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Abstract. Vegetation controls on soil moisture dynamics are
challenging to measure and translate into scale- and site-
specific ecohydrological parameters for simple soil water
balance models. We hypothesize that empirical probability
density functions (pdfs) of relative soil moisture or soil satu-
ration encode sufficient information to determine these eco-
hydrological parameters. Further, these parameters can be es-
timated through inverse modeling of the analytical equation
for soil saturation pdfs, derived from the commonly used
stochastic soil water balance framework. We developed a
generalizable Bayesian inference framework to estimate eco-
hydrological parameters consistent with empirical soil satu-
ration pdfs derived from observations at point, footprint, and
satellite scales. We applied the inference method to four sites
with different land cover and climate assuming (i) an annual
rainfall pattern and (ii) a wet season rainfall pattern with a
dry season of negligible rainfall. The Nash–Sutcliffe efficien-
cies of the analytical model’s fit to soil observations ranged
from 0.89 to 0.99. The coefficient of variation of posterior
parameter distributions ranged from < 1 to 15 %. The pa-
rameter identifiability was not significantly improved in the
more complex seasonal model; however, small differences in
parameter values indicate that the annual model may have ab-
sorbed dry season dynamics. Parameter estimates were most
constrained for scales and locations at which soil water dy-
namics are more sensitive to the fitted ecohydrological pa-
rameters of interest. In these cases, model inversion con-
verged more slowly but ultimately provided better goodness
of fit and lower uncertainty. Results were robust using as few
as 100 daily observations randomly sampled from the full
records, demonstrating the advantage of analyzing soil satu-
ration pdfs instead of time series to estimate ecohydrological

parameters from sparse records. Our work combines model-
ing and empirical approaches in ecohydrology and provides
a simple framework to obtain scale- and site-specific analyt-
ical descriptions of soil moisture dynamics consistent with
soil moisture observations.

1 Introduction

The movement of water from soils, through plants, and back
to the atmosphere via transpiration is a critical component of
local and global hydrologic cycles and is the largest surface-
to-atmosphere water pathway (Good et al., 2015). A realis-
tic analytical description of soil moisture dynamics is key
to understanding ecohydrological processes that regulate the
productivity of natural and managed ecosystems. Rodriguez-
Iturbe et al. (1999) introduced a simple framework using a
bucket model of soil-column hydrology forced with stochas-
tic precipitation inputs where soil water losses are only a
function of relative soil moisture or soil saturation. Given this
ecohydrological framework, the analytical equation for the
probability density function (pdf) of soil saturation depends
on simple abiotic characteristics such as average climate and
soil texture, and biotic characteristics including soil satura-
tion thresholds at which vegetation can influence soil water
losses. However, the shapes of analytical soil saturation pdfs
are generally not consistent with observations when literature
values for model parameters are used (Miller et al., 2007).
Some parameters such as field capacity and wilting point do
not correspond to conventional definitions, because of sim-
plifications made to describe soil water loss processes in the
model, and need to be calibrated (Dralle and Thomspon,
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2016). To our knowledge, parameters of the analytical soil
saturation pdfs have not been directly calibrated to empirical
pdfs derived from measurements beyond the point scale. Ob-
servation networks provide freely available point-scale, spa-
tially integrated soil moisture observations, while remotely
sensed soil moisture observations are available through satel-
lite products. These data sources create an opportunity to
(i) evaluate whether analytical soil saturation pdfs are con-
sistent with observations across a range of scales, and (ii) de-
termine average ecohydrological parameters relevant to each
scale.

Estimates of ecohydrological parameters are used in a
large range of applications for which the stochastic soil wa-
ter balance framework has been used and adapted, includ-
ing the effects of climate, soil, and vegetation on soil mois-
ture dynamics (Laio et al., 2001a; Rodriguez-Iturbe et al.,
2001; Porporato et al., 2004); ecohydrological factors driving
spatial and structural characteristics of vegetation (Caylor et
al., 2006; Manfreda et al., 2017); soil salinization dynamics
(Suweis et al., 2010); biological soil crusts (Whitney et al.,
2017); vegetation stress; optimum plant water use strategies
and plant hydraulic failure (Laio et al., 2001b; Manzoni et
al., 2014; Feng et al., 2017); vertical root distributions (Laio
et al., 2006); plant pathogen risk (Thomspon et al., 2013);
streamflow persistence in seasonally dry landscapes (Dralle
et al., 2016); and soil water balance partitioning (Good et al.,
2014, 2017). A survey of nearly 400 ecohydrology publica-
tions revealed that 40 % of studies relied heavily on simu-
lation, rarely integrated empirical measurements, and were
almost never coupled with experimental studies, suggest-
ing a critical need to combine modeling and empirical ap-
proaches in ecohydrology (King and Caylor, 2011). Only
a few studies have directly confronted the governing equa-
tions of the stochastic soil water balance model with ob-
served soil moisture data, and even fewer studies have at-
tempted to optimize model parameters to best fit soil mois-
ture observations. Miller et al. (2007) calibrated soil satura-
tion pdfs to project vegetation stress in a changing climate.
Dralle and Thompson (2016) developed an analytical expres-
sion for annually integrated soil saturation pdfs under sea-
sonal climates and then calibrated soil saturation thresholds
between which evapotranspiration is maximum and zero to
compare the model to soil moisture observations at a sa-
vanna site. Chen et al. (2008) related evapotranspiration ob-
servations at the stand scale to soil moisture values using
a Bayesian inversion approach, and Volo et al. (2014) cali-
brated the soil moisture loss curve to investigate effects of
irrigation scheduling and precipitation on soil moisture dy-
namics and plant stress. The functional form of the soil mois-
ture losses was approximated using conditionally averaged
precipitation (Salvucci, 2001; Saleem and Salvucci, 2002)
and remotely sensed data (Tuttle and Salvucci, 2014). The
timescale of soil moisture dry-downs, derived from the soil
moisture loss equations, was parameterized using evapotran-
spiration measured at micro-meteorological stations (Teuling

et al., 2006) and space-borne near-surface soil moisture ob-
servations (McColl et al., 2017). These studies indicate that
the ecohydrological soil water balance framework is consis-
tent with ground and larger-scale remotely sensed measure-
ments.

Parameters representative of larger-scale observations
are necessary to characterize ecohydrological processes at
ecosystem scales and are more relevant to ecohydrological
modeling. These larger-scale parameters integrate a range of
ecohydrological interactions that are poorly understood and
difficult to measure. Abiotic controlling factors of soil wa-
ter balance including rainfall and soil texture can generally
be assessed from readily available data, including site mea-
surements, regionalized maps, and satellite observations, but
vegetation controls on soil water dynamics are largely un-
known and difficult to measure at hydrologically meaningful
scales (Li et al., 2017). Vegetation water-use traits are gen-
erally observed at the species level and are not easily trans-
lated to the simple parameters necessary in soil water balance
models. The rate of soil water losses from the near-surface
soil layer, where soil moisture measurements are generally
made, do not precisely correspond to evapotranspiration ob-
served or calculated from meteorological stations. We thus
focused on estimating parameters that are not directly ob-
servable, particularly the soil saturation thresholds at which
vegetation controls soil water losses and the maximum rate of
evapotranspiration from a near-surface soil layer. We use an
inverse modeling approach and data that are commonly col-
lected at environmental monitoring sites or measured from
satellites. We present an inference framework that provides a
means to quantify and compare the sensitivity of soil mois-
ture dynamics at varying scales through estimates of simple
ecohydrological parameters.

A number of studies have combined inverse modeling
approaches with ground and remotely sensed soil moisture
data to extract meaningful hydrologic information (Xu et al.,
2006; Miller et al., 2007; Chen et al., 2008; Volo et al., 2014;
Wang et al., 2016; Baldwin et al., 2017). Bayesian infer-
ence methods are effective in relating prior pdfs of obser-
vations to posterior estimates of model parameters (Xu et al.,
2006; Chen et al., 2008; Baldwin et al., 2017). The soil water
balance model provides a direct analytical equation for soil
saturation pdfs that is convenient to use with the Bayesian
paradigm because it is a low parameter model with few data
inputs. We selected a Bayesian inversion approach instead of
a least-squares or maximum likelihood approach because it
quantifies the inference uncertainty and improves upon the
work of Miller et al. (2007), which used a least-squares ap-
proach to calibrate soil saturation pdfs. Measures of infer-
ence uncertainty and parameter convergence diagnostics pro-
vided by the Bayesian approach can be used to evaluate the
validity of model inversion and develop criteria to generalize
the presented framework.

We assume that if a sufficient range of soil moisture values
are observed at a site, the shape of the empirical soil satura-

Hydrol. Earth Syst. Sci., 22, 3229–3243, 2018 www.hydrol-earth-syst-sci.net/22/3229/2018/



M. Bassiouni et al.: Probabilistic inference of ecohydrological parameters 3231

tion pdf is constrained by the ecohydrological factors driv-
ing soil moisture dynamics. We hypothesize that key infor-
mation required to determine these ecohydrological factors
is encoded in empirical soil saturation pdfs and that this in-
formation can be extracted by calculating the inverse of the
commonly used stochastic soil water balance. The analysis of
soil saturation pdfs is a more robust and integrated approach
to investigate ecohydrological factors of soil water dynam-
ics than is time series analysis. Soil saturation pdfs are less
sensitive to the many sources of uncertainty, sensor noise,
and common gaps in soil moisture observations and do not
require high-quality, co-located, and concurrent hydrologic
measurements that are often lacking. We tested three key as-
sumptions embedded in the proposed method. (i) The ana-
lytical soil saturation pdfs properly describe empirical soil
saturation pdfs observed in annual data. Annual soil moisture
records can be affected by transitional dynamics between wet
and dry seasons, and the appropriate level of model complex-
ity must be used. We compare parameter identifiability using
an annual and a seasonal formulation of the analytical soil
saturation pdfs. (ii) Parameter estimates and their uncertainty
at point, footprint, and satellite scales are different and reflect
variability in soil water dynamics. We determine whether the
inference approach can be applied at point, footprint, and
satellite scales to provide appropriate scale-specific param-
eters for ecohydrological modeling. (iii) The range of real-
izable soil moisture values is captured by the selected time
series and the soil saturation pdf determined from these ob-
servations is not truncated. We determine whether the infer-
ence method based on soil saturation pdfs is robust against
reduced data availability by repeating the model inversions
on subsets of the soil moisture time series and show that the
method can be applied to sparse datasets.

Our goal was to match empirical soil saturation pdfs de-
rived from point-, footprint-, and satellite-scale observations
to a commonly used analytical model. We demonstrate the
use of a Bayesian inversion framework to calibrate the eco-
hydrological parameters of a simple stochastic soil water bal-
ance model that best fit empirical soil saturation pdfs. We
first present data sources, define the analytical model for
soil saturation pdfs including parameter assumptions, and de-
tail the algorithm used in the Bayesian inversion. Then, we
present a summary of the goodness of fit of optimal analytical
soil saturation pdfs and estimated parameter uncertainty. We
evaluated results to test key method assumptions including
model complexity and data availability. Finally, we discuss
the potential of the approach to provide a simple means to in-
vestigate variability in ecohydrological controlling factors at
varying spatial scales. Our work combines modeling and em-
pirical approaches in ecohydrology to provide more realistic
analytical descriptions of soil moisture dynamics. Estimates
of ecohydrological parameters consistent with observed soil
saturation pdfs, from point to ecosystem scales, are needed to
better characterize site-specific ecohydrological processes.

2 Data and methods

2.1 Data

We used daily soil moisture observations from three
data products at three spatial scales. We used point-
scale soil moisture data at a depth of 10 cm from the
FLUXNET2015 data product (http://fluxnet.fluxdata.org/
data/fluxnet2015-dataset/, last access: 22 October 2016). We
used footprint-scale soil moisture data from the Cosmic-
ray Soil Moisture Observing System (COSMOS) (http:
//cosmos.hwr.arizona.edu/Probes/probelist.html, last access:
4 August 2017). The COSMOS soil moisture footprint mea-
sures soil moisture at an average depth of 20 cm with a ra-
dius ranging from 130 to 240 m, depending on site charac-
teristics (Köhli et al., 2015). Near-surface soil moisture ob-
servations at a spatial resolution of 0.25◦ were taken from
the European Space Agency’s (ESA) Climate change Ini-
tiative (CCI) project. We used the combined soil moisture
product (ECV-SM, version 0.2.2) that merges soil mois-
ture retrievals from four passive (SMMR, SMM/I, TMI,
and ASMR-E) and two active (AMI and ASCAT) coarse-
resolution microwave sensors (Liu et al., 2011, 2012; Wagner
et al., 2012). Although the ECV-SM sensing depth is< 5 cm,
it has been shown to have a close relation to ground-based
observations of soil moisture in the upper 10 cm (Dorigo
et al., 2015). We compiled daily rainfall time series from
the FLUXNET2015 dataset for the point- and footprint-
scale analysis, and the National Aeronautics and Space Ad-
ministration’s (NASA) Tropical Rainfall Measuring Mis-
sion (TRMM) dataset (Huffman et al., 2007) for the satellite-
scale analysis.

We selected four sites with soil moisture and rainfall
data available for the 2012 calendar year (Fig. 1, Table 1).
Selected sites spanned a range of land cover types, in-
cluding crop and grasslands, oak savanna, deciduous for-
est and pine forest. We determined the dominant soil tex-
ture of the upper soil layer from the Harmonized World Soil
Database (HWSD) (version 1.2) (FAO/IIASA/ISRIC/ISS-
CAS/JRC, 2012) for each site. We used soil porosity values,
derived from the HWSD available as ancillary data through
the ESA-CCI data product, for the satellite-scale analysis.
We used the maximum soil moisture observation during the
year 2012 as a site-specific soil porosity estimate for point-
and footprint-scale data products. We used soil porosity for
each site to calculate soil saturation s (0≤ s ≤ 1) from each
observed soil moisture value. We do not expect the differ-
ences in data quality between data sources and sites to sig-
nificantly affect empirical soil saturation pdfs and resulting
parameter estimates. All sites had full records of daily point-
and footprint-scale observations except for US-Me2, which
had 55 missing footprint-scale observations during winter
when the ground was saturated and frozen. The number of
daily satellite-scale observations in the 2012 records ranged
from 202 to 283.
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Figure 1. Soil saturation and rainfall time series from (a) US-ARM, (b) US-MMS, (c) US-Ton, and (d) US-Me2.

2.2 Analytical model for soil saturation probability
density functions (pdfs)

2.2.1 Model definition

Our framework is based on a standard bucket model of soil
column hydrology at a point forced with stochastic precip-
itation inputs and in which soil water losses are a function
of soil saturation. We followed the simple formulation of
soil water losses in Laio et al. (2001a). We applied two as-

sociated analytical formulations for the soil saturation pdf
detailed below and derived under the assumption of steady
state, wherein parameters are constant for a given period of
time. The annual model assumed an annual rainfall pattern
and the seasonal model accounted for a wet season rainfall
pattern and a dry season of negligible rainfall.

The soil water balance model is defined at a point and a
daily time step, for a soil with porosity n, and assuming that
soil saturation is uniform in the considered soil column of
depth Z. Rainfall, the only input to the soil water balance, is
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Table 1. Selected study sites.

Site name ARM Southern Morgan Monroe Tonzi Ranch Metolius Mature
Great Plains State Forest Ponderosa Pine

FLUXNET2015 ID US-ARM US-MMS US-Ton US-ME2
COSMOS ID 15 27 32 38
Latitude 36.6058 (36.625) 39.3232 (39.375) 38.4316 (38.375) 44.4523 (44.375)
Longitude −97.4888 (−97.375) −86.4131 (−86.375) −120.966 (−120.87) −97.4888 (−97.375)
Elevation (m) 314 275 177 1253
Vegetation Crops and grassland Deciduous forest Oak savanna Ponderosa pine forest
Soil texture Loam Loam Loam Sandy loam
MAT (◦C) 14.8 10.9 15.8 6.3
MAP (mm) 843 1032 559 523
α (mm day−1) 21.0(p,f), 24.4(s) 9.04(p,f), 11.8(s) 9.3(p,f), 16.9(s) 8.1(p,f), 11.6(s)

αw (mm day−1) 21.4(p,f), 26.8(s) 9.1(p,f), 11.9(s) 8.7(p,f), 16.7(s) 7.9(p,f), 11.6(s)

λ (day−1) 0.05(p,f), 0.08(s) 0.24(p,f), 0.20(s) 0.22(p,f), 0.10(s) 0.24(p,f), 0.21(s)

λw (day1) 0.07(p,f), 0.08(s) 0.27(p,f), 0.23(s) 0.39(p,f), 0.17(s) 0.31(p,f), 0.27(s)

td (days) 92 61 153 92
n (–) 0.35(p), 0.34(f), 0.46(s) 0.46(p), 0.66(f), 0.43(s) 0.53(p), 0.39(f), 0.43(s) 0.36(p), 0.59(f), 0.41(s)

Ks (mm day−1) 317 317 317 622
b (–) 4.55 4.55 4.55 3.11
sh (–) 0.06 0.06 0.06 0.09
sfc (–) 0.81(p), 0.75(f), 0.44(s) 0.93(p), 0.86(f), 0.69(s) 0.75(p), 0.83(f), 0.69(s) 0.94(p), 0.60(f), 0.72(s)

smin (–) 0.15(p), 0.19(f), 0.19(s) 0.28(p), 0.44(f), 0.30(s) 0.11(p), 0.22(f), 0.17(s) 0.27(p), 0.14(f), 0.23(s)

smax (–) 1.0(p), 1.0(f), 0.67(s) 1.0(p), 1.0(f), 1.0(s) 1.0(p), 1.0(f), 0.80(s) 1.0(p), 1.0(f), 1.0(s)

Mean s (–) 0.44(p), 0.42(f), 0.33(s) 0.71(p), 0.68(f), 0.59(s) 0.38(p), 0.49(f), 0.38(s) 0.64(p), 0.35(f), 0.50(s)

Standard deviation s (–) 0.21(p), 0.19(f), 0.11(s) 0.21(p), 0.11(f), 0.12(s) 0.25(p), 0.23(f), 0.17(s) 0.25(p), 0.16(f), 0.18(s)

Latitude and longitude in parentheses correspond the centroid of the satellite area associated with the site location; MAT, mean annual temperature from long-term
FLUXNET2015 data; MAP, mean annual precipitation from long-term FLUXNET2015 data; soil texture taken from the HWSD; n, porosity; Ks, saturated soil hydraulic
conductivity; b, pore size distribution index; sh, hydroscopic point; sfc, field capacity; α, observed average daily rainfall depth in 2012; the subscript “w” indicates that α was
computed for only the wet season months; λ, observed average daily rainfall frequency in 2012; the subscript “w” indicates that λ was computed for only the wet season
months; td, number of days in the dry season; superscripts (p), (f), and (s) correspond to values used for the point-, footprint-, and satellite-scale analysis. Citations for each
FLUXNET2015 site: Biraud (2002), Novick and Phillips (1999), Law (2002), and Baldocchi (2001).

treated as a Poisson distribution characterized by an average
event frequency λ and average event intensity α. For sim-
plicity, we assumed that the rainfall applied was equal to the
amount that reached the ground surface and that interception
by vegetation was negligible. Interception may be a signif-
icant component of the soil water balance at forested sites
and may need to be considered in future extensions of this
work. The daily soil water balance is the difference between
the rate of rainfall infiltration ϕ and the rate of soil moisture
losses χ :

nZ
ds(t)

dt
= ϕ[s(t); t] −χ [s(t)]. (1)

ϕ[s(t); t] is both a stochastic process controlled by rain-
fall and also a state-dependent process because excess rain-
fall relative to available soil storage is converted to surface
runoff. the soil moisture loss curve, χ [s(t)], includes leak-
age losses due to gravity and evapotranspiration and is de-
scribed in stages determined by five soil saturation thresholds
(Laio et al., 2001a). These stages are: (i) the saturation point
(s= 1), at which all pores are filled with water; (ii) the field
capacity (sfc), at which soil-gravity drainage becomes neg-

ligible compared to evaporation; (iii) the point of incipient
stomata closure (s∗), at which plants begin to reduce transpi-
ration from water stress; (iv) the wilting point (sw), at which
plants cease to transpire; and (v) the hydroscopic point (sh),
at which water is bound to the soil matrix. Soil water losses
are controlled by physical soil properties for saturation states
above sfc. The rate of leakage due to gravity is assumed max-
imum when soil is saturated (Ks) and decays exponentially
to zero at sfc (Brooks and Corey, 1964). Soil water losses are
controlled by micro-meteorological conditions for saturation
states between sfc and s∗. The rate of evapotranspiration is
assumed to occur at a maximum rate (Emax), independent of
the saturation state. Soil water losses are controlled primarily
by vegetation for saturation states between s∗ and sw. Plants
close their stomata in response to soil water deficits that drive
leaf water potential gradients, as well as to atmospheric va-
por pressure deficits, and evapotranspiration decreases lin-
early from Emax to Ew at sw. Soil water losses are controlled
by soil diffusivity for soil saturation states below sw, and soil
evaporation decreases linearly from Ew to zero at sh. Soil
water losses are negligible for soil saturation states below sh.
For this simplified theoretical description of the soil water
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loss curve and stochastic rainfall forcing, the analytical solu-
tion of the steady state probability distributions of soil satu-
ration, p(s) , was given by Laio et al. (2001a):

p(s)=



0, 0< s ≤ sh,

C

ηw

(
s− sh

sw− sh

) λ(sw−sh)
ηw −1

e−γ s , sh < s ≤ sw,

C

ηw

[
1+

(
η

ηw
− 1

)(
s− sw

s∗− sw

)] λ(s∗−sw)
η−ηw −1

e−γ s , sw < s ≤ s
∗,

C

η
e
−γ s+ λ

η (s−s
∗) η

ηw

λ(s∗−sw)
η−ηw

, s∗ < s ≤ sfc,

C

η
e−(β+γ )s+βsfc

(
ηeβs

(η−m)eβsfc +meβs

) λ
β(η−m)

+1

×
η

ηw

λ(s∗−sw)
η−ηw e

λ
η (sfc−s

∗)

, sfc < s ≤ 1,

(2)

where
1
γ
=

α

nZ
,

ηw =
Ew

nZ
,

η =
Emax

nZ
,

m=
Ks

nZ
(
eβ(1−sfc)− 1

) ,
β = 2b+ 4,

where b is an experimentally determined parameter used
in the Clapp and Hornberger (1978) soil water retention
curve, and the constant C can be obtained numerically to en-
sure the integral of p(s)= 1. We used a simplifying relation
Ew= 0.05Emax to reduce the number of parameters.

We adopted Dralle and Thompson’s (2016) framework to
account for transient dynamics between wet and dry seasons.
We defined the dry season as a period of duration td in which
precipitation was negligible and assumed to not contribute to
soil moisture. During that period, we assumed soil saturation
decayed from an initial value s0 to s(td, s0) given by Laio et
al. (2001a). For simplicity, we determined td using rainfall
records at a monthly step (see Sect. 2.2.2) and s0 was the
soil saturation value on the last day of the wet season. Note
that we did not define s0 as the soil saturation following the
last significant storm of the wet season as was done in prior
studies (Dralle and Thompson, 2016). We then calculated the
annual soil saturation pdf (pwd(s)) as the weighted sum of
the wet and dry season pdfs, pw(s) and pd(s), respectively.

pwd(s)=

(
1−

td

365

)
pw(s)+

td

365
pd(s) (3)

The steady-state solution in Eq. (2) was used for the wet sea-
son pdf and the dry season pdf is numerically determined by

pd(s)=

1∫
0

pSd|S0 (s,s0)p0 (s0)ds0, (4)

where p0(s0) is the pdf of the initial dry season soil satura-
tion, equal to pw(s), and pSd|S0(s, s0) is the pdf of dry season
soil saturation given an initial condition s0.

pSd|S0
(
s,s0

)
=
Cd
td



e
β
(
s0−s

)
(
ηd −m

)
e
β
(
s0−s

)
− ηd +m+meβ

(
s0−sfc

) , sfc < s≤ 1,

1

ηd , s∗ < s ≤ sfc,

1

ηd − ηd
w

 s∗ − sw(
ηd − ηd

w
)
(s− sw)+ ηd

w
(
s∗ − sw

)
 , sw < s ≤ s∗

1

ηd
w

(
sw − sh
s− sh

)
, sh < s ≤ sw

0, s0 ≤ s,

0, s ≤ sh,

0, s ≤ s
(
td, s0

)
(5)

where ηd and ηd
w are equivalent to η and ηw relative to Ed

max,
the maximum evapotranspiration rate during the dry season,
and Cd is a normalization constant. We used the analytical
expression for soil saturation decay, s(t , s0), in the absence
of rainfall given by Laio et al. (2001a) to derive pSd|S0(s, s0).

2.2.2 Climate, soil, and vegetation parameter
characterization

We chose readily available data for rainfall characteristics (λ
and α), length of the dry period (td), and physical soil param-
eters (sfc, sh, Ks, and b) needed in the analytical models of
soil saturation pdfs (Eqs. 2 and 3). We focused on estimat-
ing the ecohydrological parameters s∗, sw, and Emax, which
describe vegetation control on soil water losses and are not
easily observable.

We calculated rainfall characteristics λ and α for the year
and wet season months for each site from FLUXNET2015
and TRMM rainfall records following Rodriguez-Iturbe et
al. (1984) (Table 1). We used FLUXNET2015 rainfall char-
acteristics for point- and footprint-scale analyses, and we
used TRMM rainfall characteristics for the satellite-scale
analysis. TRMM rainfall records were generally consistent
with ground-based measurements. For each location, we
evaluated monthly FLUXNET2015 rainfall depth and cate-
gorized consecutive months contributing < 5 % of the site’s
annual rainfall as dry season months (Fig. 1). We then cal-
culated the length of the dry period (td) as the number of
days in those dry months. We used physical soil characteris-
tics for soil textures at each site (sh, Ks, and b) from Rawls
et al. (1982) (Table 1). We estimated sfc from each soil satu-
ration record (Table 1) to be consistent with the assumption
that drainage losses are insignificant compared to evapotran-
spiration losses the day following a rain event. We identified
all days in the 2012 record following an observed decrease in
soil saturation and estimated sfc as the 95th percentile of the
soil saturation value of the selected days. Daily soil satura-
tion below sw and above sfc is rare (Laio et al., 2001a), so we
did not expect the average soil texture values for sh and Ks
to significantly affect the results. Soil depths Z are 10, 20,
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and 5 cm for the point, footprint, and satellite scales, respec-
tively. Emax is only a fraction of the atmospheric moisture
demand (or potential evapotranspiration) contributed by that
soil depth because we used a soil depth that is shallower than
the rooting depth. Consequently our framework includes four
(or three if seasonality is ignored) unknown soil water bal-
ance parameters, s∗, sw, Emax, and Ed

max. We estimated these
parameters over the following intervals:
sh ≤ s

∗
≤ sfc,

sh ≤ sw ≤ sfc,

0≤ Emax ≤ 10,
0≤ Ed

max ≤ 10,

(6)

where 10 mm day−1 is the pre-defined upper possible bound-
ary for potential evapotranspiration.

2.3 Bayesian inversion approach

2.3.1 Application of the Bayes theorem

We related p(S), the empirical soil saturation pdf of the
j = [1, . . . , m] soil saturation observations (sj ), and the ana-
lytical soil saturation pdfs in Eqs. (2) or (3) derived from the
simple soil water balance model in Eq. (1) with up to four
unknown soil water balance parameters θ = [s∗, sw, Emax,
Ed

max] using the Bayes’ theorem defined as

p(θ |S)=
p(S|θ)p(θ)

p(S)
, (7)

where the posterior distribution, p(θ |S), is the solution of
the inverse problem and describes the probability of model
parameters θ given the set S= [s1s2, . . . sm] of soil satu-
ration observations. Assuming uninformed prior knowledge,
the prior distribution of model parameters θ , p(θ), were de-
fined by uniform distributions over the intervals (Eq. 6). The
conditional probability of observations S given model pa-
rameters θ , p(S|θ), is the likelihood function of model pa-
rameters θ .

2.3.2 Parameter estimation

We used the Metropolis–Hastings Markov chain Monte
Carlo (MH-MCMC) technique to estimate the posterior dis-
tribution of p(θ |S) by drawing random model samples θi
from p(θ) and evaluating p(S|θi) (Metropolis et al., 1953;
Hastings, 1970; Xu et al., 2006). We defined the likelihood
function of a model i, p(S|θi), as

p(S|θi)=

m∏
j=1

p
(
sj |θi

)
, (8)

where p(sj |θi) is the probability of observation sj given
Eqs. (2) or (3) using parameters θi .

The MH-MCMC technique converges to a stationary dis-
tribution according to the ergodicity theorem in Markov

chain theory. The sampling algorithm consisted of repeating
two steps: (i) a proposing step, in which the algorithm gener-
ates a new model θ ′i using a random function that is symmet-
ric about the previously accepted model θi , and (ii) a moving
step, to determine whether the model should be accepted or
rejected, in which θ ′i is tested against the Metropolis crite-
rion (a) defined as

a =
p
(
S|θ ′i

)
p(S|θi)

. (9)

If a > 1, θi was accepted and θi+1= θ
′

i was used for the next
sample. If a < 1, a random number p∗ ∈ [0, 1] was drawn
from a uniform distribution and compared to a. If p∗<a,
θ ′i was accepted and θi+1= θ

′

i was used for the next sample.
If p∗>a, θ ′i was rejected and θi+1= θi was used for the next
sample. If θ ′i was an inconsistent model in which soil satura-
tion thresholds (sw, s∗) were ranked incorrectly or any of the
soil water balance parameters (s∗, sw, Emax, Ed

max) were out-
side of their defined physical bounds, the model likelihood
was zero and θ ′i was never accepted. The log-likelihood was
more convenient to compute than the likelihood. The sym-
metric function used in the proposing step was a Gaussian
distribution with a mean value equal to the accepted model θi
and a standard deviation of 1 % of interval range for which
each parameter is defined in Eq. (6). We selected this value
of the standard deviation of each model parameter after a
number of test runs to generally ensure an acceptance rate
between 20 and 50 % (Roberts and Rosenthal, 2001). We ob-
tained statistics of the estimated parameters in θ from the
union of three run samples of 20 000 simulations each. The
burn-in period is the number of simulations after which the
running mean and standard deviation are stabilized. We con-
sidered a burn-in period of 10,000 simulations, which were
discarded for each run sample. If the acceptance rate of a run
sample was < 1 or > 90 % after the burn-in period, we dis-
carded the run and concluded that the algorithm was stuck
in a local minimum that might be physically impossible. We
evaluated convergence by the Gelman–Rubin (GR) diagnos-
tic (Gelman and Rubin, 1992) on the run samples. The GR di-
agnostic determines that the algorithm reaches convergence
when the within-run variability (σw) is roughly equal to the
between-run variability (σb), that is, when σw/σb approaches
one. We verified that the GR diagnostic for each estimated
parameter was < 1.1. If the GR diagnostic did not indicate
that the three run samples converged, we discarded the run
with the lowest likelihood and re-initiated a new run sam-
ple until convergence was attained. We counted the number
of attempts to quantify how rapidly convergence occurred.
We computed mean and standard deviation for each param-
eter from a total of 30 000 simulations of θ resulting from
the three converging run samples. A mean analytical model
of soil saturation pdf was determined by applying Eqs. (2)
or (3) with the mean values of the 30 000 posterior parameter
estimates.
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2.4 Model evaluation criteria

We did not have direct measurement to validate the parame-
ters s∗, sw, and Emax estimated through the Bayesian inver-
sion methods. We therefore analysed convergence and un-
certainty metrics of the model inversion and goodness of fit
between empirical and analytical soil saturation pdfs to eval-
uate the identifiability of the ecohydrological parameters. We
compared the optimum analytical pdf derived from the mean
parameter estimates and the empirical pdfs derived from ob-
servations. We evaluated the model inversion using the fol-
lowing criteria:

i. Convergence of the Bayesian inversion: a GR diagnos-
tic< 1.1 for all unknown parameters is obtained from
the union of three run samples and within ≤ 10 sample
runs.

ii. Low uncertainty in parameter estimates: the posterior
distributions of parameter estimates are physically plau-
sible and have coefficients of variations< 20 %.

iii. Goodness of fit: a quantile-level Nash–Sutcliffe ef-
ficiency (NSE) (Müller et al., 2014)> 0.85 and a
Kolmogorov–Smirnov statistic< 0.2.

2.5 Method assessment

Major assumptions and limitations embedded in the pro-
posed inference framework were tested through the analysis
detailed below. We assume, for each scale and location, that
the shape of empirical the soil saturation pdfs is controlled by
the physical constraints used to parameterize the analytical
model of soil saturation pdfs, these parameters can be deter-
mined with some certainty and reflect variability in soil water
dynamics. We expect that estimated soil saturation thresh-
olds have greater certainty when the empirical soil saturation
pdf is defined around those values and greater uncertainty
when fewer soil saturation values are observed around the
thresholds. We acknowledge that pre-defined rainfall charac-
teristics and physical soil parameters based on observations
or literature values may not be exactly representative of the
processes at each location or scale and could also create bi-
ases and uncertainties in the fitted parameters of interest. We
used model evaluation criteria (Sect. 2.4) to investigate the
applicability of the inference framework with varying model
complexities, scales, locations and data availability.

i. Analytical expressions for soil saturation pdfs were de-
rived under the assumption of steady state. Annual soil
moisture records can be affected by transitional dynam-
ics between wet and dry seasons, and the appropriate
level of model complexity must be used. We applied
the inversion framework to annual soil saturation using
variations of the analytical model for soil saturation pdfs
of increasing complexity: (i) the annual model in Eq. (2)
and (ii) the seasonal model in Eq. (3). We determined

whether the added complexity of the dry season pdf in-
creases the identifiability of ecohydrological parameters
or if the simpler annual model is sufficiently consistent
with annual empirical soil saturation pdfs.

ii. We compared co-located parameter estimates and their
uncertainty at point, footprint, and satellite scales for
each site. We determine whether the inference approach
can provide appropriate scale-specific parameters for
ecohydrological modeling at each location.

iii. We assumed that the whole range of realizable soil sat-
uration values was captured within the selected time se-
ries at each scale and that the resulting soil saturation
pdf was not truncated. If the range of observed values
is not representative of the soil saturation pdf because
it is truncated or affected by noise in the data, param-
eter estimates may be biased. Minimum and maximum
observed soil saturation values during 2012 (Table 1)
indicate the range of observed soil saturation values we
used to estimate ecohydrological parameters. We deter-
mine whether the inference method based on soil sat-
uration pdfs is robust against reduced data availability
by repeating the model inversions on subsets of the soil
saturation time series and show that the method can be
applied to sparse datasets. We performed the model in-
version using subsets of each soil saturation record by
randomly resampling fractions of the data down to 10 %
of the annual timeseries and computed goodness of fit
statistics between the resulting analytical models and
the empirical models based on the full annual record.
We determined the number of data points necessary to
infer converging model parameters that best match ob-
servations and whether the proposed inference method
based on soil saturation pdf can be reliably used to iden-
tify ecohydrological parameters from sparse datasets.

3 Results and discussion

3.1 Level of model complexity

For each of the four locations (Table 1), we obtained opti-
mal analytical soil saturation pdfs consistent with the em-
pirical pdfs derived from soil saturation observations using
the Bayesian inversion framework and a MH-MCMC algo-
rithm. Model inversions for each site and scale and for both
annual and seasonal models met the evaluation criteria (see
Sect. 2.4). Our results indicated that the framework of Dralle
and Thompson (2016) can be applied to sites with low (US-
MMS) and high (US-Ton) seasonality in rainfall patterns.
Posterior probability distributions of soil water balance pa-
rameters (sw, s∗, Emax) were well constrained overall. The
parameter estimates and their coefficient of variation as well
as the model goodness of fit statistics are summarized in Ta-
ble 2. Figures 2 through 5 present a comparison between
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Table 2. Estimated ecohydrological parameters and goodness of fit of analytical soil saturation pdfs.

Site name Scale N NSE KS Emax s∗ sw

p pwd p pwd p pwd p pwd p pwd p pwd

US-ARM point 4 4 0.96 0.96 0.07 0.07 1.1 (11) 1.3 (14) 0.7 (8) 0.74 (5) 0.19 (4) 0.27 (7)
footprint 3 3 0.94 0.94 0.08 0.06 1.7 (11) 2 (12) 0.62 (7) 0.61 (9) 0.24 (3) 0.29 (2)
satellite 3 3 0.96 0.97 0.08 0.09 0.7 (13) 0.5 (13) 0.42 (4) 0.42 (4) 0.24 (3) 0.25 (2)

US-Ton point 3 4 0.95 0.97 0.09 0.08 2.3 (4) 1.9 (10) 0.24 (6) 0.33 (7) 0.12 (1) 0.18 (6)
footprint 3 3 0.94 0.98 0.13 0.08 2.2 (3) 1.8 (8) 0.29 (2) 0.4 (10) 0.25 (0) 0.26 (1)
satellite 3 9 0.99 0.99 0.06 0.07 1.2 (15) 1 (13) 0.53 (12) 0.62 (6) 0.22 (3) 0.26 (3)

US-MMS point 3 4 0.96 0.98 0.12 0.08 1.3 (3) 1.1 (6) 0.34 (3) 0.5 (8) 0.29 (0) 0.31 (2)
footprint 3 3 0.95 0.95 0.13 0.08 2.7 (6) 4.5 (10) 0.82 (2) 0.79 (3) 0.38 (5) 0.59 (1)
satellite 3 6 0.95 0.88 0.1 0.14 0.7 (8) 0.9 (10) 0.65 (4) 0.66 (3) 0.28 (9) 0.43 (2)

US-Me2 point 3 8 0.95 0.97 0.16 0.1 1.4 (3) 1.1 (7) 0.33 (3) 0.37 (8) 0.29 (0) 0.29 (1)
footprint 3 6 0.94 0.94 0.09 0.1 2.1 (2) 2.9 (10) 0.23 (4) 0.45 (5) 0.15 (2) 0.2 (6)
satellite 3 4 0.89 0.89 0.12 0.1 1.6 (12) 1.4 (15) 0.64 (8) 0.66 (8) 0.25 (3) 0.31 (4)

Values in parentheses correspond to the coefficient of variation of the posterior parameter estimates in percentage. p, analytical model for the soil saturation pdf without seasons, pwd, analytical
model for the soil saturation pdf including wet and dry seasons; N , number of 20 000 simulation runs needed to obtain three converging results (see Sect. 2.3.2); NSE, quantile-level Nash–Sutcliffe
efficiency; KS, Kolmogorov–Smirnov statistic; Emax, maximum evapotranspiration in mm day−1 (the weighted average wet and dry season Emax is reported for the pwd model); s∗, point of
incipient stomatal closure; sw, wilting point.

empirical as well as analytical pdfs and associated quantile–
quantile plots for point, footprint, and satellite scales at the
four study sites and for both annual and seasonal models. The
goodness of fit between empirical pdfs and analytical models
was only slightly better for the seasonal model than for the
annual model. However, the coefficient of variation of the
posterior parameter distributions was smaller for the annual
model and it converged more rapidly. The Bayesian inver-
sion of the annual model is therefore more computationally
efficient. The parameter identifiability was not greatly im-
proved by the more complex seasonal model. The estimated
soil saturation threshold sw was consistently smaller for the
annual model than for the seasonal model and s∗ was often
higher, which may indicate that sw and s∗ in the annual model
could be biased and may have absorbed dry season dynam-
ics. Previous studies calibrating soil saturation pdf models
found ecohydrological parameter values comparable to ours
(Table 2). For example, using point-scale observations at US-
Ton, best-fit values of sw and sfc were 0.26 and 0.82, respec-
tively (Dralle and Thompson, 2016), and best-fit values of s∗

and Emax were 0.3 and 1.9 mm day−1, respectively (Miller et
al., 2007). We did not compare soil saturation thresholds s∗

and sw with literature values of soil water potential at which
stomata are fully open or closed because the conversion of
soil saturation to soil matrix potential is non-linear (Clapp
and Hornberger, 1978) and site- and scale-specific soil wa-
ter retention parameters were unknown. Average parameters
derived from soil texture (Rawls et al., 1982) were not com-
patible with soil moisture data from each scale and site.

3.2 Site and scale considerations

Parameter estimates were most constrained for scales and
locations at which soil water dynamics are more sensitive
to the fitted ecohydrological parameters of interest. In these

cases, convergence of the model inversion was attained less
rapidly, but ultimately provided better goodness of fit. Soil
saturation states at drier sites may be more controlled by soil
water loss parameters, while soil saturation states at wetter
sites may also be controlled by rainfall characteristics. Esti-
mated soil saturation thresholds had greater certainty if the
empirical soil saturation pdfs were defined around those val-
ues and had greater uncertainty if there were fewer soil sat-
uration values observed around the thresholds. For example,
uncertainty of sw was greater for the humid subtropical de-
ciduous forest site (US-MMS) than for the Mediterranean sa-
vanna sites (US-Ton), and uncertainty of s∗ was greater for
US-Ton than US-MMS. Similarly, soil saturation states rep-
resenting larger spatial scales were less sensitive to specific
site characteristics.

Parameter uncertainty for satellite and footprint scales was
greater than for the point scale. Estimates of larger-scale soil
water balance parameters are more relevant to regional eco-
hydrological dynamics. Differences in parameter estimates
among scales within a site may be associated with differences
in soil texture properties, such as porosity and field capacity,
that were determined separately for each record. Co-located
and concurrent soil saturation pdfs are different at each scale
(Figs. 2–5) and suggest variability in observed soil water dy-
namics at each scale. Differences in driving processes among
scales were specifically determined from the model inversion
for each scale and provided robust scale-specific parameters
for ecohydrological modeling.

3.3 Data availability

For each spatial scale and site, the annual model was in-
versed, using random subsamples of 100 to 10 % of the
2012 time series (Fig. 6). For all sites and scales the number
of observations did not significantly impact model inference.
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Figure 2. Empirical versus modeled cumulative density functions (CDFs) and soil saturation probability distribution (p(s)) for US-ARM.
The mean values of the posterior parameter distributions were used with Eq. (2) in the annual model and Eq. (3) in the seasonal model. The
grey shaded areas correspond to the soil saturation thresholds (sh, sw, s∗, sfc) in the water balance model.
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Figure 3. Empirical versus modeled CDFs and soil saturation probability distribution (p(s)) for US-MMS. The mean values of the posterior
parameter distributions were used with Eq. (2) in the annual model and Eq. (3) in the seasonal model. The grey shaded areas correspond to
the soil saturation thresholds (sh, sw, s∗, sfc) in the water balance model.

The NSE, Kolmogorov–Smirnov statistic, and parameter es-
timates were stable down to about 100 observations. Fitted
model parameter values and the variability of parameter es-
timates among the 10 repetitions in each subsample category

were not sensitive to the number of observations used. Re-
sults indicate the identifiability of ecohydrological parame-
ters through the inversion of the analytical model of soil sat-
uration pdfs was robust because the mean and standard de-
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Figure 4. Empirical versus modeled CDFs and soil saturation probability distribution (p(s)) for US-Ton. The mean values of the posterior
parameter distributions were used with Eq. (2) in the annual model and Eq. (3) in the seasonal model. The grey shaded areas correspond to
the soil saturation thresholds (sh, sw, s∗, sfc) in the water balance model.
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Figure 5. Empirical versus modeled CDFs and soil saturation probability distribution (p(s)) for US-Me2. The mean values of the posterior
parameter distributions were used with Eq. (2) in the annual model and Eq. (3) in the seasonal model. The grey shaded areas correspond to
the soil saturation thresholds (sh, sw, s∗, sfc) in the water balance model.

viation of the randomly selected subsets of annual data were
representative of the full record. There was no correlation
between the small differences in the mean and standard de-
viations of the subsamples and the model goodness of fit.

The proposed inference method based on soil saturation pdfs
can therefore reliably be used to identify ecohydrological pa-
rameters from sparse datasets. Inference methods, which do
not require continuous data, are particularly relevant to large-
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Number of observations [days]

Figure 6. Goodness of fit and ecohydrological parameters inferred with decreasing number of soil saturation observations (annual model).
For each subsample category, the median results of 10 repeats are plotted and results between the 90th and 10th percentiles are shaded.
Colors correspond to the four sites in the legend. KS, Kolmogorov–Smirnov statistic; NSE, quantile-level Nash–Sutcliffe efficiency; Emax,
maximum evapotranspiration in mm day−1; s∗, point of incipient stomatal closure; sw, wilting point.

scale soil moisture measurements, such as satellite products,
that are not continuous.

4 Conclusions

We document a generalizable Bayesian inversion framework
to infer parameter values of the stochastic soil water balance
model and their associated uncertainty using freely available
rainfall and soil moisture observations at point-, footprint-
and satellite-scales. Empirical pdfs derived from soil satura-
tion observations provided key information to determine un-
known ecohydrological parameters s∗, sw, and Emax. Model
assumptions were appropriately met, and optimal analytical

soil saturation pdfs were consistent with empirical pdfs. Un-
certainty in parameter estimates were small and reflected the
sensitivity of the soil water balance model to ecohydrological
parameters at varying scales and locations. We demonstrate
that the form of the simple ecohydrological model for soil
saturation pdfs was consistent with observations from point-,
footprint-, and satellite-scales. However, optimal parameters
were different at each scale because co-located and concur-
rent soil saturation pdfs are different at each scale, which may
result from spatial heterogeneity in soil water dynamics. We
demonstrate the advantage of analyzing soil saturation pdfs
instead of time series. We obtained stable results using sparse
subsets of the datasets, indicating that the proposed frame-
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work is robust and can be used with non-continuous data.
Although the seasonal model was conceptually more con-
sistent with our physical understanding of annual soil wa-
ter dynamics, the annual model provided satisfactory results
matching annual empirical pdf sites we analysed. We were
not able to determine if some differences in parameters es-
timated using the seasonal model are physically meaningful
because wet and dry season dynamics were better charac-
terized in this more complex model. Our methodology can
be customized to characterize site-specific parameters and to
test consistency between observed and analytical soil satura-
tion pdfs for any other adaptation of the stochastic ecohydro-
logical framework with more or less complexity depending
on the study objectives.

We provide a method based on a parsimonious soil water
balance model, requiring a minimum level of data inputs to
estimate ecohydrological characteristics that are not directly
observable and for which established estimation methods are
not available. Our methods can be applied in future stud-
ies to better understand differences in soil water dynamics
at different scales and to improve scaling of ecohydrologi-
cal processes. Results demonstrate the value of large-scale
near-surface soil moisture observations to improve charac-
terization of soil water dynamics at ecosystem scales. Re-
lations between the soil saturation threshold values inferred
from the near-surface soil moisture data and dynamics in the
full active rooting zone are unknown. The datasets we used
are freely available from sensor networks and global satel-
lite products, and methods can therefore be applied to a large
range of sites or to global analyses to improve understanding
of spatial patterns in ecohydrological parameters relevant for
local and global water cycle analyses.

Code and data availability. We downloaded all datasets
from publicly available sources. Point-scale soil mois-
ture and rainfall data are available through FLUXNET2015
(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/); footprint-
scale soil moisture data are available through COSMOS
(http://cosmos.hwr.arizona.edu/Probes/probelist.html); re-
motely sensed soil moisture data are available through ESA
CCI (http://www.esa-soilmoisture-cci.org/node/145); remotely
sensed rainfall data are available through NASA TRMM
(https://pmm.nasa.gov/data-access/downloads/trmm); global
soil texture data are available through FAO HWSD (http:
//www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/). Custom scripts in the
Python computing language associated with our analysis are open
source (Bassiouni, 2018, https://doi.org/10.5281/zenodo.1283371).
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