004)
using a statistical model based on December NAO indices
found skill for JFM discharge (and hydropower production)
for the Douro, Tejo and Guadiana basins covering most of
central and western Iberia. We confirm this skill for March
in these regions, but not for January and February, while we
find some skill for later months (March until August). Svens-
son et al. (2015) using a statistical model, based on NAO in-
dices and river flow persistence, found good skill for winter
river flows on the eastern side of the British Isles, consistent
with our findings, and low but just significant skill along its
western coast, which we do not reproduce.

Figure 5a summarises skill across the domain in terms of
the fraction of cells with significant R for all initialisation
and lead months. Overall there is a considerable amount of
significant skill, with a minimum roughly from August to
November and a maximum in May. For lead month 2 the
fraction of cells with significant skill varies between 36 %
(September) and 76 % (May). In all of the 84 combinations
of initialisation and lead month, the theoretical value of no
skill at all (5 %) is exceeded, implying that there are (small)
pockets of skill even at lead month 6. Individual curves show
that skill is lost with increasing lead time. The exception is
formed by hindcasts starting in November, December and
January which gain skill when they progress from April to
May, a phenomenon caused by initial conditions of snow that
takes longer or shorter to completely melt in (late) spring. For
details, see the companion paper. Figure 5b shows decay and
gain trends of the domain-averaged R. It shows that a fore-
cast initialised in February exhibits higher domain average
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Figure 5. (a) Fraction of cells with significant skill (in terms of R), and (b) domain average correlation in the run-off hindcasts, as a function
of initialisation month and lead time. Each coloured curve corresponds to the hindcasts initialised in a single month. For better visualisation,
parts of the curves that end in the next year are shown twice, namely at the left-hand and the right-hand side of the graph. Black lines (dashed,
dotted and dashed–dotted) connect the results for identical lead times. The horizontal line in (a) shows the expected fraction of cells with
significant skill, in the case that the hindcasts have no skill at all (5 %), and in (b) the minimal magnitude of the correlation of a single cell
for it to be statistically significant.

skill into June (5 lead months) than one starting in July into
September (2 lead months). Similar summary plots for the
other skill metrics are presented in the Fig. S2 and discussed
in Sect. 3.4.

3.2 Spatio-temporal variation of skill in discharge
forecasts

This subsection compares the skill for discharge with the
skill for run-off. The two maps of Fig. 6, which depict the
skill in run-off and discharge hindcasts for July as lead month
2, show a high degree of similarity in terms of the patterns
and the magnitude of the skill. The same holds for other tar-
get months and lead times (not shown). There are, however,
subtle differences because rivers aggregate the skill, or lack
of skill, from the whole upstream part of their basin. As a re-
sult, cells containing rivers with large basins may contrast
against adjacent cells if these contain rivers with a small,
local basin. Indeed, some downstream parts of large rivers
stick out in the skill map for discharge, but not in the skill
map for run-off. An example in Fig. 6b is the reaches of the
Danube along the Romanian–Bulgarian border, which show
more skill than local small rivers in adjacent cells, because
some upstream parts of the Danube have more skill than the
region around the Romanian–Bulgarian border. An example
that demonstrates the opposite is the downstream part of the
Loire showing less skill than local small rivers, because up-
stream parts of the Loire have less skill than small, local
rivers in the downstream part.

Domain summary statistics of skill also differ slightly be-
tween run-off and discharge. Figure 6c compares the annual
cycle of the skill in discharge with the skill in run-off at
five different lead times. Here we show the difference in the
domain-averaged R instead of the fraction of cells with a sig-
nificant R because in lead month 0 that fraction is close to 1

for both variables. In terms of the domain-averaged R, pre-
dictability is higher for discharge than for run-off for the first
lead month. On average over the 12 months of the year, the
difference is 0.049. We ascribe this result to the combined
effect of the delay between run-off and discharge, with varia-
tions in discharge being later in time than the corresponding
variations in run-off, and the general tendency of decreasing
skill with lead time. The curves for the different lead times
in Fig. 6c show that the difference in skill between the two
variables gradually disappears with increasing lead time (an
annual average of 0.020 and 0.012 for lead months 1 and 2,
respectively). This is compatible with the given explanation
for the difference and the fact that the rate with which skill is
lost gradually decreases with increasing lead time.

We finally analysed whether the difference in skill be-
tween discharge and run-off was a function of the size of
the basin (Fig. 6d). For the first lead month, when on average
there is more skill in discharge than in run-off, the difference
increases with the size of the basin. Again, this can be ex-
plained by the combination of the skill decaying with time
and the delay between run-off and discharge, with the delay
increasing with the size of the basin. For longer lead times
(from lead month 1 on), when the domain-averaged differ-
ence in skill has become very small, the figure shows no ef-
fect of the basin size. Referring to the comparison between
run-off and discharge in panels Fig. 6a and b for lead month
2, cases like the Danube (more skill than local rivers) and the
Loire (less skill than local rivers) tend to cancel out when the
entire domain and year are considered.

3.3 Verification of discharge with pseudo- and real
observations

So far, all skill was determined by using the discharge
generated with the reference simulation. i.e. with pseudo-
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Figure 6. Comparison of the performance of the hindcasts of discharge and run-off using the pseudo-observations for verification. The two
maps display R for run-off (a) and discharge (b) for hindcasts initialised on 1 May and target month July (see further explanation in Fig. 1).
(c) depicts the annual cycle of the domain-averaged R for run-off (red) and discharge (blue) for lead months 0 to 4. The horizontal line at
0.31 is the threshold of significance for a single cell. (d) is a box plot of the difference between R for discharge and run-off as a function of
the basin size. Each bin i contains the results for all basins with a maximum of 2i cells and more than 2(i−1) cells; e.g. bin 4 is for all basins
with a size from 10 to 16 cells. Boxes represent the interquartile range and the median; whiskers extend to minimum and maximum values
found in the bin. All values are average differences over the 12 months of the year and results are shown for three different lead times. The
values above the abscissa give the number of cells in each bin.

observations. In this section, this theoretical skill will be
compared with the skill determined with real discharge as
observed at gauging stations (actual skill) from the GRDC
and EWA databases. Figure 7 compares the theoretical skill
(Fig. 7b and d for large and small basins, respectively) with
actual skill (Fig. 7c and e for large and small basins, respec-
tively) for a single combination of a target month (May) with
a lead month (2). Small basins are defined as smaller than one
0.5◦× 0.5◦ grid cell; large basins are larger than 9900 km2

(see Sect. 2.2).
For this combination of May forecasts initialised in March,

a substantial degradation in skill is found when the pseudo-
observations are replaced by real observations. In terms of
the fraction of cells with significant skill, the reduction is

from 73 to 56 % for large basins and from 52 to 27 % for
small basins and the domain-averaged R decreases from 0.48
to 0.33 for large basins and from 0.37 to 0.18 for small
basins. In particular, the basins in northern Fennoscandia lose
much of their skill when using actual instead of pseudo-
observations. In this region VIC also performed poorly in
reproducing historic flows. Specific discharge was underes-
timated and the annual cycle was poorly reproduced, espe-
cially the spring peak occurred too late and lasted too long
(Greuell et al., 2015). In central Europe useful skill remains
when using real observations for both small and large basins.
This is a region where VIC reproduced annual cycles well,
though inter-annual variations in low flows were overesti-
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Figure 7. Skill (R) of the discharge hindcasts for May as lead month 2 (initialisation on 1 March). In sequence: (a) discharge verified
with pseudo-observations; (b) as (a) but for cells with real observations representing large basins only; (c) discharge verified with real
observations for large basins. (d) and (e) are identical to (b) and (c), respectively, but for cells with real observations representing small
basins. More explanation is given in the caption of Fig. 1, but in (d) and (e) cells with insignificant skill are coloured blue instead of yellow
for better contrast.

mated. For a few stations in northwest France and southeast
England actual skill is larger than theoretical skill.

Figure 8 compares actual with theoretical skill for all tar-
get months and two lead times by considering the domain-
mean R. Similar figures for the other skill metrics are pre-

sented in Fig. S4 and discussed in the next section. The re-
duction of actual relative to theoretical skill occurs for all
combinations of target and lead months and does not exhibit
a clear annual cycle. On average across all target months and
for lead month 2, the ratio of actual to theoretical skill is
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Figure 8. Comparison between verification of discharge with pseudo- (red) and real (blue) observations in terms of the annual cycle of the
domain-mean R. The horizontal line at 0.31 is the threshold of significance for a single cell. Results are shown for cells representing large
basins (a) and cells representing small basins (b). Both panels depict cycles for lead months 0 and 2 only.

0.667 (0.258 divided by 0.387) for large basins and 0.538
(0.156 divided by 0.290) for small basins. This is compara-
ble to Van Dijk et al. (2013), who found a ratio of actual to
theoretical skill of 0.54 for 6192 basins worldwide in terms
of the ranked correlation coefficient.

Comparing skill for small basins with skill for large basins
in Fig. 8, we notice two differences. Firstly, in terms of the
domain-mean R, theoretical skill is higher for large basins
than for small basins (0.39 and 0.29, respectively, for the
annual mean and lead month 2). However, this result holds
for the cells with observations. If all cells of the domain
are considered, this difference becomes insignificantly small.
So, the apparent difference in theoretical skill between large
and small basins can be attributed almost entirely to the ge-
ographical distribution of the discharge monitoring stations,
with stations on small basins being more often located in re-
gions with relatively little skill, such as Germany, France and
the British Isles, than large basin stations.

The second effect of the size of basins is that the ratio be-
tween theoretical and actual skill is larger for small basins
than for large basins, at least for lead month 0. This is per-
haps even more clear from Fig. S3 in the Supplement. We
speculate that this is due to a combination of two effects.
Firstly, there is more skill in simulations of historic stream-
flow in large basins than in small basins (Van Dijk and War-
ren, 2010, confirmed for VIC in Europe by Greuell et al.,
2015). Secondly, as Van Dijk et al. (2013) demonstrated, the
ratio of actual to theoretical skill in the hindcasts is almost
linearly related to the skill of simulating historic streamflow.
Combining these two relationships confirms the relationship
that we found, namely an increase in the ratio of actual to
theoretical skill with basin size.

Finally, we investigated to what extent these results are af-
fected by human interference, keeping in mind that the sim-
ulations are natural, while the observations include human

impacts to a variable but unknown degree. Human interfer-
ence is expected to have a negative effect on actual skill and
hence on the ratio of actual to theoretical skill. For relatively
natural large basins (AAPFD < 0.3; see end of Sect. 2.2), the
ratio of actual to theoretical skill was computed in terms of
the domain-mean R, averaged across all target months and
for lead month 2. We found a ratio of 0.686, which should be
compared to a ratio of 0.667 for the entire set of large basins
(see above). So, as expected the ratio is larger for basins with
less impact. However, since the difference between the two
ratios is small we conclude that the effect of evaluating nat-
ural runs against observations that are obviously affected by
human interference contributes only little to the difference
between actual and theoretical skill. A similar analysis was
not applied to the collection of small basins with observa-
tions, since these are smaller than the spatial resolution of
the simulations.

3.4 Results for other skill metrics

So far, skill was measured in terms of the correlation coeffi-
cient between the median of the hindcasts and the observa-
tions (R) only. This section compares those results, for run-
off, with results in terms of other skill metrics. Figure 9 gives
an example for one particular target month and lead month,
i.e. target May initialised in March (lead 2). Figure 9a–c
show the skill patterns for R, for the ROC area for below-
normal (BN) years and for the RPSS. The three patterns are
spatially similar to a large degree, though the magnitudes and
number of significant cells do differ. The pattern of the map
of the ROC area for above-normal (AN) years (see Fig. S1) is
also similar to the patterns of the three maps shown. On aver-
age across all lead and target months, among cells that have
significant R, 89 and 84 % also have a significant ROC score
for the BN tercile and the AN tercile, respectively, and 65 %
also have significant RPSS scores. The fraction of cells with
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Figure 9. Maps of different skill metrics for one combination of a target month (May) and a lead month (2) of the run-off hindcasts. Panels
show (a) R, (b) the ROC area for the below-normal tercile, (c) the ranked probability skill score (RPSS) and (d) the difference in ROC area
between the BN and AN terciles. (a, b, c) skill is not significant in cells with a yellow colour. Legends provide the fraction of cells with
significant values of the metric and the domain-averaged value of the metric.

no significant R, but with significant ROC or RPSS, remains
below the 5 % level across all target and lead months.

The agreement that we find between the patterns of the
different metrics is in accordance with a result mentioned
in a global analysis of seasonal streamflow predictions by
Van Dijk et al. (2013), who found high spatial correlation
between the different skill metrics they used (among which
were R, the RPSS and the ranked correlation coefficient).

Although the different nature of the different metrics
makes the interpretation of quantitative differences between
them difficult, this is not true for the ROC areas for the differ-
ent terciles. For the particular combination of May as target
month and lead month 2 shown in Fig. 9, the domain-mean
ROC area is largest for the BN tercile (0.75), slightly smaller
for the AN tercile (0.73) and much lower for the near-normal
tercile (0.58, see Fig. S2c and d). A similar tendency is found
in the fraction of cells with a significant ROC area (69, 63
and 21 %, respectively). In fact, in all combinations of lead
and target month the fraction of significant cells is larger for
the BN than for the AN tercile, as shown in Fig. 10. How-
ever, the AN and BN fractions of cells tend to become equal

(i) when they approach 1.0, (ii) when they approach the limit
of no skill (5 %) and (iii) during target months from October
to January. Finally, Fig. 9d presents a map of the difference
between the BN and the AN ROC area for May as lead month
2. There is some organisation in the pattern but regions with
a positive or a negative difference between the two tend to
be smaller than the regions with significant skill in the maps
of, for example, Figs. 2 and 3. Also, we did not detect much
consistency, in the sense of persistence during at least two
consecutive target or lead months, in the patterns of the dif-
ference between ROC AN and ROC BN.

In Fig. 9c the fraction of cells with a significant value of
the RPSS is 47 %, which is somewhere between the fractions
for ROC areas of the three terciles because the RPSS repre-
sents the skill across all terciles.

For other combinations of target and lead months the re-
sults of this analysis are qualitatively similar (see Supple-
ment figures). All metrics show a minimum value in the an-
nual cycles in either September or in October, irrespective of
lead time; maxima are attained in February for lead month
0 shifting to May at longer lead times (Fig. S2). We would
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Figure 10. Skill of the run-off hindcasts in the below-normal (BN)
tercile compared to the skill of the run-off hindcasts in the above-
normal (AN) tercile. The plot depicts annual cycles of the fraction
of cells with a significant ROC area for the two terciles and for 4
lead months.

finally like to note that, while in this subsection we discussed
run-off, we made similar figures and calculations for dis-
charge. Results for these two variables are almost identical.

4 Discussion

4.1 Theoretical versus actual skill

In the analysis of the differences between theoretical and ac-
tual skill, two essential questions are as follows. (a) What
are the conceptual differences between the physical systems
that generate the pseudo- and the real discharge observations,
i.e. between the model reference run and the real world? To
answer this question, the components in the upper and the
lower box of the diagram in Fig. 1 need to be compared. (b)
What are the expected effects of these differences on skill,
i.e. on the comparison with the hindcasts? To answer this
question, the components that differ between the real world
and the model reference run need to be compared with the
model hindcasts. The rule then is that skill decreases with in-
creasing disagreement between a component of the hindcast
system and the corresponding component of one of the other
systems. The following components differ between the real
world and the model reference simulation.

(1) Real meteorology differs from the meteorology as-
sumed in the reference simulation (WFDEI), both during the
spin-up period and during the hindcast period. During spin-
up, the model reference run and hindcasts have identical me-
teorological forcing (WFDEI), which differs from real me-
teorology. Therefore, this difference is expected to lead to
more theoretical than actual skill. During the hindcast pe-
riod, all three systems have different meteorological forcing.
We do not have a well-founded expectation about any biases

between these three forcings and, hence, we have no expec-
tation about its effect on the difference between theoretical
and actual skill. However, in Europe and beyond the first
lead month, almost all skill in the seasonal forecasts is due
to the initial conditions (see the companion paper). There-
fore, beyond the first lead month and in Europe, differences
in forcing during the hindcast period have a negligible effect
on skill.

(2) Models are imperfect, in terms of physics and in terms
of spatial and temporal discretisation, so model hydrology
differs from real world hydrology. Hindcasts and the pseudo-
observations are produced with the same model, so imperfec-
tions in model hydrology are expected to lead to more theo-
retical than actual skill. One assumption implicitly made in
the diagram is that the basin of the observation station and the
model basin are identical. This is not the case (see Sect. 2.2),
so differences between observation and model basin form an
additional cause of disagreements between theoretical and
actual skill. Again, this will favour theoretical skill with re-
spect to actual skill since basins are identical in the hind-
casts and the reference simulation. In particular, differences
in meteorological forcing between the basin of the observa-
tion station and the model basin might reduce actual skill.
Van Dijk et al. (2013) investigated this aspect by making
simulations for Australia at different spatial resolutions and
verifying with networks of observations with different spa-
tial densities. They found that the resolution and perhaps the
quality of the forcing data contributed at least half to the dif-
ference between theoretical and actual skill.

(3) In the real world discharge observations are subject to
measurement errors. Measurement errors of discharge are not
constant over time (due to varying cross sectional areas, fol-
lowing erosion and sedimentation) and therefore add noise
to the data; noise always reduces skill. There is no equivalent
of this error in the model environment. Hence, as for differ-
ences (1) and (2) this difference is expected to lead to more
theoretical than to actual skill.

(4) Initial conditions are absent in this list of differences
since they are not independent components but entirely de-
termined by two components of the system listed above,
namely meteorology and hydrology. Alternatively, initial hy-
drological conditions could be taken from observations or
by assimilation of observations into model calculations. In
that case, initial conditions would become an independent or
semi-dependent component of the system. However, while
model initial conditions would, of course, differ from real
initial conditions, the two model systems had identical initial
conditions. Hence, this difference would again be expected
to lead to more theoretical than to actual skill.

In summary, all of the conceptual differences between the
generation of pseudo- and real observations are expected to
lead to more theoretical skill than actual skill, except for the
difference in meteorology during the hindcast period, which
has, in the case of Europe beyond the first lead month, a neu-
tral effect, and otherwise an unknown effect.
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Our data analysis, Sect. 3.3, broadly confirms that theo-
retical skill exceeds actual skill. We also found cases where
actual skill exceeds theoretical skill beyond lead month 0,
such as for a few stations in northwest France and southeast
England in Fig. 7. We ascribe such cases to chance.

It is interesting to discuss what would happen in the
utopian case that the system of the model reference run
would converge with the real world, i.e. if model meteoro-
logical forcing and hydrology would approach perfection and
if measurement errors would approach zero. Equality of the
two systems would, according to the analysis above, lead to
equality of theoretical and actual skill. However, we like to
note that at the same time optimisation of the model system
can lead to a degradation of the theoretical skill due to un-
realistic memory timescales in the storage compartments of
the hydrological model before optimisation. If this memory,
from stored water in either snow, soil or aquifer, is too strong,
then skill would decrease with the calibration of the model
towards more realistic storage accumulation. However, if this
memory is too small before improving the model, then, of
course, the reverse would happen and skill would increase
with optimisation.

An example proving this statement is a model that accu-
mulates too much snow. The model will do so both in the
initial state of the reference simulation and the initial state
of the hindcasts, and, since more snow leads, at some stage
of the melting season, to more predictive skill, theoretical
skill will be overestimated. A perfect model, accumulating
less but more realistic amounts of snow, would exhibit less
skill. Another example is predictive skill caused by inter-
annual variations in the initial amount of soil moisture and/or
groundwater. A model that is imperfect because it overesti-
mates the transport speed of water through the soil and the
groundwater reservoirs will do so both in the reference sim-
ulation and the hindcasts. Predictive skill due to soil mois-
ture initial conditions will then occur too early. Compared to
the model that overestimates transport speed, a perfect model
with smaller, realistic transport speed would yield less theo-
retical skill at the early lead times.

Hence, theoretical skill is not equal to the maximum that
could be accomplished if hydrological model and meteoro-
logical forcing during the reference simulation were perfect.

The version of VIC used in this study was calibrated by
Nijssen et al. (2001) in a crude way, in the sense that they
assumed no spatial variation of the parameters set by calibra-
tion within almost the entire European continent. Improving
the calibration of VIC would be an obvious candidate for try-
ing to improve the seasonal predictions discussed in this pa-
per. This should lead to higher actual skill. However, the two
examples discussed above show that theoretical skill may ac-
tually, for certain locations, months of initialisation and lead
months, decline due to the recalibration.

4.2 Results and uncertainties

There seems to be a broad correspondence between the prob-
abilistic forecast verification presented here and the model
validation presented in Greuell et al. (2015) and Roudier et
al. (2016). These studies found that average discharge and
inter-annual variations therein are well reproduced against
observations, consistent with our result that in the first lead
month all skill scores, also against real observations (see
Fig. S4 for the lead 0 results), are good for large parts of
Europe.

However, the relation between a model’s ability to sim-
ulate historic streamflow and its ability to generate skill in
seasonal forecasts is complex. There is, for instance, no rea-
son to expect that regions with more theoretical skill than
other regions would generally correspond to regions with
better historic streamflow simulations. Large model stores
of soil moisture and snow tend to lead to more theoretical
skill, whether these stores are realistic or not. If they are not
realistic, simulations of historic streamflow will be poor, de-
spite the forecast skill. Another example of the problematic
relation between validation and verification is that, even in
perfect models, regions with small model stores of soil mois-
ture and snow and regions with large inter-annual variation
in precipitation will exhibit small amounts of theoretical and
actual skill. So, regions with high-quality historic streamflow
simulations may for good reasons have little skill in the fore-
casts.

However, what we would expect is that regions of poor
model performance have little actual skill (not necessarily
little theoretical skill) in the forecasts. In our work, this
statement is broadly confirmed by the basins in northern
Fennoscandia, which lose much of their skill when using
actual instead of pseudo-observations (Fig. 7). In this re-
gion VIC indeed performed poorly in reproducing historic
flows. Good model performance probably is a necessary (but
not sufficient) condition for the generation of actual skill
in seasonal forecasts. This is exemplified by some regions
with considerable amounts of actual skill in central Europe
(e.g. northern part of the Balkans and the Elbe basin in
Fig. 7), where VIC’s simulations of historic streamflow are
much better than in northern Fennoscandia.

In a future extension of our work, an objective method like
cluster analysis could reveal regions where skill has a similar
signature. This could lead to an improved assessment of the
physical and climatological factors that are responsible for
the spatial variations in skill found in this and its companion
paper.

There also seems to be a broad correspondence between
the regions and seasons with skill identified in the present
work and those identified in more spatially or temporally
confined studies based on entirely different physical or even
statistical models. Without repeating the more detailed de-
scription in the introduction and the closer comparison in
Sect. 3.1, we restate here that the results of Bierkens and van
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Beek (2009) and Thober et al. (2015) were similar at the Eu-
ropean domain. These pan-European studies, like ours, con-
firm more regional studies such as those for the British Isles
(Svensson et al., 2015) or France (Céron et al., 2010; Singla
et al., 2012). Though a high-resolution study like the latter
may add much spatial detail, this does not change the region
and season of skill.

Our results are based on a forcing with the 15-member,
monthly initialised, 7-month forecast version of ECMWF
System 4, basically because at the start of this work that hind-
cast was the only one accessible to us, but also because it
allows verification at the monthly resolution. Alternatively,
we could have used the 51-member seasonally initialised (4
times per year), 7-month forecast version of the same model.
That would have provided us with better-constrained, more-
precise statistics (larger sample size), or it would have al-
lowed assessment of more percentiles (e.g. quintiles instead
of terciles) at similar precision. However, the variation of
skill over a year would not have been resolved with such de-
tail as in the present work. Finally, a 15-member, seasonally
initialised, 12-month forecast version of System 4 is avail-
able. Our results show that for some regions at lead month
6, still a few, small pockets of consistent skill remain, sug-
gesting that extending the forecast for our domain might be
worth exploring.

Other seasonal forecasting systems, based on different
coupled ocean–climate models, could have been used as me-
teorological forcing, such as CFSv2 (Saha et al., 2014) and
GloSea5 (MacLachlan et al., 2014). Given that, at least at
large scales, multi-model ensembles exhibit better climate
forecast skill than single models, it is interesting to investi-
gate whether that additional skill also propagates into river
flow forecasts. While this seems to be true for the east-
ern United States (Luo and Wood, 2008), it is not known
whether similar conclusions could be drawn for Europe. A
similar reasoning can also be extended to the hydrological
models: using a multi-climate model ensemble to force a
multi-hydrological model ensemble might also provide im-
proved skill, as the latter models may be complementary in
the regions and seasons of best model performance. Bohn et
al. (2010) showed some advantage of using an ensemble of
three hydrological models (but with a single forcing), over
using only the best of the three, but only after bias correcting
the hydrological output and making a linear combination of
them with monthly varying weights.

4.3 Implications and recommendations

Many conclusions drawn from this work are valid at the scale
of our domain and not necessarily at the scale of river basins.
Only in some parts of our analysis, especially where we fo-
cused on the annual cycle of the skill (Fig. 3), regional pat-
terns at a scale smaller than that of the domain were dis-
cussed. This was done in a qualitative way.

For applications of these seasonal forecasts in decision-
making processes at (sub-)basin level, a more detailed skill
analysis is recommended for that specific (sub-)basin, prefer-
ably after a better model calibration for that same basin.
The facts presented in this study that anomaly correlations
and ROC scores for the AN and BN terciles are signifi-
cant for large parts of the domain for lead times up to sev-
eral months, supported by (fairly) positive validation results
for VIC (Greuell et al., 2015; Roudier et al., 2016), suggest
these anomaly forecasts are good enough to be used as such.
However, areas of significant RPSS are much smaller and re-
main significant for shorter lead times. Spatially distributed
calibration of VIC model parameters, or distribution-based
calibration of modelled discharge to observations, or both,
might also increase the RPSS. This might then allow fore-
casting of absolute discharge magnitudes and thus inform
decision-making processes that involve certain absolute dis-
charge thresholds.

In Sect. 3 (results) we already discussed the probable rea-
sons for skill, which are much elaborated on in the com-
panion paper. In general, that paper shows that for most ar-
eas, skill in run-off is caused by initialising snow and/or soil
moisture properly; only in few areas and seasons does skill
in precipitation or skill in temperature and evapotranspira-
tion add skill to run-off forecasts beyond the first lead month.
This has two implications: one is that, if ever the skill of sea-
sonal climate forecasts improves for Europe, this may well
translate to improved seasonal river flow forecast too. The
second is that better initial conditions of snow water equiv-
alent and soil moisture from observations may do the same,
with the latter happening only if the spatial distribution of
the soil moisture storage capacity is more realistic too (see
Sect. 4.1).

Overall the present analysis shows that, especially in win-
ter, spring and early summer, there is potentially good skill to
forecast run-off and discharge in large parts of Europe, with
considerable lead time. While this broadly confirms previ-
ously published work, the present study (while being specific
to our model set-up) gives much more spatial and temporal
(season and lead time) details. As such it provides a good
basis to support operational forecasts and to add information
about skill to seasonal forecasts, which is very important for
proper value assessment and decision making.

5 Conclusions

This paper is the first of two papers dealing with a model-
based system built to produce seasonal hydrological fore-
casts (WUSHP: Wageningen University Seamless Hydrolog-
ical Predictions). The present paper presents the development
and the skill evaluation of the system for Europe; the com-
panion paper provides an explanation of the skill or the lack
thereof.
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First, theoretical skill of the run-off hindcasts was deter-
mined using the output of the reference simulation as pseudo-
observations. Using the correlation coefficient (R) as met-
ric, hot spots of significant skill were found in Fennoscandia
(from January to October), the southern part of the Mediter-
ranean (from June to August), Poland, northern Germany,
Romania and Bulgaria (mainly from November to January),
and western France (from December to May). There is very
little or no significant skill throughout the year in some
coastal and mountainous regions. The entire British Isles ex-
hibit very little skill, except for the eastern coast of Great
Britain. If the entire domain is considered, the annual cycle
of skill has a minimum roughly from August to November
and a maximum in May.

Run-off and discharge show a high degree of similarity in
terms of the spatial patterns and the magnitude of the skill.
However, when averaged over the domain and the year, pre-
dictability is slightly higher for discharge than for run-off for
the first lead month (by 0.049 in terms of R), but the dif-
ference decreases with increasing lead time. We also found
that for lead month 0 the difference between discharge and
run-off skill increases with the size of the basin.

Theoretical skill as determined with the pseudo-
observations was compared to actual skill as determined
with real discharge observations. On average across all target
months and for lead month 2, skill reduction due to replacing
pseudo- by real observations is larger for small basins than
for large basins.

Spatio-temporal patterns for the different skill metrics
considered in this study (correlation coefficient, ROC area
and ranked probability skill score) are similar to a large de-
gree. ROC areas tend to be slightly larger for the below-
normal tercile than for the above-normal tercile but not dur-
ing target months from October to January.
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