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Abstract. An ensemble simulation of five regional climate
models (RCMs) from the coordinated regional downscaling
experiment in East Asia is evaluated and used to project
future regional climate change in China. The influences
of model uncertainty and internal variability on projec-
tions are also identified. The RCMs simulate the historical
(1980–2005) climate and future (2006–2049) climate projec-
tions under the Representative Concentration Pathway (RCP)
RCP4.5 scenario. The simulations for five subregions in
China, including northeastern China, northern China, south-
ern China, northwestern China, and the Tibetan Plateau, are
highlighted in this study. Results show that (1) RCMs can
capture the climatology, annual cycle, and interannual vari-
ability of temperature and precipitation and that a multi-
model ensemble (MME) outperforms that of an individual
RCM. The added values for RCMs are confirmed by com-
paring the performance of RCMs and global climate mod-
els (GCMs) in reproducing annual and seasonal mean pre-
cipitation and temperature during the historical period. (2)
For future (2030–2049) climate, the MME indicates consis-
tent warming trends at around 1 ◦C in the entire domain and
projects pronounced warming in northern and western China.
The annual precipitation is likely to increase in most of the
simulation region, except for the Tibetan Plateau. (3) Gen-
erally, the future projected change in annual and seasonal
mean temperature by RCMs is nearly consistent with the re-
sults from the driving GCM. However, changes in annual and
seasonal mean precipitation exhibit significant inter-RCM
differences and possess a larger magnitude and variability
than the driving GCM. Even opposite signals for projected
changes in average precipitation between the MME and the

driving GCM are shown over southern China, northeastern
China, and the Tibetan Plateau. (4) The uncertainty in pro-
jected mean temperature mainly arises from the internal vari-
ability over northern and southern China and the model un-
certainty over the other three subregions. For the projected
mean precipitation, the dominant uncertainty source is the
internal variability over most regions, except for the Tibetan
Plateau, where the model uncertainty reaches up to 60 %.
Moreover, the model uncertainty increases with prediction
lead time across all subregions.

1 Introduction

Globally averaged surface temperature increased by 0.65–
1.06 ◦C from 1880 to 2012 according to several indepen-
dently produced datasets, and further increases ranging from
0.3 to 4.8 ◦C are projected for 2081–2100 relative to 1986–
2005 using a set of global climate models (GCMs) driven by
the Representative Concentration Pathway (RCP) scenarios
RCP2.6 to RCP8.5 (IPCC, 2013). Meanwhile, other climate
factors, such as precipitation amounts and variability, snow
and ice cover patterns, and mean sea level, are also changing
(Alfieri et al., 2015; Kerr, 2008; Patz et al., 2005). Reliable
projection of regional future climate is critical in evaluating
climate change impacts and vulnerability and in developing
appropriate mitigation and adaptation measures, especially
for developing countries, such as China, which tends to be
one of the countries most vulnerable to the adverse effects of
climate change (Kreft et al., 2016; Wang et al., 2017b).
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The East Asian summer monsoon (EASM) is the most
distinctive climate feature in China, and the monsoon area
accounts for approximately 60 % of the mainland (Ding
and Chan, 2005). EASM system-related precipitation starts
around mid-May or even earlier in the Indo-China peninsula,
which presents distinct stepwise northward and northeast-
ward advances, with two abrupt northward jumps and three
stationary periods, and it begins to withdraw southward in
September (Ding, 2004; Hsu, 2005). The rainy seasons of
EASM, including the pre-summer rainy season over southern
China, mei-yu (in China), normally occurs during the station-
ary periods, which are imbedded in the northward advance of
the summer monsoon. The anomaly of EASM could cause
floods and droughts, which are crucial to the livelihoods of
more than one billion people (Gu et al., 2015a; Webster et al.,
1998; Yu et al., 2018). However, the manner in which clima-
tological rainfall and interannual variation of EASM can be
reliably reproduced remains a challenge because of the com-
plex topography and model limitations. The Coupled Model
Intercomparison Project Phase 3 (CMIP3) and CMIP5 have
problems simulating precipitation in this region. Recent stud-
ies have suggested that the new generation of GCMs from the
CMIP5 archive exhibits several improvements in reproduc-
ing the climatology and interannual variability of the EASM
compared with the CMIP3 GCMs, although the simulated
biases remained and large inter-model spread existed (Chen
and Bordoni, 2014; Gu et al., 2015b; Huang et al., 2013;
Yang et al., 2017). For example, the mei-yu rainfall band is
missing in GCMs, even though the monsoon circulation is
reproduced well.

Considering these deficiencies, high-resolution GCMs
have been developed to improve the capabilities in the sim-
ulation of monsoon features, including orographic precipita-
tion, low-level jet orientation, and variability, as well as the
mei-yu onset and withdrawal (Kitoh et al., 2013; Kusunoki
et al., 2006). However, these experiments remain burden-
some due to the large computational cost required for multi-
decadal simulations. Therefore, the regional climate mod-
els (RCMs) focusing on a region of interest are commonly
used in regional studies of climate projection and climate
change impacts (Gao et al., 2006; Giorgi and Mearns, 1999;
Gu et al., 2012; Wang et al., 2004; Yira et al., 2017; Yu
et al., 2006). The resolution of RCMs is approximately 12–
50 km, and they could consider local-scale forcing, e.g.,
complex terrain features and land cover heterogeneities, in
a physically based method. However, RCMs inherit the bi-
ases from systematic model errors because of the imper-
fect conceptualization, discretization, and spatial averaging
within grid cells (Dong et al., 2018). Nonetheless, RCM en-
sembles can be used to understand and characterize uncer-
tainties from different sources, such as future climate sce-
narios, the driving GCM, and regional model physics, and
therefore, reduce the uncertainties and increase credibility
in future projections. The ongoing Coordinated Regional
Downscaling Experiment (CORDEX) aims to provide high-

resolution future regional climate projections for the major-
ity of populated land regions globally by using multi-RCMs
and to present an interface for applicants of climate sim-
ulations in climate change impact, adaptation, and mitiga-
tion studies (Giorgi et al., 2009; Jones et al., 2011). The
CORDEX in East Asia (CORDEX-EA) is the East Asian
branch of the CORDEX experiment, and it provides ensem-
ble regional climate simulations (http://cordex-ea.climate.
go.kr/cordex/download.do, last access: 18 May 2018). A se-
ries of studies based on RCMs within CORDEX-EA has
been conducted to project extreme and mean precipitation
and temperature in East Asia (Jin et al., 2016; Lee et al.,
2014; Niu et al., 2015; Park et al., 2016; Tang et al., 2016;
Um et al., 2017), but little attention has been paid to quantify
the contributions of the uncertainty in future climate projec-
tion over China.

Despite large improvements in the simulation of local
processes, future climate projections are still accompanied
by large uncertainties stemming from different sources, in-
cluding the forcing GCMs, emission scenarios, downscal-
ing methods (RCMs or statistical downscaling methods),
and natural climate internal variability (Déqué et al., 2007;
Deser et al., 2012). Numerous studies have demonstrated
that GCMs are the main source of uncertainty (Seo et al.,
2016). Other uncertainty sources, such as RCMs and internal
variability, will become more important than GCMs after ex-
clusion of the outliers from the GCM ensemble (Kay et al.,
2009; Wilby and Harris, 2006). In a nonstationary climate,
the internal variability of a given GCM–RCM chain can re-
main high above the trend related to a given emission scenar-
ios forcing (Lafaysse et al., 2014; O’Brien et al., 2011). Lit-
tle attention has been devoted to quantify the contributions
of the uncertainty arising from RCMs and internal variability
in future climate projection over China. The objective eval-
uation of the capability of RCMs and quantification of the
uncertainty in future climate projections are necessary.

In this study, we evaluate the performance of five RCMs
within CORDEX-EA to reproduce present-day climate and
analyze the projected future climate change under the middle
emission scenario. More importantly, biases in current cli-
mate simulations and uncertainties in future climate projec-
tions attributed to RCMs and internal variability are further
analyzed. This paper is structured as follows. Data from ob-
servations, the model simulation, and the analysis method are
described in the succeeding section. Section 3 presents the
historical performances of RCMs for temperature and pre-
cipitation and future climate change under the RCP4.5 emis-
sion scenario in China. The uncertainties in regional future
climate projection caused by inter-RCMs and natural climate
internal variability are also discussed. The summary and con-
clusions are presented in Sect. 4.
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2 Data and methods

2.1 Observations

The reference temperature data used to evaluate the model
results with observation data are developed from the Cli-
mate Research Unit Timeseries 3.23 (CRU) of the Univer-
sity of East Anglia, with a spatial resolution of 0.5◦, de-
rived from gauge measurements (Harris et al., 2014). Mean-
while, the reference precipitation data, namely the Asian
Precipitation-Highly Resolved Observational Data Integra-
tion Toward Evaluation (APHRODITE, hereafter APHRO)
dataset, with a spatial resolution of 0.25◦, were used to eval-
uate RCMs (Yatagai et al., 2012). To facilitate the compari-
son, outputs from a host of RCMs were converted to a com-
mon grid of 0.5◦×0.5◦ latitude/longitude as remapped to the
CRU and APHRO observations, using bilinear interpolation.
The reasons why CRU and APHRO products are used as ref-
erence in this study are clarified as below.

Some studies have focused on comparing and evaluat-
ing the spatial–temporal similarities and differences of sev-
eral widely used observed gridded datasets over China (Sun
et al., 2014; Wu and Gao, 2013; Yin et al., 2015). Among
the widely used gridded datasets, such as the Global Precip-
itation Climatology Centre (CPCC) product, the University
of Delaware (UDEL) product, CRU data, and the National
Meteorological Information Center dataset from the China
Meteorological Administration, all temperature datasets ex-
hibit similar distribution patterns for the annual average
temperature in mainland China. Considering its easier ac-
cess and wider usage in the evaluation of RCMs used in
China and East Asia (Wang et al., 2017), the CRU prod-
uct is used as the reference temperature data in this study.
APHRO’s daily gridded precipitation, presently the only
long-term, continental-scale, high-resolution daily product,
is constructed based on the data collected at 5000–12 000 sta-
tions, which represent 2.3–4.5 times the data made available
through the stations used for generating global gridded data
(i.e., CRU, GPCC, and UDEL) (Yatagai et al., 2012). Thus,
the APHRO dataset would give more confidence in the ro-
bustness of the results in comparison with other global pre-
cipitation datasets and is therefore widely used for evaluat-
ing the performance of RCMs in East Asia (Gao et al., 2017;
Lau et al., 2017; Um et al., 2017). In addition, the CRU and
APHRO products are used instead of station data accessible
from the China Meteorological Administration, owing to the
study area including in the domain of East Asia, extending
beyond the territory of China.

2.2 Models and experiments

In this study, we used five RCMs, namely, HadGEM3-
RA (Hadley Centre Global Environmental Model version
3 regional climate model), MM5 (Fifth-Generation Penn
State/NCAR Mesoscale Model), WRF (Weather Research

Figure 1. The simulation domain of CORDEX-EA and the topogra-
phy of the regional climate models (m). The boxes illustrate the five
selected subregions over China: northeastern China (NE), northern
China (NC), southern China (SC), northwestern China (NW), and
the Tibetan Plateau (TP).

and Forecasting model), RegCM4 (Regional Climate Model
version 4), and RSM (Regional Spectral Model), for East
Asian climate experiments (Table 1). They are derived from
the CORDEX East Asia experiment that is able to provide
a global holistic framework for regional climate projections
so as to understand their uncertainties as well as provide
model evaluation. Moreover, the selected five RCMs have
been demonstrated to have abilities to reproduce the regional
climate over East Asia and have been used for modeling
and predicting extreme climate as well as investigating phys-
ical processes of East Asia climate (Cha and Lee, 2009;
Cha et al., 2011; Hong and Yhang, 2010; Park et al., 2008;
Yhang and Hong, 2008). The spatial resolution of the data
is 50 km (except HadGEM3-RA is 0.44◦), and the whole
CORDEX-EA domain includes East Asia, India, the western
Pacific Ocean, and the northern part of Australia, as shown
in Fig. 1. Model configurations including physical schemes
are summarized in Table 1. Please refer to the references Suh
et al. (2012) and Park et al. (2016) for more details on RCMs
used in this study.

In this study, two types of current climate experiments
from five RCMs were performed, including the evalua-
tion (hereafter EVAL) experiment from 1989 to 2008 and
the historical (HIST) experiment from 1980 to 2005. The
EVAL experiment acquires initial and boundary conditions
from the National Centers for Environmental Prediction re-
analysis, whereas the HIST experiment is forced by the
Atmosphere–Ocean coupled Hadley Center Global Envi-
ronmental Model version 2 (HadGEM2-AO) simulation.
HadGEM2-AO (1.875◦× 1.25◦ horizontal resolution) has
been used for climate simulations in a CMIP5 set of long-
term experiments and has been demonstrated to have a rea-
sonable ability to capture the East Asian climatology (Baek
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Table 1. RCMs used in this study∗ (Park et al., 2016).

HadGEM3-RA RegCM4 MM5 WRF RSM

Resolution 0.44◦ 50 km 50 km 50 km 50 km

Dynamic process Nonhydrostatic Hydrostatic Nonhydrostatic Nonhydrostatic Hydrostatic

Convective scheme Revised mass flux MIT–Emanuel Kain–Fritch II Kain–Fritch II Simplified Arakawa–
scheme Schubert

Land surface MOSES2 CLM3 CLM3 NOAH NOAH
parameterization

Planetary boundary layer MOSES2 nonlocal Holtslag YSU YSU YSU

Spectral nudging No Yes Yes Yes Yes

Center of research MOHC ICTP NCAR NCAR YSU

References Davies et al. (2005) Giorgi et al. Cha and Lee Skamarock et al. Hong et al. (2013)
(2012) (2009) (2005)

∗ MOSES: Met Office Surface Exchange Scheme, CLM: Community Land Model, NOAH: Noah Land Surface Model, YSU: Yonsei University scheme, MOHC: the Met
Office Hadley Centre, ICTP: The International Centre for Theoretical Physics, NCAR: National Center for Atmospheric Research.

et al., 2013; The HadGEM2 Development Team, 2011; Sper-
ber et al., 2013). The future climate simulation is driven by
the HadGEM2-AO under the RCP 4.5 scenario, which is
an intermediate scenario and a cost-minimizing pathway for
which total radiative forcing is stabilized at 4.5 Wm−2 in the
year 2100 (Thomson et al., 2011). The reference period from
1980 to 1999 and the scenario period from 2030 to 2049 are
analyzed for climate change research in this study.

The multi-model ensemble (MME) mean, defined as the
pointwise arithmetic average over all individual model clima-
tologies, narrows down inter-RCM uncertainties because of
their differences in model structures and physics. To further
evaluate the model performance on smaller spatial scales, we
evaluate the performance of RCMs over five selected sub-
regions (as shown in Fig. 1), namely, northeastern China
(40–50◦ N, 115–130◦ E), northern China (30–40◦ N, 105–
120◦ E), southern China (22–30◦ N, 105–120◦ E), northwest-
ern China (35–45◦ N, 80–95◦ E), and the Tibetan Plateau
(28–35◦ N, 80–95◦ E).

2.3 Analysis methods

The root-mean-square error (RMSE), bias, and Taylor dia-
gram analysis are selected for statistical measurements of the
performance for the individual RCM and the MME. The for-
mer two indexes are used for evaluating the ability of models
to reproduce annual and seasonal mean of climatology. The
Taylor diagram is designed to quantify the degree of corre-
spondence between the modeled and observed behavior by
plotting a 2-D graph with three statistics (correlation coeffi-
cient, SD, and RMSE). In the Taylor diagram, a small dis-
tance between the reference and compared objects indicates
close agreement (Baker and Taylor, 2016; Sun et al., 2015).
In general, the Taylor diagram enables statistics for differ-

ent fields (with different units) to be shown in a single plot,
facilitating the comparative assessment of different models
(Taylor, 2001).

Uncertainty in projected climate change mainly arises
from the internal variability of the climate system, the model
uncertainty, and the scenario uncertainty (Niu et al., 2015;
Woldemeskel et al., 2016). In this study, all RCMs are driven
by the same GCM under the same scenario, and thus, the
uncertainty of the climate projections is mainly caused by
inter-RCM and internal variability. The method developed by
Hawkins and Sutton (2009, 2011) is used to separate these
two sources of uncertainty. Here we give a brief illustration.

1. Firstly, a smooth fourth-order polynomial is used to fit
each individual simulation over the years 1980–2049 by
using an ordinary least squares method. Then the raw
simulation of each model Xm,t for the model m and year
t can be expressed by

Xm,t = zm,t + cm+ εm,t , (1)

where zm,t represents the simulation from the smooth fit
for the model m and year t minus the reference data; the
reference data are denoted by cm, and the residual (in-
ternal variability) is denoted by εm,t . Here the reference
data are the mean of the simulation from the smooth fit
during the years 1980–1999.

2. The RCMs are weighted by their performance in simu-
lating the current climate from the mean of 1980–1999,
up to year 1999. Thus, each model is weighted accord-
ing to

wm =
1

zobs+
∣∣zm,1999− zobs

∣∣ , (2)
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Figure 2. Spatial distributions of annual average temperature (◦C) from CRU (a), the driving GCM HadGEM2-AO (b), multi-model ensemble
(c), and temperature biases (◦C) of the driving GCM HadGEM2-AO (d), multi-RCM ensemble (e, f) and five RCMs (g–k) during 1980–2005.

where zm,1999 is the model climate change in 1999 rela-
tive to 1980–1999, and zobs is an observational estimate
derived from fitting a similar fourth-order polynomial to
observations. The normalized quantities (Wm) of these
weightings can be expressed as

Wm =
wm∑
mwm

. (3)

3. Internal variability (V , as shown in Eq. 4) is defined as
the multi-model mean of the variance of the residuals
from the fit for each model:

V =
∑

m
Wmvart (εm,t ), (4)

M(t)= varw
m(zm,t ). (5)

4. Inter-model variability (M , as shown in Eq. 5) is esti-
mated from the weighted variance (varw) in different
RCM prediction fits (zm,t ), where vart (.) and varm(.)

indicate the variance across time and the model, respec-
tively.

5. It was assumed that the two sources of uncertainty can
be treated independently (i.e., no interaction exists be-
tween them). Thus, the total variability VT is

VT(t)= V +M(t). (6)

6. The fraction of variance of internal variability and
model uncertainty are defined as V/VT(t) and
M(t)/VT(t), respectively.

3 Results

3.1 Climatology for the historical climate

3.1.1 Historical annual average climate evaluation

Figure 2 shows the annual average temperature of CRU, the
driving GCM HadGEM2-AO, and the multi-model ensem-
ble, as well as the temperature biases of five RCMs driven
by HadGEM2-AO from 1980 to 2005. Obviously, both the
MME and five RCMs can capture the spatial pattern of an-
nual mean temperature in China, with a decreasing south–
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Figure 3. Spatial distributions of annual average precipitation (mm/year) from APHRO (a), the driving GCM HadGEM2-AO (b), and
MME (c), and precipitation biases (%) of the driving GCM HadGEM2-AO (d), MME (e), and five RCMs (f–j) during 1980–2005.

north gradient and a cold area in the Tibetan Plateau. More-
over, the MME presents the best results overall to reproduce
the temperature spatial distribution and provides less than
1 ◦C temperature biases over most areas of China. However,
all RCMs generally overestimated the mean temperature over
most of the domain; in particular, warmer mean temperature
is simulated by MM5 and HadGEM3-RA. The only excep-
tion is that RSM underestimated the mean temperature over
the Tibetan Plateau.

The RCMs provide reasonably accurate simulations for
mean temperature during the historical period, but they are
less successful at reproducing precipitation. Figure 3 shows
the annual average precipitation from APHRO, HadGEM2-
AO, and MME, as well as the precipitation biases from five
RCMs in the current period. It is found that the spatial pattern
of annual mean precipitation is characterized by a decreas-
ing southeastern–northwestern gradient over China, which
can be successfully simulated by all RCMs. However, quite
large precipitation biases are found in different RCMs. For
instance, WRF underestimated the annual mean precipitation
in northwestern China, where mean precipitation was over-
estimated by the other RCMs. In comparison with the sim-

ulation from each RCM, the MME is better in reproducing
annual mean precipitation over most subregions in China.

The spatial variability statistics of the models in repro-
ducing the annual mean temperature and precipitation by the
Taylor plot (Taylor, 2001) are exhibited in Fig. 4. The tem-
perature simulations of the five RCMs exhibit a good spatial
pattern correlation, ranging from 0.83 to 0.96, whereas the
precipitation simulation shows a relatively extensive range
of spatial pattern correlations from 0.29 to 0.93. In addition,
the MME is superior to most RCMs in capturing the spa-
tial variability of these climate variables, as reflected by the
higher spatial correlation coefficient and the lower RMSE.
There are several reasons for this phenomenon, as also noted
by other scholars in their studies on model intercomparisons
(Huttunen et al., 2017; Phillips and Gleckler, 2006; Rozante
et al., 2014). On the one hand, the bias of a simulated cli-
mate field is symptomatic of random errors to a certain ex-
tent, and the MME may reduce or counteract this error from
the RCM. On the other hand, the pointwise variations of the
climate field are smoothed out by averaging, thereby filter-
ing regional-scale simulations, which are difficult for current
climate models to capture.
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Figure 4. The Taylor diagrams which evaluate the skill of the models in reproducing the annual average temperature and precipitation over
the five regions of China, using the CRU (for temperature) and APHRO (for precipitation) data as the reference, are shown. The azimuthal
axis shows the pattern spatial correlation. The redial distance from the origin represents the spatial variability, whereas the distance from the
reference observation (REF) is the centered RMSE difference between the simulations and observations.

3.1.2 Interannual and seasonal variability

The ability of a climate model to capture realistic interan-
nual variability is a critical measure of its performance. The
time series of the annual mean temperature and precipitation
from RCMs are compared with CRU and APHRO in Fig. 5.
Evidently, the interannual variation of the climatology is gen-
erally well reproduced in the MME. In the evaluation experi-
ment for 1989–2008, the correlation coefficient of the annual
climatology time series at five subregions between the ob-
servation and simulation from the MME ranges from 0.52
to 0.78 for temperature and from 0.50 to 0.87 for precipita-
tion. The correlation coefficient is always lower in western
China compared with that in eastern China, especially in the
Tibetan Plateau. In the historical experiment from 1980 to
2005, the MME shows a better performance, in comparison
with the RCMs, which have difficulty in reproducing the in-
terannual variability for precipitation because of the impact
of the driving GCM.

The temporal distributions of precipitation and tempera-
ture throughout the year are important for ecosystems and

water resource management. To evaluate the RCM’s ability
to capture the seasonal variability of climatologies, the sea-
sonal cycles of simulated temperature and precipitation aver-
aged over five subregions in China are examined (Fig. 6). It
is evident that the seasonal pattern of precipitation features
one peak in June over southern China and in July over the
rest of the regions, which can be successfully reproduced by
all RCMs and MME. However, the inter-model difference in
simulated precipitation is large. For instance, monthly pre-
cipitation is always underestimated by WRF and overesti-
mated by MM5 and HadGEM3-RA; an especially larger bias
is shown in summer. Among the five RCMs, RegCM is the
one with the best ability to simulate the seasonal cycles of
precipitation. The MME generally provides the most accu-
rate simulation for the temporal distribution of precipitation,
in comparison with the RCMs. As for the temperature, the
RCMs can capture its temporal pattern over all subregions.
Moreover, mean temperatures in different months are always
overestimated by most RCMs. However, the MME reduces
the bias from the RCMs and therefore generates a more ac-
curate temporal distribution for mean temperature.

www.hydrol-earth-syst-sci.net/22/3087/2018/ Hydrol. Earth Syst. Sci., 22, 3087–3103, 2018
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Figure 5. Temporal evolution of the annual mean temperature (a) and precipitation (b) in RCM simulations and observations over the five
subregions during the 1989–2008 (EVAL) and 1980–2005 (HIST) periods. The correlation coefficients between the ensemble of RCMs and
the observations are shown at the top right of each panel.

3.1.3 The added values for RCMs

The added values for high-resolution RCMs were confirmed
by comparing the performance of RCMs and driving GCM
HadGEM2-AO in reproducing annual mean precipitation
and temperature during the historical period. According to
Figs. 4–6, it is found that the added value for RCMs de-
pends largely on the climate variable and the area of interest.
The added value of the RCMs in comparison with the driving
GCM was evident in terms of annual mean temperature over
all five subregions, with a higher spatial and temporal cor-
relation coefficient and less seasonal bias for all five RCMs.
Compared with the driving GCM simulations, the historical
precipitation over southern China, northwestern China, and
the Tibetan Plateau was improved in most RCMs. The excep-
tions are over northeastern China and northern China, where
a higher performance is shown for the driving global climate

model. In reality, the added value in RCM simulations is
mainly concerned with a better representation of the spatial
variability of surface climate statistics, particularly in areas
with small-scale land surface forcing such as orographic and
coastal features. Thus, the added value in RCM simulations is
commonly significant in regions with fine-scale surface forc-
ing, whereas the performance of RCMs is less improved or
even worse than that of the driving GCM over relatively flat
regions. For instance, Prömmel and Geyer (Prömmel et al.,
2010) also found that some RCMs show larger biases com-
pared to their driving GCM in relatively flat regions sur-
rounding the Alps, especially in summer. In most cases, the
five RCMs perform better than the driving GCM HadGEM2-
AO. It needs to be emphasized that the better model perfor-
mance tends to increase confidence in the future climate pro-
jections from RCMs.
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Figure 6. Observed and simulated monthly mean temperature (a) and precipitation (b) over the five subregions during the 1989–2008 (EVAL)
and 1980–2005 (HIST) periods.

3.2 Multi-RCM future climate projection

3.2.1 Future change in climatology

According to Fig. 7, showing the projections for mean tem-
perature from the driving GCM, RCMs, and the MME, simi-
lar warming trends are detected over the entire domain from
2030 to 2049 under RCP4.5 scenario. All five models project
substantially significant warming while exhibiting different
spatial patterns. The increases in annual temperature by the
MME are 1.3, 1.0, 0.9, 1.2, and 1.3 ◦C over northeastern
China, northern China, southern China, northwestern China,
and the Tibetan Plateau subregions, respectively. The warm-
ing in northern and western China is more significant than
that in southern China, especially in northeastern China and
the Tibetan Plateau, which is similar to the results from previ-
ous studies (Sun et al., 2015; You et al., 2014; Zhou and Yu,
2006). Moreover, the magnitude for the increase in annual

temperature over a given subregion varies with the RCM. For
instance, the projected increase in mean temperature over the
Tibetan Plateau ranges from 0.9 to 1.6 ◦C.

Figure 8 shows the spatial distributions of changes in an-
nual mean precipitation (RCP4.5− baseline). During the pe-
riod 2030–2049, increased precipitation is projected by the
MME and most RCMs over China. Moreover, the projected
spatial pattern from the driving GCM, the MME, and RCMs
is nearly consistent, with the most prominent increase in pre-
cipitation over northern and northwestern China and slightly
increased precipitation over the rest of the regions. The only
exception is the results from WRF, which projected a de-
clined mean precipitation over China. In particular, a wider
range for the change in projected annual precipitation is
shown over the Tibetan Plateau. This is related to the fact
that there is a significant difference in the projected precipi-
tation change between WRF and the other RCMs. Therefore,

www.hydrol-earth-syst-sci.net/22/3087/2018/ Hydrol. Earth Syst. Sci., 22, 3087–3103, 2018



3096 H. Gu et al.: Ensemble future climate projections and uncertainty assessment over China

Figure 7. Projected future changes (RCP4.5− baseline) in surface air temperature by the forcing GCM HadGEM2-AO, the MME, and each
of the five RCMs.

Figure 8. Projected future changes ((RCP4.5− baseline)/baseline× 100 %) in precipitation by the forcing GCM HadGEM2-AO, the MME,
and each of the five RCMs.

the projected change in annual precipitation over the Tibetan
Plateau should be treated with caution. Additionally, oppo-
site signals for projected changes in average precipitation
between the MME and the driving GCM are detected over
southern China, northeastern China, and the Tibetan Plateau
(Table 2). Particularly the differences in projection from the
two methods above are largest at the Tibetan Plateau, up to
about 10 %.

3.2.2 Change in seasonal cycle

The future changes of temperature and precipitation are
characteristic of regionality and seasonality. The ensem-
ble projection (Fig. 9) indicates that the monthly temper-

ature change over five subregions in China ranges from
0.3 to 2.2 ◦C under the RCP4.5 scenario. A more remark-
able warming in cold months from November to March is
detected by all RCMs. The seasonal cycle of temperature
change in MME is also similar to that of the driving GCM
HadGEM2-AO. Most RCMs project positive monthly pre-
cipitation changes for summer (from June to August) over
China, with the exception of the Tibetan Plateau. However,
the projected monthly precipitation change by MME has a
larger magnitude and variability than the driving GCM. This
phenomenon concerns the significance of the model physics
and processes for future climate projection. The configura-
tion of each RCM is shown in Table 1. For each RCM, op-
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Figure 9. Projected future changes in monthly mean temperature and precipitation by the forcing GCM HadGEM2-AO, the MME, and each
of the five RCMs under the RCP4.5 scenario.

timal schemes of the dynamical and physical processes were
determined through model sensitivity analysis (Suh et al.,
2012). In general, convective parameterization is one of the
most important and sensitive processes in a RCM (Huang
and Gao, 2017). Land surface parameterizations, as well as

parameterizations over the ocean, are also very important be-
cause they control the quantity of water vapor flux entering
into the atmosphere from the earth’s surface (Zhao and Li,
2015). Thus, the phenomenon above could be attributed to
the difference in convective parameterization and land sur-
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Figure 10. Fraction of total variance in future temperature (a) and precipitation (b) projections explained by inter-model variability (gray)
and internal variability (white) over the five subregions.

face parameterizations, as well as parameterizations over the
ocean between GCMs and RCMs. On the other hand, the dis-
crepancies between the RCMs and the driving GCM indicate
that the RCM projections are sensitive to local and regional
processes and the corresponding methods incorporated in the
model (Diallo et al., 2012; Saini et al., 2015).

3.2.3 Inter-RCM variability of multi-RCM projections

The uncertainties of regional climate projection arise from
the GCMs, emission scenarios, RCMs, and internal vari-
ability for natural climate. In this study, the regional future

climate is projected by using five RCMs forced with the
same GCM under an intermediate scenario (RCP4.5). Con-
sequently, the contributions of inter-RCM variability and in-
ternal variability to total uncertainty in the projections are
analyzed in this section.

The contributions of the model uncertainty and natural cli-
mate internal variability to the total prediction uncertainty
are estimated by the method proposed by Hawkins and Sut-
ton (2009). The results for the five subregions are shown in
Fig. 10. The relative importance of model uncertainty in-
creases with prediction lead time over all subregions. For
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Table 2. The future changes in average temperature (T ; ◦C) and precipitation (P ; %) for the five subregions. The ensemble averages for each
statistic are given in the second line. The projections by the forcing GCM are given in the last line.

WRF MM5 HadGEM3-RA RegCM RSM Ensemble HadGEM2-AO

Northeastern China T (◦C) 0.2 2.7 1.4 1.4 1.1 1.3 0.8
P (%) −21.7 8.2 13.0 4.4 7.1 1.5 −0.4

Northern China T (◦C) 0.3 1.7 1.1 1.0 1.0 1.0 0.8
P (%) −1.5 15.1 3.1 10.2 3.3 6.1 4.9

Southern China T (◦C) 0.5 1.5 1.0 0.8 0.8 0.9 0.7
P (%) −14.6 −1.6 4.8 4.9 1.3 −1.5 2.3

Northwestern China T (◦C) 1.3 0.8 1.5 1.3 1.1 1.2 1.2
P (%) −27.0 19.4 2.2 4.7 8.9 3.6 7.2

Tibetan Plateau T (◦C) 0.9 1.4 1.2 1.3 1.6 1.3 1.4
P (%) −31.6 −17.8 2.4 6.4 7.4 −7.8 2.1

temperature, the model uncertainty is the primary source
of uncertainty over northeastern China, northwestern China,
and the Tibetan Plateau from 2030 to 2049, reaching up
to 70 %. The model uncertainty minimally contributes (ap-
proximately 40 %) to the total uncertainty over northern and
southern China before the middle of the 21st century. For
the uncertainty in projected precipitation, the internal vari-
ability is the dominant uncertainty source over most regions,
except for the Tibetan Plateau, where the model uncertainties
reached up to 60 %. The uncertainties come from the driving
GCMs, and the emission scenarios are not discussed in this
study, although they have been recognized as important com-
ponents for total uncertainty (Déqué et al., 2012). Further re-
search on uncertainty quantification on the basis of different
GCMs, RCMs, and emission scenarios is needed in the fu-
ture.

4 Summary and conclusions

In this research, five RCM models, which are simulated
within the CORDEX-EA initiative at 50 km resolution, with
boundary forcing from a CMIP5 global model, applying the
RCP4.5 scenario, are employed to derive the future climate
change signal for China and five smaller selected investiga-
tion areas. Meanwhile, the contributions of the model uncer-
tainty and natural climate internal variability to the total pre-
diction uncertainty are quantified.

The control runs of CORDEX-EA RCMs revealed an
overall reasonable representation of the mean climate prop-
erties when compared with the observational gridded dataset.
All RCMs generally provide warm biases, whereas the MME
demonstrates the overall best performance, with less than
a 1 ◦C annual average temperature bias over most areas
in China. Similarly, the MME outperformed the individual
RCMs in reproducing the observed spatial pattern of precip-
itation. Moreover, five RCMs perform better than the driv-

ing GCM HadGEM2-AO in reproducing annual and seasonal
precipitation over most subregions. Therefore, it is concluded
that the MME constructed based on the set of RCMs from
CORDEX-EA can be used to provide useful information on
climate projections over East Asia.

For 2030 to 2049, MME indicated consistent warming,
ranging from 0.9 to 1.6 ◦C, in the entire domain and more
pronounced warming was detected in northern and west-
ern China. Seasonal temperature changes drastically in cold
months, which is similar to that of the driving GCM. In ad-
dition, the annual precipitation is likely to increase in most
of the subregions. The projected spatial pattern for annual
precipitation is characterized by a prominent increase over
northern and northwestern China and slightly increased pre-
cipitation over the rest of the regions. Moreover, precipitation
in summer months is predicted to consistently increase over
the entire domain, with the exception of the Tibetan Plateau.
It should be noted that the projected monthly precipitation
change by MME has a larger magnitude and variability than
the driving GCM.

This study identified the contributions of model uncer-
tainty and internal variability. The uncertainty in projected
temperature mainly arises from the internal variability over
northern and southern China, whereas the model uncertainty
is clearly dominant over the other three subregions, explain-
ing approximately 70 % of the total uncertainty. For precipi-
tation, the internal variability is dominant over most regions
except for the Tibetan Plateau, in which model uncertainties
reached up to 60 %. Model uncertainty also increases with
prediction lead time over all subregions. RCM simulation re-
sults are also influenced by the internal physics and bound-
ary conditions from GCMs, as discussed in others’ studies
(Mariotti et al., 2011; Syed et al., 2012). More reliable future
climate information and uncertainty quantification could be
provided by coupling large ensembles of GCMs and RCMs
under different emission scenarios.
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