
Hydrol. Earth Syst. Sci., 22, 3375–3389, 2018
https://doi.org/10.5194/hess-22-3375-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Dual-polarized quantitative precipitation estimation as
a function of range
Micheal J. Simpson and Neil I. Fox
University of Missouri, School of Natural Resources, Water Resources Program, Department of Soil, Environmental,
and Atmospheric Sciences, 332 ABNR Building, Columbia, Missouri 65211, USA

Correspondence: Micheal J. Simpson (mjs5h7@mail.missouri.edu)

Received: 30 May 2017 – Discussion started: 6 July 2017
Revised: 4 April 2018 – Accepted: 1 June 2018 – Published: 18 June 2018

Abstract. Since the advent of dual-polarization radar tech-
nology, many studies have been conducted to determine the
extent to which the differential reflectivity (ZDR) and spe-
cific differential phase shift (KDP) add benefits to estimat-
ing rain rates (R) compared to reflectivity (Z) alone. It has
been previously noted that this new technology provides sig-
nificant improvement to rain-rate estimation, primarily for
ranges within 125 km of the radar. Beyond this range, it is
unclear as to whether the National Weather Service (NWS)
conventional R(Z)-convective algorithm is superior, as lit-
tle research has investigated radar precipitation estimate per-
formance at larger ranges. The current study investigates the
performance of three radars – St. Louis (KLSX), Kansas City
(KEAX), and Springfield (KSGF), MO – with 15 tipping
bucket gauges serving as ground truth to the radars. With
over 300 h of precipitation data being analyzed for the current
study, it was found that, in general, performance degraded
with range beyond, approximately, 150 km from each of the
radars. Probability of detection (PoD) in addition to bias val-
ues decreased, while the false alarm rates increased as range
increased. Bright-band contamination was observed to play a
potential role as large increases in the absolute bias and over-
all error values near 120 km for the cool season and 150 km in
the warm season. Furthermore, upwards of 60 % of the total
error was due to precipitation being falsely estimated, while
20 % of the total error was due to missed precipitation. Cor-
relation coefficient values increased by as much as 0.4 when
these instances were removed from the analyses (i.e., hits
only). Overall, due to the lowest normalized standard error
(NSE) of less than 1.0, a National Severe Storms Laboratory
(NSSL) R(Z,ZDR) equation was determined to be the most
robust, while a R(ZDR,KDP) algorithm recorded NSE val-

ues as high as 5. The addition of dual-polarized technology
was shown to estimate quantitative precipitation estimates
(QPEs) better than the conventional equation. The analyses
further our understanding of the strengths and limitations of
the Next Generation Radar (NEXRAD) system overall and
from a seasonal perspective.

1 Introduction

In 2012, the National Weather Service (NWS) began upgrad-
ing the Next Generation Radar (NEXRAD) system from sin-
gle to dual polarization. The potential benefits of this upgrade
were investigated by the National Severe Storms Laboratory
(NSSL) and the Cooperative Institute for Mesoscale Meteo-
rological Studies. These advantages include, but are not lim-
ited to, (1) significant improvement in radar rainfall estima-
tion (Ryzhkov et al., 2005; Gourley et al., 2010) through
better representation of precipitation shape (Brandes et al.,
2002; Gorgucci et al., 2000, 2006; Berne and Uijlenhoet,
2005); (2) discrimination between solid and liquid precip-
itation (Zrnic and Ryzhkov, 1996), allowing for better dis-
tinction between areas of heavy rain and hail (Park et al.,
2009; Giangrande and Ryzhkov, 2008; Cunha et al., 2013);
(3) identifying the melting layer position in the radar field
(Straka et al., 2000; Park et al., 2009); (4) hardware cali-
bration (Holleman et al., 2010; Hubbert et al., 2017); and
(5) calculating drop-size distributions retrieved from mea-
surements of reflectivity (Z), differential reflectivity (ZDR),
and specific differential phase shift (KDP) as opposed to us-
ing ground-based point-located disdrometers (Zhang et al.,
2001; Brandes et al., 2004; Anagnostou et al., 2008).
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Rain-rate retrieval by weather radars is an estimation
based upon the dielectric properties of the hydrometeors en-
countered in the atmosphere. Therefore, there is no direct
measurement of rainfall, and this inherently introduces er-
ror. However, dual-polarized radar technology allows for in-
depth analyses on the microphysics of precipitation that sin-
gle polarization was incapable of conducting. In spite of this
technology, conflicting studies report the benefits for quan-
titative precipitation estimation (QPE). For example, Gour-
ley et al. (2010) and Cunha et al. (2015) reported that con-
ventional R(Z) algorithms have significantly better bias than
algorithms containing ZDR and/or KDP, while others (e.g.,
Ryzhkov et al., 2013; Simpson et al., 2016) report the oppo-
site. This could be due, at least in part, to the fact that hy-
drometeor types (e.g., rain versus hail) vary on spatial scales
that cannot be easily resolved by even densely gauged net-
works.

Multiple studies have found that the performance of radar
rain-rate estimates decreases as range increases (Smith et al.,
1996; Ryzhkov et al., 2003), which is caused, primarily, by
degradation of beam quality with range. Furthermore, the re-
searchers also discuss how the probability of detection (PoD)
at larger ranges decreases, as the radar beam overshoots shal-
low, stratiform precipitation, especially winter precipitation
(Kumjian, 2013b). Bright-banding can also play a crucial
role in significantly increasing the amount of precipitation es-
timated by the radar, prompting many researchers to produce
automated bright-band detection algorithms (e.g., Zhang et
al., 2008; Zhang and Qi, 2010).

Despite these overall disadvantages, studies have shown
that radar rain-rate algorithms seldom exceed absolute er-
rors on the order of 10 mm h−1 (Berne and Uijlenhoet, 2013).
However, many of these studies have looked at a small sam-
ple of rain events (on the order of 10–50 h) (Kitchen and
Jackson, 1993; Smith et al., 1996; Ryzhkov et al., 2003;
Gourley et al., 2010; Cunha et al., 2013). Long-term per-
formances of weather radar are becoming more common in
recent years as the availability of data becomes more abun-
dant (e.g., Haylock et al., 2008; Goudenhoofdt and Delobbe,
2012, 2016; Fairman et al., 2012). Additionally, few studies
(e.g., Smith et al., 1996; Cunha et al., 2015; Simpson et al.,
2016) quantified QPE errors including the probability of de-
tection and false alarm ratio. In order to gain a better under-
standing of the performance of weather radars on rain-rate
estimates, more data must be collected over a broad range of
precipitation regimes in addition to an overall broader region
of interest.

The overarching objective of the current study was to as-
sess the performance of three different radars within the state
of Missouri at various ranges from the radar, using terrestrial-
based tipping bucket gauges as ground-truth data. Radar rain-
rate estimation algorithms include 55 algorithms encompass-
ing standard R(Z) relations as well as algorithms containing
dual-polarization variables including differential reflectivity
and the specific differential phase shift. A rain-rate echo clas-

sification algorithm was also tested for performance in cor-
rectly identifying the suitable rain-rate algorithm to choose
based on the Z, ZDR, and KDP radar fields. The current
work expands upon that of Simpson et al. (2016) such that
a larger sample of data was analyzed (over 300 h of rainfall
data from 46 separate days in 2014) to encompass multiple
different precipitation regimes for both summer and winter,
with several ground-truth tipping buckets to analyze the per-
formance of three separate radars as a function of range, and
further expanding upon the effects of erroneous precipitation
estimates on the overall radar error. Objectives for this study
included the following: (1) statistically analyze the perfor-
mance of each radar at various ranges (compared against the
gauges); (2) compute (a) the amount of precipitation incor-
rectly estimated by the radar (quantifying the probability of
false detection, PoFD) and (b) the amount of precipitation in-
correctly missed by the radar but measured by the rain gauge;
(3) test the overall best radar rain-rate algorithm; and (4) per-
form objectives (1), (2), and (3) while the data are separated
into warm and cool seasons, which have been shown to result
in significantly different QPEs (Smith et al., 1996; Ryzhkov
et al., 2003; Cunha et al., 2015).

2 Study area and methods

2.1 Study area

National Weather Service radars from St. Louis (KLSX),
Kansas City (KEAX), and Springfield (KSGF), MO, are able
to scan the majority of the state of Missouri. Because of this,
the three aforementioned radars were used to assess overall
performance in estimating precipitation for this study. Each
radar covered a 200 km radius for which a different num-
ber of gauges were within their domains: KLSX, KEAX, and
KSGF covered 9, 8, and 5 gauges, respectively (Fig. 1).

Missouri is characterized as a continental type of climate,
marked by relatively strong seasonality. Furthermore, Mis-
souri is subject to frequent changes in temperature, primar-
ily due to its inland location and its lack of proximity to
any large lakes. All of Missouri experiences below-freezing
temperatures on a yearly basis. For example, the majority
of the state typically registers 110 days with temperatures
below freezing, while the Bootheel (i.e., southeast region)
records, on average, 70 days of below-freezing day tempera-
tures, emphasizing the typical northwest to southeast warm-
ing pattern of temperatures observed in the state. Because of
the large variability in temperature, the warm and cool sea-
sons were defined from an agronomic perspective, primar-
ily taking probabilities of freezing into account. Based on
the climatological averages of Missouri, from 1983 to 2013,
November through April registered average minimum tem-
peratures below freezing, which was considered the cool sea-
son, while May through October’s minimum average temper-
atures were above freezing and constituted the warm season.
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Figure 1. Study location (Missouri) with St. Louis (KLSX), Kansas
City (KEAX), and Springfield (KSGF), MO, radars (triangles)
overlaid with 50, 100, and 150 km range rings in addition to the
15 terrestrial-based precipitation gauges utilized as ground-truthed
data.

2.2 Rainfall data

In order for the results to be comparable across the domains
of the three radars it was necessary to select days on which
rain was observed widely across the state. Although mea-
surable rainfall occurs on more than 100 days of the year
in Missouri with only 50 days typically recording greater
than 0.254 mm, 2014 recorded 46 days with measurable rain-
fall throughout the state. Furthermore, occurrence of rain
was defined as the observation of an amount greater than
0.5 mm (equivalent to two rain gauge tips) in an hour. This
amounted to a total of approximately 300 h of rain across
those 46 days. This represents a relatively standard year of
rainfall for the state of Missouri. Furthermore, the days were
chosen based on availability of data from the National Cli-
mate Data Center’s (NCDC) Hierarchal Data Storage Sys-
tem (HDSS) for all three radars, in addition to error-free
performance notes from each of the gauges used. The dates
analyzed were split near evenly between the warm (May–
October) and cool (November–April) seasons, therefore en-
compassing an overall performance of each of the radars
throughout the year with no preferential bias towards rain
or snow. Additionally, days were distributed evenly during
the summer between convective and stratiform events with a
threshold of 38 dBZ (Gamache and Houze, 1982).

Terrestrial-based precipitation gauge data were collected
from 15 separate weather stations within the Missouri
Mesonet, established by the Commercial Agriculture Pro-
gram of University Extension (Table 1). All precipitation
data were aggregated in hourly intervals to match the tempo-
ral resolution of the gauges. Observed precipitation data were

collected using Campbell Scientific TE525 tipping buckets
located at each of the locations for the study (Table 1). The
precipitation gauges have a 15.4 cm orifice which funnels to a
fulcrum which registers 0.254 mm of rainfall per tip. For the
current study, none of the day’s average temperature values
fell outside of the gauge’s maximum performance range of
0 to 50 ◦C. Accuracy in gauge measurements range between
−1 and 1, −3 and 0, and −5 and 0 % for precipitation up
to 25.4, 25.4 to 50.8, and 50.8 to 76.2 mm h−1, respectively,
which are, primarily, associated with local random errors and
errors in tip-counting schemes (Kitchen and Blackall, 1992;
Habib et al., 2001).

Each tipping bucket is located, approximately, 1 m above
the ground in areas clear of buildings and properly main-
tained vegetation height to mitigate turbulence effects (Habib
et al., 1999). Due to the well-maintained nature of the
mesonet gauges, these errors were assumed negligible and,
therefore, allowed for the gauges to be representative of the
true rainfall rate. In spite of the non-homogeneous spacing
of the gauges, unbiased statistics including the normalized
mean bias (NMB) and normalized standard error (NSE) were
utilized.

2.3 Radar data and radar rainfall algorithms

Next Generation Radar level-II data were retrieved from the
NCDC’s HDSS. Files were processed using the Warning De-
cision Support System – Integrated Information (WDSS-II)
program (Lakshmanan et al., 2007a) to assess reflectivity
(Z) in addition to dual-polarized radar variables including
differential reflectivity and specific differential phase shift.
Three other variables were also generated based on a KDP-
based smoothing field (Ryzhkov et al., 2003) for reflectiv-
ity, differential reflectivity, and specific differential phase:
DSMZ, DZDR, and DKDP, respectively. These were imple-
mented to determine whether the additional KDP-smoothing
fields tend to over- or underestimate QPEs (Simpson et al.,
2016). A rain-rate echo classification variable (RREC) was
also computed, which chooses whether an R(Z), R(KDP),
R(Z,ZDR), or R(ZDR, KDP) algorithm is implemented in
estimating rain rates based on the radar fields of Z, ZDR, and
KDP (Kessinger et al., 2003) to determine whether a multi-
parameter algorithm is superior to a single algorithm.

All seven variables (Z, ZDR, KDP, DSMZ, DZDR,
DKDP, and RREC) were converted from their native polar
grid to 256× 256 1 km Cartesian grids, where the lowest
radar elevation scans (0.5◦) were used to mitigate uncalcu-
lated effects from evaporation and wind drift (Ciach, 2002).
An average of 5 min scans were used for each of the vari-
ables, which were aggregated to hourly totals to be compared
to the hourly tipping-bucket accumulations. In spite of pre-
vious reports suggesting 5 min to hourly aggregates can have
significant effects on QPE (e.g., Fabry et al., 1994), Shuck-
smith et al.’s (2011) criterion of present accumulation ex-
ceeding 26 % for a pixel size of 1 km was not reached.
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Table 1. Terrestrial-based precipitation gauge locations used for the study in addition to the National Weather Service radars from Springfield,
MO (KSGF), Kansas City, MO (KEAX), and St. Louis, MO (KLSX), used in conjunction with each gauge.

Gauge location Latitude (◦ N) Longitude (◦W) Radar(s) used

Bradford 38.897236 −92.218070 KLSX, KEAX
Brunswick 39.412667 −93.196500 KEAX
Capen Park 38.929237 −92.321297 KLSX, KEAX
Cook Station 37.797945 −91.429645 KLSX, KSGF
Green Ridge 38.621147 −93.416652 KEAX, KSGF
Jefferson Farm 38.906992 −92.269976 KLSX, KEAX
Lamar 37.493366 −94.318185 KSGF
Linneus 39.856919 −93.149726 KEAX
Monroe City 39.635314 −91.725370 KLSX
Mountain Grove 37.153865 −92.268831 KSGF
Sanborn Field 38.942301 −92.320395 KLSX, KEAX
St. Joseph 39.757821 −94.794567 KEAX
Vandalia 39.302300 −91.513000 KLSX
Versailles 38.434700 −92.853733 KEAX, KSGF
Williamsburg 38.907350 −91.734210 KLSX

Table 2. List of single- and dual-polarimetric algorithms used for radar rainfall estimates.

R(Z)= aZb

Precipitation type a b c

Stratiform 200 1.6 –
Convective 300 1.4 –
Tropical 250 1.2 –

R(KDP)= a|KDP|bsign(KDP)

Algorithm number

1 50.7 0.85 –
2 54.3 0.81 –
3 51.6 0.71 –
4 44 0.82 –
5 50.3 0.81 –
6 47.3 0.79 –

R(Z,ZDR)= aZbZDRc

Algorithm number

7 6.70× 10−3 0.927 −3.43
8 7.46× 10−3 0.945 −4.76
9 1.42× 10−2 0.77 −1.67
10 1.59× 10−2 0.737 −1.03
11 1.44× 10−2 0.761 −1.51

R(ZDR,KDP)= a|KDP|bZDRcsign(KDP)

Algorithm number

12 90.8 0.93 −1.69
13 136 0.968 −2.86
14 52.9 0.852 -0.53
15 63.3 0.851 −0.72
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The latitude and longitude of each of the 15 gauges were
matched with the radar pixel that corresponds to the Carte-
sian grid value of the seven radar variables which were then
implemented in rain-rate calculations. These rain-rate cal-
culations were calculated using the equations presented by
Ryzhkov et al. (2005) (Table 2), which were gathered from
multiple studies using disdrometers to derive a relationship
between reflectivity, differential reflectivity, and specific dif-
ferential phase (Bringi and Chandrasekar, 2001; Brandes et
al., 2002; Illingworth and Blackman, 2002; Ryzhkov et al.,
2003). Standard R(Z) algorithms were also included to test
whether the addition of dual-polarized technology improves
QPEs.

With the use of both (i) Z, ZDR, and KDP and (ii) DSMZ,
DZDR, and DKDP fields produced by WDSS-II, the num-
ber of algorithms tested was 55. This includes the three
standard single-polarized algorithms (stratiform, convective,
and tropical) which were calculated using reflectivity R(Z)

and then calculated as R(DSMZ), while algorithms 1–6
(R(KDP)) were also calculated as R(DKDP). Algorithms
7–11 (R(Z, ZDR)) were additionally calculated as R(Z,
DZDR), R(DSMZ, ZDR), and R(DSMZ, DZDR), while the
same four combinations of non- and KDP-smoothed fields
were applied to the R(KDP, ZDR) algorithms (12–15). Qual-
ity controlling methods for the algorithms include mitigation
of clutter, sun spikes, beam blockage, anomalous propaga-
tion, and removal of non-precipitation echoes (including bi-
ological and chaff returns) through w2qcnn the w2qcnndp
algorithms (Lakshmanan et al., 2007b, 2010, 2014).

2.4 Statistical analyses

To test the performance of each algorithm, several statistical
analyses were calculated. The average difference (Bias) was
calculated as

Bias=
∑

(Ri −Gi)

N
, (1)

where Ri is each hourly aggregated radar-estimated rainfall
amount calculated from one of the 55 algorithms, Gi is the
hourly aggregated gauge (observed) measurement, and N is
the total number of observations which, for this study, was
300 h. A second statistical parameter, the normalized mean
bias (NMB), was calculated as

NMB=
1
N

∑
(Ri −Gi)∑

Gi

. (2)

The normalized mean bias is included in the analyses due to
the fact that overestimations (i.e., radar estimates larger than
gauge measurements) and underestimations (i.e., radar esti-
mates smaller than gauge measurements) are treated propor-
tionately. This is directly analogous to choosing the mean ab-
solute error (MAE) opposed to the standard deviation as the
MAE does not penalize smaller or larger errors, obscuring

the overall results (Chai and Draxler, 2014). Bias measure-
ments (Bias and NMB) were calculated to determine whether
radar-derived rain rates were over- or underestimated in com-
parison to the gauges. However, to calculate the overall mag-
nitude of error associated with the performance of the radars,
the absolute values of Eqs. (1) and (2) were performed to
yield the mean absolute error and normalized standard error,
respectively.

Several other meteorological parameters were calculated,
including the probability of detection (PoD), which was cal-
culated as

PoD=
∑
|Ri ·Gi > 0 & Ri > 0|∑

|Gi |
, (3)

where the bullet (·) indicates “if”, to determine how accurate
the radars were at correctly detecting precipitation. The prob-
ability of detection values range between 0.0 (radar did not
detect any precipitation correctly) and 1.0 (radar detected the
occurrence of all precipitation 100 % correctly). The proba-
bility of false detection (PoFD) takes into account the amount
of precipitation the radars incorrectly estimated when the
gauges recorded zero values, and it was calculated as

PoFD=
∑

Ri · (Gi = 0 & Ri > 0)∑
Gi

. (4)

Quantitative measures including the missed precipitation
amount (MPA) and the false precipitation amount (FPA)
were defined such that

MPA=
∑

Ri · (Gi > 0 & Ri = 0), (5)

FPA=
∑

Ri · (Gi = 0 & Ri > 0), (6)

which analyzes the total amount of precipitation due to
misses and false alarms. The total precipitation error was also
recorded to assess the overall error from each radar.

3 Results and discussion

3.1 Overall algorithm performance

To test the overall performance of each radar, it was neces-
sary to determine the overall best algorithm for each statisti-
cal measure. The best algorithm from each grouping of equa-
tions was determined to have the lowest normalized standard
error, indicating the best performance relative to the gauge-
recorded precipitation amount (Ryzhkov et al., 2005). This
reduces the impact of bias inherent within the dataset be-
tween the warm and cool season, as well as between strat-
iform and convective events, and allows for statistical mea-
surements in spite of the (typical) non-Gaussian behavior of
precipitation (Kleiber et al., 2012; Alaya et al., 2017).

From the results obtained, the three R(Z), three
R(DSMZ), and RREC algorithms displayed a particular
bias in favor of the R(Z)-convective algorithm for all three
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Figure 2. Normalized standard error values for the overall performance of the (a) 3 R(Z), 3 R(DSMZ), and RREC algorithms; (b) 6 R(KDP)
and 6 R(DKDP) algorithms (algorithms 1–6 from Table 2); (c) 5 R(Z,ZDR) and 5 R(DSMZ,ZDR) algorithms (Eqs. 7–11 from Table 2); and
(d) 4 R(ZDR,KDP) and 4 R(ZDR,DKDP) algorithms (Eqs. 12–15 from Table 2) for the three radars utilized for the current study.
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radars with R(Z)-stratiform displaying similar performance
(Fig. 2a). This could be due, at least in part, to the near-equal
stratiform and convective precipitation regimes throughout
2014. Although errors generally increased as range increased
for KEAX and KLSX, the results were nebulous for KSGF.
The lowest NSE values were, typically, closest to each of the
radars (between 0.4 and 0.8), with the notable exception of
the closest gauge to KSGF. In general, the RREC performed
worst at the largest of ranges, potentially due to the algo-
rithm’s ability to incorrectly assess the hydrometeors present
(Cifelli et al., 2010; Yang et al., 2016). Additionally, the poor
performance by the R(DSMZ)-tropical equation is due to the
lack of tropical precipitation within central Missouri. Over-
all, the KDP-smoothed reflectivity fields (DSMZ) performed
worse than their counterparts, resulting in over-prediction of
precipitation and, thus, larger errors (Simpson et al., 2016).
Errors did not exceed 2.4 NSE units for any of these algo-
rithms.

However, the performance of the KDP-smoothed KDP
field (DKDP) performed better than the original specific dif-
ferential phase shift field (Fig. 2b). For nearly all gauges for
each of the three radars, R(DKDP)4 performed the best, with
NSE values ranging from 1.4 to 4.1. The range of NSE values
were largest at KEAX, while the spread was relatively small
for KLSX and KSGF. In spite of this, the overall spread of the
performance of the 12 KDP algorithms varied greatly (aver-
age of 2 NSE units), exhibiting the sensitivity of KDP esti-
mates on QPE (Ryzhkov et al., 2005; Cunha et al., 2013). In
general, the NSSL-derived R(KDP) equations (i.e., Eqs. 4–
6) outperformed those from Bringi and Chandrasekar (2001,
Eq. 1), Brandes et al. (2002, Eq. 2), and Illingworth and
Blackman (2002, Eq. 3). Regardless, the magnitudes were
all, approximately, more than 1 NSE unit than the perfor-
mance of the R(Z) algorithms.

The algorithms with the lowest NSE values were Eqs. (7)–
(11). For example, the overall lowest NSE was at a distance
of 130 km from KEAX (0.3), with no locations exceeding
NSE values of 2.0 (Fig. 2c). The large values at the clos-
est location for KSGF (85 km, 1.3–1.9 NSE units) and the
fifth closest gauge to KLSX (135 km, 1.3–1.8 NSE units),
Cook Station, were similar to the R(Z) and R(DSMZ) re-
sults, indicating potential issues with reflectivity measure-
ments. Additionally, these locations were the closest in per-
formance to the R(KDP) and R(DKDP) NSE values. Ob-
servations from this gauge (Cook Station) indicated hail oc-
curred during the evening of 1 August, for which KDP esti-
mates would be more ideal than Z for QPE (Ryzhkov et al.,
2005; Kumjian, 2013a; Cunha et al., 2015). In spite of this,
the overall spread in performance of the R(Z,ZDR) equa-
tions was lower than the R(KDP) equations, demonstrating
the robust performance of R(Z,ZDR) for QPE (Wang and
Chandrasekar, 2010; Seo et al., 2015).

The R(ZDR,KDP) algorithms performed the worst, over-
all (Fig. 2d). In spite of the differential reflectivity being im-
plemented, the overall NSE values increased in magnitude,

exceeding six units for the second gauge analyzed by KEAX.
Algorithms containing DKDP measurements performed bet-
ter than simply KDP, demonstrating that, even with the scal-
ing behavior of ZDR, DKDP is superior to KDP estimates.
This provides a potential solution to the noisiness that tends
to be exhibited in the KDP field (Ruzanski and Chandrasekar,
2012).

Due to the overall NSE values obtained, for the remain-
der of the analyses, Eq. (11) (i.e., R(Z,ZDR)5) and Eq. (13)
(i.e., R(ZDR,KDP)2) will be utilized as the best and worst
algorithms, respectively. Equations containing DZDR were
not included in the following discussion due to the very large
QPE errors for each radar.

3.2 KEAX

The overall bias showed that there was a positive bias, peak-
ing near 5.5 mm h−1 at the second gauge for KEAX, approx-
imately 115 km from the radar for both the best- and worst-
performing algorithms (Fig. 3). This corresponds well with
the spike in the falsely detected precipitation recorded, which
is canceled by the maximum in missed precipitation at the
second distance of, approximately, 150 km. The overall worst
algorithm, Eq. (13), an R(ZDR,KDP) relationship, revealed
a decreasing trend in bias as the distance from the radar in-
creased. For example, a bias of 4 mm h−1 was observed at a
distance of 75 km from the radar, whereas the bias reduced
to 3 mm h−1 at distances near 175 km. This could be due, at
least in part, to the algorithm’s utilization of KDP, which per-
forms poorly in frozen (especially light) precipitation (Zrnic
and Ryzhkov, 1996; Kumjian, 2013a), causing the overesti-
mation. Conversely, the algorithm with the lowest bias was
an R(Z,ZDR) algorithm (Eq. 11). There was a maximum in
the bias calculations while utilizing Eq. (11) near 120 km,
similar to Eq. (13); however, there was a more pronounced
minimum in the data near 150 km. Furthermore, it appears
the data oscillates around a bias value of 0 mm h−1 when us-
ing Eq. (13). This could be due to ZDR’s capability to re-
spond to precipitation shape (Kumjian, 2013a), which helps
to scale the reflectivity portion of the rainfall estimation algo-
rithm to a more accurate value (Seo et al., 2015). In general,
the cool season displayed a larger magnitude of error in terms
of bias for both algorithms.

The normalized mean bias reveals the same trend in val-
ues for bias but with an overall decrease in magnitude. It is
important to note, however, that the algorithms that tend to
perform the worst (e.g., algorithms containing KDP) result
in anomalous range responses which would be due, at least
in part, to a stronger response to precipitation type (Kumjian,
2013c). This indicates that observations above the melting
layer are dominant, for which QPEs tend not to be calculated
(Cifelli et al., 2011; Seo et al., 2015), but are important for
regions devoid of adequate radar coverage (Ryzhkov et al.,
2003; Simpson et al., 2016).
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Figure 3. Values of analyses from the Kansas City radar. Dashed lines and points represent the analyses of the worst-performing algorithm
(R(ZDR,KDP)), while the solid lines and points represent the analyses of the best-performing algorithm (R(Z,ZDR)). Red, blue, and black
colors represent analyses conducted during the warm season, cool season, and overall, respectively.

Figure 4. Correlation coefficient values for the nine locations analyzed by the Kansas City radar with the R(Z,ZDR) NSSL equation. Blue
and red scatter points represent the cool and warm season data, respectively. The top two numbers on each plot indicate the overall R2 value,
whereas the bottom two numbers represent the R2 when false alarms and misses are removed.

The absolute bias and normalized standard error shows the
same maxima in the data at the second gauge (Brunswick)
that was present in the bias data (6.2 mm h−1 and 5.6, re-
spectively). However, a second maxima is located at the fifth

gauge at, approximately, 150 km (Linneus) with values of
5.9 mm h−1 and 4.0, respectively. Bright-band issues are de-
tected due, at least in part, to the increased missed precip-
itation amount (240 mm) at this particular distance for the
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R(ZDR,KDP) equation (i.e., worst-performing algorithm).
There was also a pronounced minimum in the absolute bias
and NSE results at the fourth gauge for equations 11 and 13,
4.0 and 0.8 mm h−1, and 2.8 and 0.8, respectively, potentially
indicating an idealized range of QPE for KEAX. Further-
more, the historical records at this particular gauge showed
less issues (e.g., clogging) than any of the others analyzed by
the KEAX radar. This highlights the importance of choos-
ing ground-truth data, in particular tipping buckets which are
prone to numerous errors (Ciach and Krajewski, 1999b).The
largest contributions to the NSE and NMB were due to the
warm season.

The probability of detection results indicate a large dif-
ference in algorithm choice for correctly detecting precip-
itation. The low PoD at, approximately 150 km, indicates
overshooting of the beam. This is further evidenced by the
MPA results, as about 225 mm of precipitation was missed
by the radar at 150 km, whereas only 100 mm of precipita-
tion was missed by the radar at the second gauge at 120 km.
Although Eq. (11), an R(Z,ZDR) algorithm, was superior in
terms of the bias, the same algorithm with a KDP-smoothed
reflectivity value, R(DSMZ,ZDR), revealed the overall least
amount of the falsely missed precipitation (by 10 mm). How-
ever, the summation of the amount of precipitation falsely
detected (PoFD) by KEAX showed a larger source of error
than the MPA in terms of magnitude. For example, at the
second (fifth) gauge, only 100 (225) mm of precipitation was
missed by the radar, but over 700 (725) mm of precipitation
was incorrectly estimated by the radar.

Correlation coefficient (CC) values for any of the nine sta-
tions analyzed by KEAX range from 0.02 (Linneus, 151 km)
to 0.93 for the cool season (St. Joseph, 115 km). The low-
est R2 values were due to a combination of false alarms and
misses. For example, the CC values for the warm seasons
at Sanborn (170 km) and Jefferson Farm (173 km) were 0.22
and 0.24, respectively, whereas when the instances of false
alarms and misses were removed the CC values increased
to 0.48 and 0.52. Few locations (Brunswick, 114 km; and
Versailles, 129 km) saw little improvement in the CC values
when only hits were analyzed (less than 0.1 increase), indi-
cating the mean absolute error (in terms of hits) contributed
the largest portion of error.

3.3 KLSX

Unlike the KEAX data, the gauges used for analyses for the
KLSX radar span between 90 and 150 km. Furthermore, five
out of the eight gauges were located within a 10 km of range
from one another, near 140 km from the radar, limiting the
data available for analyses between 100 and 140 km (Fig. 5).

The bias and NMB both show a relatively modest peak
in values near the second gauge of 5 mm, which decreases
to approximately 3.6 mm at the third gauge, 120 km from
the radar. The worst-performing algorithm, Eq. (13), had the
same R(ZDR,KDP) relation as the worst KEAX bias and

NMB data. Additionally, the overall trend of decreasing bias
and NMB as distance from the radar increases was noted,
presumably due to overshooting effects similar to the KEAX
data. Furthermore, the overall non-biased results from the
R(Z,ZDR) equation demonstrates its robust capabilities in
QPE, in spite of its sensitivity to calibration (Zrnic et al.,
2005; Bechini et al., 2009; Gorgucci et al., 1992).

The double maxima in the absolute bias graph are present
as with the KEAX data, but are not as pronounced. For ex-
ample, the absolute biases at 95 and 140 km from KLSX
were 5.9 and 4.9 mm for Eq. 13, while the values were 1.1
and 1.4 mm for Eq. 11, accordingly. Additionally, the overall
minima in the absolute bias for both KEAX and KLSX are at,
approximately, 125 km from the radar (3.9 and 1.0 mm h−1,
respectively, for Eqs. 13 and 11). The relative distance from
the radars are the same, where the two maxima for KEAX
were at 115 and 150 km, while the maxima were at, ap-
proximately, 100 and 140 km for KLSX. The overall best-
and worst-performing algorithms at KLSX for the absolute
bias and NSE were Eqs. (11) and (13), the R(Z,ZDR) and
R(ZDR,KDP) algorithms, respectively.

The magnitude of error in terms of absolute bias, normal-
ized mean bias, and normalized standard error all showed a
decreasing pattern as distance from KLSX increased. This
was due, primarily, from a maximum in the false precipita-
tion amount at 95 km from the radar. Historical notes at this
location indicate frequent clogging of the rain gauge, either
due to bugs or leaves. From a particular series of events span-
ning from 1 to 4 April and 1 to 3 August 2014, over 130 mm
of precipitation occurred during each period which was not
captured by the gauge, resulting in a large amount of overall
error. These results indicate the importance of dual gauges in
the same vicinity (Krajewski et al., 1998; Ciach and Krajew-
ski, 1999a). Interestingly, the cool season displayed a larger
NSE (5 % for R(ZDR,KDP)) potentially due to the very low
probability of detection (0.2) at this range of 118 km.

One of the main differences between the KLSX and
KEAX data was the decreased probability of detection at
120 km for KLSX, while there was an increased probabil-
ity of detection for KEAX. In general, the PoD values were
worse for KLSX when compared to KEAX. For example,
Eq. (11) had no PoD values below 0.90, whereas no PoD val-
ues exceeded 0.84 for KLSX. There was also a slight trend
of increasing PoD values as distance from the St. Louis radar
increased and, at one point near 140 km, the best algorithm,
R(DSMZ)-convective, and the worst algorithm, KDP1, were
not significantly different (p < 0.10). Additionally, the max-
ima in the PoD while utilizing KDP1 correspond to a minima
in the R(DSMZ) detection percentage, which is well corre-
lated by the similarly valued MPA results.

The missed precipitation amount (MPA) showed that the
cool season contributed the most, whereas the warm sea-
son contributed the most amount of the false precipitation
amount. The R(Z,ZDR) equation only registered, on av-
erage, 25 mm of MPA and 160 mm of FPA, whereas the
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Figure 5. Values of analyses from the St. Louis radar. Dashed lines and points represent the analyses of the worst-performing algorithm
(R(ZDR,KDP)), while the solid lines and points represent the analyses of the best-performing algorithm (R(Z,ZDR)). Red, blue, and black
colors represent analyses conducted during the warm season, cool season, and overall, respectively.

Figure 6. Correlation coefficient values for the eight locations analyzed by the St. Louis radar with the R(Z,ZDR) NSSL equation. Blue and
red scatter points represent the cool and warm season data, respectively. The top two numbers on each plot indicate the overall R2 value,
whereas the bottom two numbers represent the R2 when false alarms and misses are removed.

R(ZDR,KDP) equation was very dependent upon range. For
example, the FPA from R(ZDR,KDP) decreased as range in-
creased from the radar from a maximum of, approximately,
850 to 620 mm. However, the fifth-furthest gauge (137 km

from KLSX) displayed a sharp increase in the MPA for both
cool seasons (above 100 mm).
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Figure 7. Values of analyses from the Springfield radar. Dashed lines and points represent the analyses of the worst-performing algorithm
(R(ZDR,KDP)), while the solid lines and points represent the analyses of the best-performing algorithm (R(Z,ZDR)). Red, blue, and black
colors represent analyses conducted during the warm season, cool season, and overall, respectively.

3.4 KSGF

In spite of the fact that the KLSX and KEAX data strongly
suggest false precipitation errors near 100 km in addition to
bright-banding near 150 km from the radars, the KSGF re-
sults reveal an overall smooth decrease (increase) of error
with range (Fig. 7) for R(ZDR,KDP) and R(Z,ZDR), ac-
cordingly. One of the main reasons for this could be due to
the fact that only five gauges were analyzed from KSGF (the
fewest of the three radars analyzed), smoothing the overall
trend lines.

The bias remained relatively constant near −0.3 mm for
R(Z,ZDR), whereas the bias exhibited a sharp decrease from
4 to 2.7 mm over a distance of, approximately, 100 km. In
general, the cool season displayed lower bias magnitudes
when compared to the warm season, similar to the KEAX
results. This may be due, at least in part, to the low PoFD
values for the warm season close to the KSGF radar.

Similar to the bias, the absolute bias for R(Z,ZDR)
was constant at all ranges (near 1 mm), whereas the
R(ZDR,KDP) equation decreased from 5.2 to 3.8 mm. This
is potentially due to the low cool season PoD values (below
0.6), while the warm season R(ZDR,KDP) values (near 0.8)
remained constant. A larger contribution from more correctly
detected precipitation in addition to the decreasing trends in
the NMB and NSE would result in a lower absolute bias.

The closest location (90 km) typically displayed the largest
errors for the R(ZDR,KDP) equation and then decreased in

error magnitude as range increased. In spite of this, the PoFD
results indicate both algorithms increased in PoFD values as
range increased, with the warm season typically dominating,
particularly due to the large convective clouds dominating in
the warm season. False detection values as low as 0.01 for
the cool season while utilizing R(Z,ZDR) were observed at
distances near 100 and 140 km from the radar.

Normalized standard error values increased from 0.7 % at
a distance of 105 km to 1.8 % at a distance of 185 km for
R(Z,ZDR). Large NSE values for the warm season (7.5 %)
were calculated for R(ZDR,KDP), which decreased to 3.8 %
at 185 km from the radar. Furthermore, this was the only in-
stance when the warm season was less than the cool season
in terms of NSE. Otherwise, the overall NSE decreased from
5 to 3.9 % for R(ZDR,KDP). The NMB followed a similar
trend for the KDP-containing algorithm, with a noticeable
exception at the second gauge (105 km from KSGF), where
the overall NSE was closer to the warm season than the cool
season. This is due to the low PoFD values at this location, in
addition to a smaller difference between the two algorithm’s
FPA measurements.

The MPA results, unlike for KEAX and KLSX, displayed
a larger range of performance between seasons. However,
the warm season still exhibited the overall best performance
in terms of MPA, yet contributed the most to the FPA for
both R(Z,ZDR) and R(ZDR,KDP). In spite of the MPA
typically increasing as range increased, the FPA was more
nebulous. For example, the second gauge (105 km from
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Figure 8. Correlation coefficient values for the five locations analyzed by the Springfield radar with the R(Z,ZDR) NSSL equation. Blue
and red scatter points represent the cool and warm season data, respectively. The top two numbers on each plot indicate the overall R2 value,
whereas the bottom two numbers represent the R2 when false alarms and misses are removed.

KSGF) had the overall lowest NSE (0.8 %), MPA (15 mm),
and FPA (95 mm) for R(Z,ZDR). The third-furthest loca-
tion (142 km) resulted in slightly larger errors, overall, while
the fourth-furthest location had errors similar to the second
gauge (105 km). Then, at the furthest tipping bucket location
(185 km), NSE values increased, whereas FPA and MPA de-
creased. Therefore, the furthest location’s errors are due, pri-
marily, from discrepancies between precipitation magnitude
between the gauge and radar.

Excluding Versailles (142 km from KSGF), the cool sea-
son exhibited larger R2 values in comparison to the cool
season (Fig. 8). Furthermore, CC values exceeded 0.9 when
false alarms and misses were excluded from Mountain Grove
(101 km) and were 0.84 when included. Otherwise, the other
four stations analyzed by the Springfield radar displayed
many counts of false alarms and misses, leading to low R2

values.
Due to the relatively large ranges from the Springfield

radar, most of the correlation coefficient values were low in
comparison to either KLSX or KEAX. For the warm (cool)
season without false alarms and misses, R2 values ranged
from 0.44 (0.38) to 0.34 (0.36) for KLSX and KSGF, respec-
tively, at Cook Station (119 and 185 km). Similarly, the CC
values ranged from 0.61 (0.71) to 0.42 (0.56) at Green Ridge
(76 and 154 km) for KEAX and KSGF, accordingly.

4 Conclusions

Dual-polarization technology was implemented in the Na-
tional Weather Service Next Generation Radar network in
the spring of 2012 to, primarily, improve quantitative precip-
itation estimation and hydrometeor classification. The cur-
rent study observed over 300 h of precipitation data with
three separate radars in Missouri using 55 algorithms includ-
ing the three conventional R(Z) radar rain-rate estimation
algorithms (stratiform, convective, and tropical) along with
a myriad of R(KDP), R(Z,ZDR), and R(ZDR,KDP) algo-
rithms, which can be found in Ryzhkov et al. (2005). Ad-
ditionally, a KDP-smoothing field of reflectivity, differential
reflectivity, and the specific differential phase shift (DSMZ,
DZDR, and DKDP, respectively) were measured and used
for analyses. Unlike previous studies, the current work em-
phasizes the amount of precipitation correctly and incorrectly
estimated by the radar in comparison to the terrestrial-based
precipitation gauges through measurements of the missed
and false precipitation amount.

For all three radars – Kansas City, St. Louis, and Spring-
field, MO – the majority of precipitation error (over 60 %)
was contributed by the amount of precipitation falsely de-
tected by the radar (up to 725 mm), while 20 % was due
to the radar missing the precipitation (up to 225 mm) for
KEAX. Similar magnitudes of error were reported for KLSX
and KSGF, with an overall error in precipitation for each
radar ranging between 250 mm for the best performing
of the 55 algorithms, Eq. (11) (an R(Z,ZDR) algorithm),
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and up to 2000 mm for the worst-performing algorithms,
R(ZDR,KDP) Eq. (13). The R(Z,ZDR) equation (an NSSL
algorithm) was determined to be the most robust due to it reg-
istering the lowest NSE. These values of false precipitation
amount and missed precipitation amount generally increased
as range from the radar increased.

Most algorithms showed a degradation in the normalized
standard error with range. In particular, the KDP-smoothed
equations displayed larger biases and NSE values than their
non-KDP counterparts, with the exception of R(KDP) al-
gorithms themselves. Some larger errors were recorded at
gauge locations close to the radar, potentially due to bright-
banding effects which were determined to be due to the large
false precipitation amount analyzed at these locations.

The data were divided into summer (May–October) and
winter (November–April; 59 and 41 % of the entire data, re-
spectively). Despite the winter data contributing less than
the summertime data, they accounted for 20 % of the over-
all MPA and 40 % to the overall PoFD. The R2 values were
lower during the winter in comparison to the warm season,
primarily due to the smaller magnitude of precipitation that
occurred. Furthermore, CC values increased by as much as
0.4 when instances of hits and misses were removed from
the analyses, resulting in the warm season outperforming the
cool season CC values at particularly short ranges from the
radar.

These results aid in our understanding of the possibilities
for hydrometeorological studies. Nearly 50 % of the 300 h
where precipitation occurred analyzed for the study con-
sisted of either falsely estimated precipitation by the radar,
or missed by the radar. Furthermore, these errors accumu-
late between 500 and 2000 mm of precipitation depending
on the algorithms chosen. Although the overall performance
increased when false alarms and misses were removed, corre-
lation coefficient values still, typically, remained below 0.50
at ranges beyond 130 km.

Furthermore, results demonstrate the issues with analyz-
ing QPE from a single gauge, explaining why the Commu-
nity Collaborative Rain, Hail, and Snow Network (Kelsch,
1998; Cifelli et al., 2005; Reges et al., 2016) or other
densely gauged networks (e.g., the Hydrometeorological Au-
tomated Data System, HADS; and the Meteorological As-
similation Data Ingest System, MADIS) tend to be more uti-
lized since results have shown that measurements or quality-
controlled techniques made by these organizations, espe-
cially CoCoRaHS (Community Collaborative Rain, Hail and
Snow Network), are significantly more accurate than rain
gauges (Simpson et al., 2017), especially for convective
events (Moon et al., 2009).
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