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Abstract. Hydropower makes up nearly half of Sweden’s
electrical energy production. However, the distribution of the
water resources is not aligned with demand, as most of the in-
flows to the reservoirs occur during the spring flood period.
This means that carefully planned reservoir management is
required to help redistribute water resources to ensure opti-
mal production and accurate forecasts of the spring flood vol-
ume (SFV) is essential for this. The current operational SFV
forecasts use a historical ensemble approach where the HBV
model is forced with historical observations of precipitation
and temperature. In this work we develop and test a multi-
model prototype, building on previous work, and evaluate its
ability to forecast the SFV in 84 sub-basins in northern Swe-
den. The hypothesis explored in this work is that a multi-
model seasonal forecast system incorporating different mod-
elling approaches is generally more skilful at forecasting the
SFV in snow dominated regions than a forecast system that
utilises only one approach. The testing is done using cross-
validated hindcasts for the period 1981-2015 and the results
are evaluated against both climatology and the current sys-
tem to determine skill. Both the multi-model methods con-
sidered showed skill over the reference forecasts. The ver-
sion that combined the historical modelling chain, dynamical
modelling chain, and statistical modelling chain performed
better than the other and was chosen for the prototype. The
prototype was able to outperform the current operational sys-
tem 57 % of the time on average and reduce the error in the
SFV by ~ 6 % across all sub-basins and forecast dates.

1 Introduction

The spring flood period (sometimes referred to as the spring
melt or freshet period in the literature) is of great impor-
tance in snow dominated regions like Sweden where hy-
dropower accounts for nearly half of the country’s electri-
cal energy production (Statistiska centralbyran, 2016). Be-
tween 55 and 70 % of the annual inflows to reservoirs in the
larger hydropower producing rivers occur during this rela-
tively short period, typically from mid-April/early-May to
the end of July. This means that the majority of the annual
water resources available for hydropower production would
only be available to producers during this period if it were
not regulated through carefully planned reservoir manage-
ment. This reservoir management is important as the energy
demand is out of phase with the natural availability of the
water resources; typically demand is higher during the colder
months when the inflows are lower and vice versa. Therefore
the goal is to redistribute the availability of these resources
from the spring flood period to other times of the year when
electricity demand is higher i.e. during the six months of
colder winter, while maintaining the balance between a suf-
ficiently large volume of water for optimal production and
enough remaining capacity for safe flood risk management
(Olsson et al., 2016). The typical strategy for operators in
Sweden is to have reservoirs at around 90 % capacity at the
end of the spring flood which is then ideally maintained until
the beginning of winter. To achieve this, operators require re-
liable seasonal forecast information to help them in planning
the operations both leading up to and during the spring flood
period.
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The sources of predictability for hydrological seasonal
forecasts come from the initial hydrological conditions i.e.
information relating to the water stores within the catchment
(e.g. Wood and Lettenmaier, 2008; Wood et al., 2015; Yossef
et al., 2013), and also from knowledge of the weather dur-
ing the forecast period i.e. seasonal meteorological forecasts
(e.g. Bennet et al., 2016; Doblas-Reyes et al., 2013; Wood
et al., 2015; Yossef et al., 2013). Hydrological seasonal fore-
casts attempt to leverage at least one of these sources of pre-
dictability to make skilful predictions of future streamflow.

In practice, there are two predominant approaches to mak-
ing hydrological forecasts at the seasonal scale: statistical
approaches and dynamical approaches (see Sect. 2.1.4 and
2.1.5 for more information regarding how these approaches
were implemented in the context of this work). Statistical ap-
proaches utilise empirical relationships between predictors
and a predictand, typically streamflow or a derivative thereof
(e.g. Garen, 1992; Pagano et al., 2009). These predictors can
vary greatly in type from local hydrological storage variables
like snow and groundwater storage (e.g. Robertson et al.,
2013; Rosenberg et al., 2011), to local and regional meteoro-
logical variables (e.g. Cordoba-Machado et al., 2016; Olsson
et al., 2016), or even large scale climate data such as ENSO
(EI Nifo Southern Oscillation) indices (e.g. Schepen et al.,
2016; Shamir, 2017). All, however, are trying to leverage
the predictability in these predictors that originate from one
of the two aforementioned sources. Dynamical approaches
use a hydrological model, typically initialised with observed
data up to the forecast date so that the model state is a rea-
sonable approximation of the initial hydrological conditions,
and then force it with either historical observations (called
ensemble streamflow prediction or ESP; e.g. Day (1985)) or
using data representative of the future meteorological condi-
tions such as general circulation model (GCM) outputs (e.g.
Crochemore et al., 2016; Olsson et al., 2016; Yuan et al.,
2013, 2015; Yuan, 2016). Attempts to improve these types
of approaches have involved bias adjusting the GCM outputs
(e.g. Crochemore et al., 2016; Lucatero et al., 2017; Wood et
al., 2002; Yuan et al., 2015), bias adjusting the hydrological
model outputs (e.g. Lucatero et al., 2017), or a combination
of both (e.g. Yuan and Wood, 2012). Another dynamical ap-
proach is the well-established ESP method (Day, 1985). This
is similar to the previous approach (GCM); however, instead
of using GCM outputs to force the hydrological model it uses
an ensemble of historical data. This approach is perhaps one
of the most widely used methods and is still the subject of
new research. Recent work has looked at conditioning the en-
sembles before using them, which can be done using GCM
outputs (e.g. Crochemore et al., 2016), climate indices, and
circulation pattern analysis (e.g. Beckers et al., 2016; Olsson
et al., 2016; Candogan Yossef et al., 2017).

The current practice at the Swedish Meteorological and
Hydrological Institute (SMHI) for seasonal forecasts of
reservoir inflows is the ESP approach. It assumes that histori-
cal observations of precipitation and temperature are possible

Hydrol. Earth Syst. Sci., 22, 2953-2970, 2018

K. Foster et al.: Development and testing of a seasonal forecast prototype for predicting SFV in Sweden

representations of future meteorological conditions and are
used to force the HBV hydrological model (e.g. Bergstrom,
1976; Lindstrom et al., 1997) to give an ensemble forecast
that has a climatological evolution from the initial conditions.
A number of attempts have been made in the past to improve
the performance of these spring flood forecasts with limited
success (Arheimer et al., 2011) demonstrating that these sea-
sonal forecasts are already of a high quality. Work by Olsson
et al. (2016) on improving these forecasts was able to realise
reasonable improvements using a multi-model approach. By
combining a statistical approach, dynamical approach and an
analogue approach (conditioned ESP) they were able to show
a ~ 4 % reduction in the forecast error of the spring flood vol-
ume (SFV). The purpose of this paper is to continue on and
update the work started by Olsson et al. (2016) regarding
developing and evaluating a hydrological seasonal forecast
system prototype for forecasting the spring flood volumes in
Sweden.

This paper is organised as follows. Section 2 outlines the
prototype, including the individual model chains, the exper-
imental set-up, the methods and tools implemented, and the
study area and data used in this work. Section 3 presents and
discusses the cross-validated evaluation scores for the proto-
type, first with reference to climatology and then with refer-
ence to the current operational system that is in use at SMHI.
Section 4 concludes with the main findings and a brief out-
look for future work.

2 Materials and methods

2.1 The multi-model system and the individual
modelling chains

In this section we present the modelling approaches used in
this work. These are based on those explored by Olsson et
al. (2016) with some modification to facilitate their use in an
operational environment. First we briefly present the multi-
model prototype (Sect. 2.1.1) followed by a brief overview
of the individual modelling chains used in the multi-model
and why we chose them (Sect. 2.1.2-2.1.5). For more infor-
mation regarding the individual modelling chains readers are
referred to Olsson et al. (2016) and the accompanying Sup-
plement.

2.2 The multi-model ensemble (ME)

The prototypes developed in this work build on an approach
first proposed by Foster et al. (2010), and later improved
upon and first tested by Olsson et al. (2016). The aim is to
adapt their methodology for use in an operational environ-
ment and then evaluate the resulting prototype against the
current operational system using cross-validated hindcasts
for 84 gauging stations in northern Sweden (see Sect. 2.6).
Four different modelling chains were considered when de-
veloping the prototype (Sect. 2.1.2-2.1.5). The performances
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of different combinations of these four were tested. A com-
bination of all four modelling chains was not considered as
the analogue model chain is a subset of the historical model
chain.

Figure 1 shows the generalised schematic of the two proto-
types, ME,qs and MEpg4s (Where the subscripts refer to the in-
dividual modelling chains making up each multi-model), in-
cluding where the current methodologies differ significantly
from those in previous works. These differences are dis-
cussed in the relevant modelling chain sections below. The
prototypes are multi-model ensembles of the outputs from
the three respective individual modelling chains. These out-
puts are pooled together rather than using an asymmetric
weighting scheme due to the lack of data points, a total of
35 spring flood events (hindcast period was 1981-2015, see
Sect. 2.6), from which to derive a robust weighting scheme.
The simple weighting scheme used by Olsson et al. (2016)
was tested but, other than improving the ensemble sharpness,
did not offer an improvement over the pooling approach.

2.2.1 Historical ensemble (HE)

The historical model chain, the dark blue chain third from
the left in Fig. 1, is an ensemble forecast made by forcing
a rainfall-runoff model with historical observations of pre-
cipitation and temperature. This approach is often referred
to as ESP (ensemble streamflow prediction) in the literature
but we chose not to as we feel our terminology is more de-
scriptive in the context of this work. This is the current op-
erational seasonal forecasting practice at SMHI. The HBV
model (Bergstrom, 1976; Lindstrom et al., 1997) is initialised
by using observed meteorological inputs (P and T') to force
the model up to the forecast date so that the model state
reflects the current hydro-meteorological conditions. Then,
typically all available historical daily P and T series for the
period from the forecast issue date to the end of the forecast-
ing period are used as input to HBV, generating an ensemble
of forecasts that are climatological in their evolution from the
initial conditions. The historical ensemble (HE) is used as the
reference ensemble unless otherwise stated.

The HBV is run one river system at a time and the model
outputs are later regrouped into three clusters (Sect. 2.6).
Typically only historical data prior to the forecast date are
used to force the model, however to allow for a more robust
cross validation all data including the years after the forecast
date were used (excluding the year in question of course).
Unfortunately, the scope of this work did not allow for the
recalibration of the HBV model before each cross-validated
hindcast. This will potentially inflate the performance of the
model for the hindcasts of years that were used in the cali-
bration of the model. This will affect the analogue and dy-
namical model chains too as they also incorporate the HBV
model in their set-up.
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2.2.2 Analogue ensemble (AE)

The analogue model chain, the light blue chain furthest to
the left in Fig. 1, is a subset of the HE. The hypothesis is that
it is possible to identify a reduced set of historical years (an
analogue ensemble) that describes the weather in the com-
ing forecasting period better than the full historical ensem-
ble used in HE. In this work the circulation pattern approach
used by Olsson et al. (2016) was omitted due to data avail-
ability issues making it impractical for operational appli-
cations. Additionally, their teleconnection approach was re-
vised to take advantage of the findings by Foster et al. (2018)
where they identified which teleconnection patterns are re-
lated to the SFV and for which period of their persistence
prior to the spring flood this connection is strongest. The tele-
connection indices they identified are the Arctic Oscillation
(AO) and the Scandinavian pattern (SCA) and the periods of
persistence for these indices, expressed as the index mean for
the identified period, are the seven and eight months leading
up to the spring flood respectively.

The persistence for each teleconnection index is calcu-
lated from the beginning of the aforementioned period to one
month prior to the forecast date (a limitation imposed by data
availability), similarly this was done for all years in the cli-
matological ensemble. If the values of these indices are con-
sidered to be coordinates in Euclidean space we define ana-
logue years as those years with positions within a distance
of 0.2 units in the Euclidean space from the position of the
forecast year. The threshold is a compromise between be-
ing small enough to ensure that the climate set-up is indeed
similar to the year in question and being large enough to ac-
tually be able to capture some analogues from the historical
ensemble. The selection of the analogues is done at the re-
gional scale, by cluster (Sect. 2.6), and these selections are
applied to the associated sub-catchments in turn.

Similar to the HE, the analogue method makes use of years
both before and after the hindcast year for the cross-validated
hindcasts.

2.2.3 Dynamical modelling ensemble (DE)

The dynamical model chain, the dark red chain furthest to
the left in Fig. 1, is similar to the HE; an adequately ini-
tialised HBV model is forced by an ensemble of seasonal
forecasts of daily P and T from the ECMWEF IFS system 4
(Sect. 2.7). A change to previous work has these daily P and
T data bias adjusted first before being used to force HBV.
The bias adjustment method used is a version of the distribu-
tion based scaling approach (DBS; Yang et al., 2010) which
has been adapted for use on seasonal forecast data. DBS is
a quantile mapping bias adjustment method where meteoro-
logical variables are fitted to appropriate parametric distribu-
tions (e.g. Berg et al., 2015; Yang et al., 2010). For precip-
itation, two discrete gamma distributions are used to adjust
the daily seasonal forecast values, one for low intensity pre-
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Figure 1. Schematic of the multi-model forecast system. The three individual model chains that are included in the multi-model are (from
left to right) the dynamic model chain (red lines), the statistical model chain (orange lines), and the historical (dark blue lines) or analogue
(light blue lines) model chain. The dashed boxes labelled (a) and (b) indicate the parts of the system that have non-trivial changes from the

multi-model described in Olsson et al. (2016).

cipitation events (< 95th percentile) and another for extreme
events (> 95th percentile). For temperature, a Gaussian dis-
tribution is used to adjust the daily seasonal forecast values.

Observed (Sect. 2.6) and seasonal forecast (Sect. 2.7) time
series of P and T spanning the relevant forecast time frame
(e.g. January—July for forecasts initialised in January) and for
the reference period 1981-2010 are used to derive the adjust-
ment factors to transform the seasonal forecast data to match
the observed frequency distributions. First the precipitation
data is adjusted and then the temperature data. The latter is
done separately for dry and wet days in an attempt to pre-
serve the dependence between P and T (e.g. Olsson et al.,
2011; Yang et al., 2010). Adjustment factors are calculated
for each calendar month as the distributions can have differ-
ent shapes depending on the physical characteristics of the
precipitation processes that are dominant. It should be em-
phasised that the adjustment parameters were estimated us-
ing much of the same data to which they were applied. Ide-
ally the parameters would be estimated using data that does
not overlap the data which is being adjusted. However, this
was not possible in the scope of this work.

There have recently been some criticism voiced regard-
ing the applicability of quantile mapping for bias adjusting
seasonal data (e.g. Zhao et al., 2017). This criticism points
out that although quantile mapping approaches are effective
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at bias correction they cannot ensure reliability in forecast
ensemble spread or guarantee coherence. Unfortunately, the
scope of this work did not allow the testing of other bias ad-
justment methods but the criticism is noted and further work
is planned to address these points.

These bias adjusted data are then converted into HBV in-
puts by mapping them from their native grid onto the HBV
sub-catchments. The mapping is done by areal weighting and
the resulting sub-catchment average P and T values are then
adjusted to represent different altitude fractions within the
catchment. These data are consequently used to force the
HBYV model from the same initial state as that used in the
HE procedure.

No changes to this methodology are needed to accommo-
date the cross-validated hindcasting as done with the other
model chains.

2.2.4 Statistical modelling ensemble (SE)

The statistical model chain, the orange chain second from
the left in Fig. 1, is an ensemble forecast produced by down-
scaling forecasted or modelled large-scale variables (predic-
tors) to the SFV for each cluster (predictand). The downscal-
ing is done using an SVD approach (singular variable de-
composition). The predictors are three large scale circulation
variables (Sect. 2.7) and the modelled snow depths from the
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HBYV initial conditions. The outputted ensembles of SFV are
combined using a simple arithmetic weighting system. The
normalised squared covariance between the four predictors
and the predictands are ranked for each forecast initialisation
date, and weights between 0 and 1 are applied to the different
predictors according to their rank. The lowest ranked predic-
tor is assigned a weight of 0.1 (= 1/10), the next lowest pre-
dictor is assigned a weight of 0.2 (= 2/10), and so on until all
four have been assigned a weight. The reason that an asym-
metric weighting scheme is used here is that there is physical
support for it. Early in the season the snowpack, which is
the majority contributor to the spring flood volume, is a frac-
tion of what it will be and is still accumulating. Therefore,
the coming meteorological conditions, which dictate snow-
pack evolution, are more important earlier on in the season
than they are later giving physical support for asymmetric
weighting. Additionally, the relative importance of these me-
teorological predictors with respect to each other differs with
time too.

The relative simplicity of the statistical model chain means
that it was possible to retrain the model before each hindcast
during the cross-validation calculations allowing for no over-
lap between the calibration and validation periods.

2.3 Defining the spring flood

In previous works the spring flood period has often been de-
fined in terms of calendar months e.g. May—June—July (Nils-
son et al., 2008; Foster and Uvo, 2010; Arheimer et al., 2011;
Olsson et al., 2016; Foster et al., 2016). This definition of the
spring flood period is not ideal as it does not take the interan-
nual and geographical variations in the timing of the spring
flood onset into account. In this work we propose an im-
provement to this practice where we define the spring flood
to be the period from the onset date to the end of July.

We define the onset as the nearest local minima in the hy-
drograph before the date after which the inflows are above the
90th percentile, with reference to the inflows during the first
80 days of the current year, for a period of at least 30 days
(Fig. 2). For forecasts made after January i.e. those made in
February, March, April, and May, the missing inflow data
between the 1 January and the forecast date are filled with
simulated inflow data from the HBV model using observed
precipitation and temperatures as input data.

A drawback to this definition is that it is not comprehen-
sive as the end of the spring flood is not defined according to
the hydrograph but rather by date. The reason for not defining
the end of the spring flood objectively is twofold. Firstly, the
forecast horizon for the ECMWE-IFS is seven months which
means that forecasts initialised in January may not encom-
pass the entire spring flood period. Secondly, a robust and
objective definition of what constitutes the end of the spring
flood was difficult to realise within the scope of this work.
Further work is needed to resolve this in a more satisfactory
manner.
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2.4 Experimental set-up

The challenge in this work was to perform a robust eval-
uation on a limited dataset (35 spring floods, 1981-2015)
while minimising the risk of unstable or over fitted statis-
tics. Therefore, a leave-one-out cross-validation (LOOCYV)
protocol was adopted. Additionally, as it was not practical to
recalibrate the HBV model before each step of the LOOCV
process; the statistical model uses the same periods for train-
ing as those used to calibrate and validate the HBV model.
LOOCYV is a model evaluation technique that uses n — 1 data
points to train the models and the data point left out is used
for validation. This process is repeated n times to give a val-
idation dataset of length n. This allows for a more robust
evaluation with a limited dataset and also gives one the abil-
ity to sample more of the variability in the training period
than if a traditional validation were performed. The second
point is especially advantageous for evaluating the statistical
model which is particularly sensitive to situations that were
not found within the training period. LOOCV was applied to
the individual model chains.

To assess the relative skill for different lead times, we
evaluate hindcasts issued on the 1 January (Jan), 1 February
(Feb), 1 March (Mar), 1 April (Apr), and 1 May (May) for
the spring floods 1981-2015. The evaluation of performance
is done in terms of how well the SFV is forecast.

2.5 Evaluation

As it has been mentioned above, we are interested in the abil-
ity of a multi-model ensemble’s ability to forecast the SFV at
differing lead times i.e. forecasts initialised on the first of the
month for the months of January through May. It was sug-
gested by Cloke and Pappenberger (2008) that for a rigorous
assessment of the quality of a hydrological ensemble predic-
tion system (HEPS) it is not only important to select appro-
priate verification measures but also to use several different
measures so that different properties of the forecast skill can
be estimated, resulting in a more comprehensive evaluation.

The evaluations in this paper are designed to answer the
following questions:

— Can the forecasts improve on the reference forecast er-
ror?

— How often do the forecasts perform better than the ref-
erence forecast?

— Are the forecasts better at capturing the interannual vari-
ability than the reference forecast?

— Are the forecasts better at discriminating between
events and non-events than the reference forecast?

— Are the forecasts sharper than the reference forecast?

— Are the forecasts more sensitive to uncertainty that the
reference forecasts?
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Figure 2. Schematic of how the spring flood is defined. The spring flood is the period between the onset and the last day of July (day 211/212
since the 1 January). The hydrograph from which the spring flood period is to be derived (blue line), the onset date (red line), and the 90th

percentile of the inflow for first 80 days (dashed line).

The verification measures used to answer these questions are
described below and summarised in Table 1.

2.5.1 Mean absolute error skill score (MAESS)

One of the most commonly published scores, even the rec-
ommended method, when evaluating HEPS is the continu-
ous rank probability score (CRPS, Hersbach, 2000). How-
ever, since we have a limited number of data points, only
35 cross-validated hindcasts per sub-basin, and the CRPS
compares distributions, we deemed its use unsuitable for
this work. We instead chose to use the mean absolute error
(MAE) to evaluate general forecast performance as the CRPS
collapses to the MAE for deterministic forecasts (Hersbach,
2000). Therefore, by assuming the ensemble mean to be the
deterministic forecast a MAE skill score (MAESS) can be
expressed as

MAE¢
MAESS=1— ——,

MAE, W

where f and r denote forecast and reference, respectively.
MAE is furthermore defined as

1 n
MAE:—Z

n =1

SFVy — SFV}

, 2
SFV) @

where y denotes year, n denotes the total number of years,
and o denotes observations. The MAESS has a range be-
tween negative infinity and one with positive values indicat-
ing skill over the reference forecast and a value of one a per-
fect forecast.
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2.5.2 Frequency of years (FY™)

In their work Olsson et al. (2016) proposed FY™ as a compli-
mentary performance measure to scores such as the MAESS.
They are complimentary in that the MAESS is a measure of
how much better the forecast is than the reference forecast
while FY™ is the frequency or how often the forecast is better
i.e. how often the absolute error is lower. FY™T scores range
from 0 to 100 % where values above 50 % indicate that the
multi-model forecast has skill over the reference forecast. By
assuming the ensemble mean to be the deterministic forecast
FY™ is expressed as

100

FYt=— Y
—D 3)

y=1

where H is the Heaviside function defined by

0, AbsE} < AbsE;
Y — ’ t f
" _[ 1, AbsE} > AbsE; @

and AE is the absolute error.
2.5.3 Nash-Sutcliffe model efficiency (NSE)

The NSE (Nash and Sutcliffe, 1970) is a normalised statistic
that determines the relative magnitude of the residual vari-
ance compared to the measured data variance. The NSE has
a range from negative infinity to one with one being a perfect
match and values above zero denoting that the forecast has
skill over climatology. For this work it can be interpreted as
how well the forecasted SFV matches the observed SFV year
on year and as such is complimentary to MAESS and FY ™.
By assuming the ensemble mean to be the deterministic fore-
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Table 1. The validation metrics used to evaluate the multi-model performance. The threshold for skill is 50 for FY and 0 for all the other

metrics.
Name Equation Description
Mean absolute error skill score MAESS=1- Mﬁgf Measure of the model’s general performance;
(MAESS) it quantifies the relative forecast error against a
reference forecast.
n

. + + _ 100 ) . ’Q .3

Frequency of years (FY™) FY" =7 > H’, Measure of the model’s general performance; it

=1
where H is };he Heaviside function de-
fined by
0,AE; < AE}
1LAE} > AE]
AE is the absolute error.

HY =

quantifies how often the forecast outperforms a
reference forecast.

Nash—Sutcliffe efficiency (NSE)

n

> (SFV), —SFVY)?

y=l1

NSE=1- 2 - S
> (SFV},—SFVps)
y=1

Measure of the model’s general performance; it
quantifies the model’s residual variance against
a reference forecast’s variance.

Relative operating characteristic skill
score (ROCSS)

ROCSS =2-AUC -1
where AUC is the area under the curve
AUC =

nEl (FRY—FRY~1) (HRY+HR )
2 2

y=1
where FR is the false alarm rate and
HR is the hit rate.

Measure of the model’s probabilistic perfor-
mance; it quantifies the model’s ability to dis-
criminate between an event and a non-event
given a specific threshold.

Interquartile range skill score (IQRSS)

IQRSS = 1 — }8%,

where IQR is the irnterquartile range.

Measure of the forecast sharpness; it quantifies
the relative spread in the forecast against a ref-
erence forecast.

Uncertainty sensitivity skill score
(USS)

USS = (pr=pr) ,

(I=pr)
where p is the Spearman rank correla-
tion between the IQR and absolute er-

Measure of the model’s sensitivity to uncer-
tainty; it quantifies the correlation between

TOr1.

forecast sharpness and absolute error

cast the NSE can be expressed as

(SFV} —SFVY)?
NSE=1-1 : 5)
(SFV) — SFV,)’

M=

Il
-

M=

Il
<N

y
To assess the skill of the multi-model ensemble, with respect

to the reference historical ensemble, the difference in their
NSE is calculated as

ANSE = NSE; — NSE;, )

where ANSE > 0 indicates that the multi-model forecast has
skill over the reference forecast.

2.5.4 Relative operating characteristic skill score
(ROCSS)

The ROCSS is a skill score based on the area under the curve
(AUC) in a relative operating characteristic diagram. ROCSS
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values below zero indicate the forecast has no skill over cli-
matology while values over zero indicate skill with one be-
ing a perfect forecast. The ROC diagram measures the abil-
ity of the forecast ensemble to discriminate between an event
and a non-event given a specific threshold. For this work the
ROCSS were calculated for the upper tercile (x > 66.7 %),
middle tercile (66.7 % < x <33.3 %), and lower tercile (x <
33.3%). These scores estimate the skill of ensemble fore-
casts to distinguish between below normal (BN), near nor-
mal (NN) and above normal (AN) anomalies. Hamill and
Juras (2006) define the ROC skill score to be

ROCSS =2-AUC -1, @)

where AUC is the area under the curve when mapping hit
rates against false alarm rates

ntl (FAR, — FAR,_;) (HR, + HR,_
AUC:Z( Y ylz)( y+ yl) (8)
y=1
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and FAR is the false alarm rate and HR is the hit rate. False
alarms are defined as both the false positive and false nega-
tive forecasts, or type I and type II errors. Hits are defined as
correctly forecasted events.

2.5.5 Interquartile range skill score (IQRSS) and
uncertainty sensitivity skill score (USS)

Sharpness is an intrinsic attribute to HEPS, giving an indica-
tion of how large the ensemble spread is. Forecasts ensem-
bles that are too spread are overly cautious and have limited
value for an end user due to the uncertainty of the true mag-
nitude of the SFV; conversely ensembles that are not spread
enough are overly confident and may not be a true represen-
tation of the uncertainty, thus giving the end user false confi-
dence in the forecast (Gneiting et al., 2007). For this work the
sharpness is computed as the difference between the 75th and
25th percentiles of the forecast distribution or the interquar-
tile range (IQR). The IQRSS is skill score based on the IQR
and is a measure of how much better, i.e. sharper, the forecast
ensemble is over the reference ensemble, values above zero
indicate that the forecast ensemble is an improvement over
the reference ensemble. The IQRSS is expressed as

IQR;
IQR,"

As mentioned above, sharpness can be misleading. A well-
designed and calibrated ensemble should give the user an
idea of the uncertainty of the forecast conveyed through the
relative sharpness of the ensemble. Thus it follows that the
IQR should be positively correlated to the absolute fore-
cast error; a larger (smaller) IQR would indicate to the user
that there is a larger (smaller) uncertainty in the SFV fore-
cast. The uncertainty sensitivity skill score (USS) can be ex-
pressed as the skill score of the Spearman rank correlations
between the IQR and the absolute deterministic error as fol-
lows:

IQRSS = 1 — ©)

Uss = Lr=pP. (10)

(I—=pr)

where p is the Spearman rank correlation.
2.6 Uncertainty estimation

Due to the limited sample size of data available in this work
a bootstrap approach is employed to estimate the verifica-
tion measures and determine whether they are statistically
significant. Again due to data limitations a more circumspect
significance level is prudent due to the course nature of the
resulting statistics; we chose to set the significance level at
0.1 resulting in a 90 % confidence interval between the 5th
and 95th percentiles. The cross-validated hindcast ensembles
were sampled, allowing for repetition, 10 000 times to calcu-
late the verification measures. We define a result to be sta-
tistically significant if the 5th (95th) percentile of the boot-
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strapped ensemble being evaluated does not overlap the 95th
(5th) percentile of the bootstrapped reference ensemble.

2.7 Study area and local data

The sub-basins used in this work are divided into three
groups using the clusters defined by Foster et al. (2016),
namely clusters, st 82 and $3 (Fig. 3). Sweden was di-
vided into five regions of homogeneous streamflow variabil-
ity: three clusters located in the northern parts of the country,
where snow dominates the hydrological processes (northern
group); and two located in the southern part, where rain dom-
inates the hydrological processes (southern group). For the
purposes of this work we are only interested in the north-
ern group. The numbers of sub-basins in each of these clus-
ters are 25, 19, and 40 respectively. The S in the cluster’s
designation denotes that the hydrological regimes are domi-
nated by snow processes and the superscripts give the relative
strength of the signal from these processes in the hydrolog-
ical regime. During the winter months most of the precipi-
tation that falls within these basins is stored in the form of
a snowpack and does not immediately contribute to stream-
flow. During the warmer spring months, when the tempera-
tures rise above freezing, these snowpacks begin to melt (typ-
ically around mid- to late-April), which results in a period
of high streamflow commonly referred to as the spring flood.
We focus on forecasts of the accumulated streamflow volume
during this period, or SFV.

For this work, 84 sub-basins from seven hydropower pro-
ducing rivers in northern Sweden (Fig. 3) were used for
the development and testing of the multi-model prototype.
The sub-basins utilised include those in the current opera-
tional seasonal forecast system at SMHI plus the two unreg-
ulated sub-basins used by Olsson et al. (2016). Daily reser-
voir inflows for each sub-basin are available from the SMHI
archives starting from 1961 to the end of the last hydrological
year; the data used in our work are for the period 1981-2015
due to some of the other datasets used in this study only be-
ing available from 1981. These inflows are derived by adding
the local streamflow to the change in reservoir storage then
subtracting the streamflow from upstream basins as follows:

Qin = AS + Qlocal — Qupstream~ (11)

Missing inflow data were filled by a multiple linear regres-
sion approach using simulated inflows for the sub-basin and
observations from the surrounding sub-basins as predictors.
Of the 84 sub-basins used in this work 68 had less than 1 %
missing data (50 of these had no missing data), four had 1-
10 % missing data, five had 20-30 % missing data, four had
3040 % missing data, and three had 61, 63 and 71 % miss-
ing data, respectively. As these sub-basins are a part of the
current operational forecast system they were included in the
study despite some of them having a significant missing data
fraction. The average NSE for the data used for filling was
0.70 (the NSE scores for the intervals above were 0.67, 0.75,

www.hydrol-earth-syst-sci.net/22/2953/2018/



K. Foster et al.: Development and testing of a seasonal forecast prototype for predicting SFV in Sweden 2961

(@)

(b)

Figure 3. Map showing (a) the domain for the predictors used in the SE modelling chain, (b) the domain of the seasonal forecast data used
in the DE modelling chain, and the location of the forecasts sub-basins used in this work. The sub-basins shown in blue belong to cluster S!,
those shown in green belong to cluster 52, and those shown in red belong to cluster S 3

0.77, 0.61, and 0.73, respectively) which suggests that this
approach is acceptable.

Daily observations of precipitation and temperature data
used in this work were obtained from the PTHBV dataset
from SMHI (Johansson, 2002). The PTHBV dataset is a
4 x 4km gridded observation dataset of daily precipitation
and temperature data that has been created by optimal inter-
polation with elevation and wind taken into account. These
data are available from 1961 to the present.

Table 2 gives a summary of some basic basin characteris-
tics and statistics regarding the SFV as well as selected per-
formance measures for the HBV rainfall-runoff model for
the sub-basins in each cluster. Although, the ranges in sub-
basin areas in the different clusters are similar, except for the
maximum in S, the SFV statistics increase with each clus-
ter when looking from cluster S' to S°. This is due to the
effects that elevation and latitude have on how much snow
processes dominate the hydrological regimes in each cluster.
Sub-basins in cluster S! are typically at a latitude or eleva-
tion lower than those in clusters S2 and S°, similarly to the
sub-basins in §? with respect to those in 3. The ranges in the
NSE and the relative MAE imply that, in general, the HBV
model is adequately or well calibrated for most sub-basins,
however there are some sub-basins for which the HBV model
appears not to be well calibrated and for which there is some
scope for improvement. This can be somewhat misleading as
these data are a function of three different observations and
as such can be subject to noise and uncertainties.
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2.8 Driving Data
2.8.1 Teleconnection indices

This work uses monthly indices of the Arctic Oscillation and
Scandinavian pattern collected from the Climate Prediction
Center (Climate Prediction Center, 2012) for the period Oc-
tober 1960 to May 2015.

2.8.2 Seasonal data

The ECMWF seasonal forecast system model from system
4 (Molteni et al., 2011) is the cycle36r4 version of ECMWF
IFS (Integrated Forecast System) coupled with a 1° version
of the NEMO ocean model. The seasonal forecasts from the
ECMWEF IFS were used in the following two different forms:
a field of seasonal monthly averages as input to the statistical
model, and individual grid points of daily data for input into
the HBV model. The choice to use ECMWF data is primarily
a practical one. The ECMWEF is an established and proven
producer of medium range forecasts and SMHI already has
operational access to their products.

The seasonal forecast averages are the seasonal means for
each ensemble member of the different predictors which had
a domain covering 75° W to 75° E and 80 to 30° N (Fig. 2)
with a 1° x 1° resolution. For each predictor only the first
15 ensemble members were used in this work. This is be-
cause the number of ensemble members available in the
ECMWEF seasonal forecast is limited to 15 for the hindcast
period while the operational seasonal forecast ensemble has
51 members. The predictors considered in this part of the
work were the following: 850 hPa geopotential, 850 hPa tem-
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Table 2. Basic information on the study area including overall performance of the HBV model for the sub-basins in each cluster.

Cluster Basin SFV ‘ HBV
Area  Elevation ‘ (m3 X 108) ‘ NSE rMAE
(km?) (m) | Min Mean  Max | (%)
1 Min 233 135 0.21 0.42 0.82 | —0.47 3.9
Median 1827 282 1.27 3.23 5.30 0.74 11.2
Max 6258 584 | 18.95 3436 44.36 0.95 44.5
2 Min 184 429 0.40 0.81 1.68 | —0.69 6.2
Median 1166 598 2.49 3.80 4.77 0.66 10.2
Max 4272 666 9.99 13.56 18.17 0.83 70.1
3 Min 270 212 0.67 1.12 1.54 0.22 3.8
Median 1309 586 2.96 541 7.95 0.74 7.3
Max 13177 776 | 19.39 37.76  48.50 0.92 20.0

perature, 850 hPa zonal wind component, 850 hPa meridional
wind component, 850 hPa specific humidity, surface sensible
heat flux, surface latent heat flux, mean sea level pressure,
10 m zonal wind component, 10 m meridional wind compo-
nent, 2 m temperature, and total precipitation.

The daily time series data are the ECMWF IFS seasonal
forecasts of daily values of temperature (2mT) and the accu-
mulated total precipitation (pr). These data have a resolution
of 0.5° x 0.5°, span a period from 1981 to 2015, and have a
domain covering 11 to 23° E and 55 to 70° N.

3 Results and discussion

The following section outlines and discusses the results from
the cross-valuated hindcasts of the different approaches’ abil-
ity to hindcast the SFV for the period 1981-2015. First this
evaluation is done for each system using climatology as a ref-
erence to assess their general skill. Following this the more
skilful of the two multi-model ensembles is evaluated using
the HE as a reference to assess any improved skill, and thus
added value, of the multi-model ensemble approach over the
current HE approach. The analysis is carried out on the cross-
validated hindcasts of the SFV initialised on the 1 January,
February, March, April, and May.

3.1 Evaluating the different forecast systems against
climatology

The different forecast approaches’ general skill to predict
the SFV was estimated using MAESS, their skill to repro-
duce the interannual variability was estimated using NSE,
and finally the skill to discriminate between below BN, NN,
and AN SFVs was estimated using ROCSS. Table 3 gives
an overview of these scores across all sub-basins and clus-
ters for each initialisation month as well as the percentage
of sub-basins where the hindcasts outperformed climatology;
the values in brackets are the percentage of sub-basins where
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the hindcasts outperformed climatology and the result is sta-
tistically significant.

The performance measures for each of the three ap-
proaches are positively related to the relative timing of the
hindcasts i.e. hindcasts initialised in any month are generally
more (less) skilful than the hindcasts initialised in the pre-
ceding (following) months. This can be expected as the fur-
ther away in time from the spring flood that the hindcast is
initialised, increasing the lead time, the less the initial hydro-
logical conditions contribute to predictability and the more
uncertain the forcing data become (e.g. Wood et al., 2016;
Arnal et al., 2017).

With respect to general skill and the ability to capture the
interannual variation shown by the observations, the proto-
types tend to perform better than HE with MEyys typically
having the best performance. This is especially so when we
consider the percentage of the sub-basins where this im-
proved performance is statistically significant. The gap be-
tween HE and the two prototypes in MAESS, NSE, and per-
centage of sub-basins with improved performance over cli-
matology tends to get smaller as the season progresses while
the gap in the percentage of sub-basins where improved per-
formance is statistically significant appears to grow, at least
early in the season.

However, if we turn our attention to the forecast’s ability
to discriminate between BN, NN, and AN SFVs then the HE
holds an advantage over the two prototypes especially when
it comes to identifying NN events from all forecast initiali-
sation dates and, to a lesser extent, BN events for the later
forecasts. The proposed prototypes are better at identifying
AN events for all forecasts except those initialised in May
where the ability of the HE is comparable. The advantage
displayed by the HE to identify NN events is to be expected
due to its climatological nature while the advantage with re-
spect to BN events can probably be attributed to a cold bias
in the historical forcing data caused by climate change. The
drop in relative skill by the prototypes in the later forecasts
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Table 3. Bootstrapped (N = 10000) skill scores and the number of sub-basins, as a percentage, where the HEPS performs better than
climatology averaged over all 84 sub-basins. The n T values in brackets show the percentages of the sub-basins for which these scores are

statistically significant at the 0.1 level.

MAESS | NSE \ ROCSS
\ \ BN \ NN \ AN

n* (%) | n* (%) | n* (%) | nt (%) | n* (%)

HE Jan . —0.09  25(1) | —024 17(0) | 023 90(2l) | 007  70(0) | 0.10  68(11)
Feb 000 51(6) | —0.07 42(5 | 041  99(52) | 011  69(1) | 026  92(27)

Mar 009 80(17) | 0.3 77(23) | 055 100(87) | 0.10  73(5) | 044 99 (56)

Apr 015 85(35)| 022 80(35) | 0.62 100(92) | 0.7  85(7) | 0.51 100 (75)

May 021 90(49) | 032 90(49) | 0.68 100(98) | 023 92(10) | 0.61 100 (92)

ME,4s Jan 000 50(2) | 000 55(1) | 031 99(31) | —0.01  48(0) | 0.20  80(18)
Feb 006 73(23) | 0.1 76(21) | 039 99(51) | 0.08  74(0) | 0.36 96 (42)

Mar 0.1 86(25 | 020 87(36) | 047 100(76) | 0.07  61(4) | 0.47 100 (60)

Apr 020 95(62) | 032 94(64) | 0.60 100(90) | 0.16  83(5) | 0.52 100 (79)

May 022 96(67) | 036 98(68) | 0.66 100(94) | 0.18  82(8) | 0.57 100 (76)

MEygs  Jan 002 60(6) | 003 63(5 ] 032 10031) | 000 51(0) | 022 83(24)
Feb 008 80(25) | 0.14 85(29) | 041 99(57) | 007 69(1) | 038 99 (44)

Mar 0.4 90(32) | 024 92(45) | 051 100(81) | 0.07  61(5) | 048 100 (64)

Apr 019 94(56) | 032 93(62) | 0.60 100(90) | 0.17  88(5) | 0.54 100 (80)

May 024 98(74) | 039 96(76) | 0.67 100(94) | 0.18 85(10) | 0.60 100 (88)

is in part due to their sharpness being worse than the HE in
the later forecast (Sect. 3.3).

From these results we are now able to make an informed
choice as to which prototype to proceed with, MEp4s (here-
after referred to as the prototype unless stated otherwise). If
we take all the results and rank the performances of the three
methods then the prototype would rank first, followed closely
by ME,gs, and HE would rank third. However, all three fore-
cast methods have been shown to be skilful at forecasting the
SFV — albeit a naive skill.

3.2 Evaluating the prototype against HE

The frequency at which the prototype outperforms HE is es-
timated using FY™, its general skill to predict the SFV is
estimated using MAESS, its skill to reproduce the interan-
nual variability is estimated using ANSE, and finally its skill
to discriminate between BN, NN, and AN SFVs is estimated
using AROCSS. Figure 4 shows the bootstrapped scores for
MAESS, FY+, and ANSE calculated for each hindcast ini-
tialisation month for the sub-basins in cluster S°. The me-
dians of these bootstrapped scores are presented as a his-
togram; summary statistics are documented above the his-
togram. On the left-hand side are the max, mean, and min
scores for the cluster i.e. the sub-basins with the highest and
lowest scores and the mean for the basin. On the right-hand
side are the percentage of sub-basins where the prototype
outperformed HE (shows skill over HE (n;)S)), the percent-
age of sub-basins where the prototype shows statistically sig-
nificant skill over HE (naf 1)» and the percentage of sub-basins
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where HE shows statistically significant skill over the proto-
type (na 1).

3.2.1 FYt

The prototype has a FY™ > 50 % for the majority of the sub-
basins in cluster $3, ranging from 98 % of the sub-basins with
amean FY™ of 61 % for hindcasts initialised in January down
to 73 % of the sub-basins with a mean FY of 56 % for hind-
casts initialised in May. These figures are similar, even a lit-
tle higher, for sub-basins in cluster $* while somewhat lower
for cluster S'. The number of sub-basins for which the pro-
totype has a statistically significant FY* > 50 % ranges be-
tween 10 and 28 % in cluster S° (82 =537%,and S! = 12—
16 %). Whilst the prototype has a statistically significant
FY* < 50 % (performs worse than HE more often than not)
for 5 % of sub-basins for hindcasts initialised in April in clus-
ter S> and 4 % of sub-basins in hindcasts initialised in May
for cluster S!.

3.2.2 MAESS

The prototype shows skill at improving the volume error
hindcast by HE for the majority of the sub-basins, ranging
between 65 and 100 % of the sub-basins in cluster §3 (§2 =
74-95%, and S! = 64-80 %). This improvement tends to be
largest for hindcasts initialised in January, mean MAESS of
0.12 (52 =0.11, and S! =0.04), and lowest for those in
May, 0.04 (5% =0.05, and S' =0.02). The percentage of
sub-basins for which MAESS > 0 is statistically significant
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Figure 4. Bootstrapped (N = 10000) FY+, MAESS, and ANSE scores for ME},qs with respect to HE for all sub-basins in the cluster s3.
Each subplot is a histogram of the medians of the bootstrapped validation scores for each initialisation month. Above the histograms are six
related statistics: (left of the red line) the maximum, mean, and minimum of the validation scores shown in the histograms; (right of the red

line) percentages of the sub-basins where MEy 44 performed better than HE (n

+

abs)» the percentage of sub-basins where MEypgs performed

better than HE (n(')". 1) at the significance level 0.1, and lastly the percentage of sub-basins where MEpgs performed worse than HE (1 ;) at

the 0.1 level.

ranges between 10 and 53 % for all clusters and hindcast
initialisations, while the percentage of sub-basins for which
MAESS < 0 is statistically significant are 8 and 4 % for hind-
casts initialised in March and May in cluster S', respectively,
and 3 % for hindcasts initialised in both April and May in
cluster S°. These results also show that the prototype gener-
ally has a smaller MAE than HE especially for earlier hind-
cast initialisations and again for clusters S and S2.

3.2.3 ANSE

The prototype shows skill at improving the representation
of the interannual variability of the observed SFV again
for most of the sub-basins, ranging between 63 and 100 %
of sub-basins in cluster $3 (S2 =74-100%, and S! = 76—
92 %), and the mean ANSE ranges between 0.06 and 0.33 for
sub-basins in cluster S (52 = 0.09 and 0.32, and S' = 0.06
and 0.15). The percentage of sub-basins for which ANSE > 0
is statistically significant ranges between 16 and 63 % for all
clusters and hindcast initialisations, while the percentage of
sub-basins for which ANSE < 0 is statistically significant are
4 % for hindcasts initialised in January, March, and May in
cluster S', and 5 % for hindcasts initialised in May in cluster
S3.
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3.24 AROCSS

Figure 5, which has the same information presentation struc-
ture as Fig. 4, shows the bootstrapped AROCSS for the lower
(BN), middle (NN), and upper (AN) terciles calculated for
each hindcast initialisation month for the sub-basins in clus-
ter S3.

The prototype shows skill over HE to discriminate be-
tween BN events and non-BN events for the majority of the
sub-basins in cluster $3 for hindcasts initialised in January
and February, 95 and 68 % respectively (S* = 63, 53 % and
Sl =68, 32 %) but this drops to less than half the sub-basins
in hindcasts initialised thereafter. The mean AROCSS ranges
between —0.04 and 0.14 in cluster S3 (§2 = —0.03 and 0.05,
and S' = —0.06 and 0.02) with only statistically significant
results being found in favour of the prototype for 15 and 5 %
of sub-basins for hindcasts initialised in January in clusters
$3 and S2, respectively, and in favour of HE for 4 % of sub-
basins for hindcasts initialised in April in cluster S'.

Out of the three terciles the prototype shows the least skill
over HE at discriminating between NN events and non-NN
events. The percentage of sub-basins for which the proto-
type outperforms HE ranges between 23 and 57 % (2 = 37—
63 %, and S! = 24-60 %) with mean AROCSS ranges be-
tween —0.07 and 0.01 (S? = —0.06 and 0, and S' = —0.05
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Figure 5. Bootstrapped (N = 10000) AROCSS for the lower, middle, and upper terciles between the MEqs and HE for sub-basins in
the cluster $3. Each subplot is a histogram of the medians of the bootstrapped validation score’s ensembles for each initialisation month.
Above the histograms are six related statistics: (left of the red line) the maximum, mean, and minimum of the validation scores shown in the
histograms; (right of the red line) percentages of the sub-basins where MEy, 44 performed better than HE (n;q)s), the percentage of sub-basins

where MEy 4¢ performed better than HE (n(")"_ 1) at the significance level 0.1, and lastly the percentage of sub-basins where MEyqs performed

worse than HE (n ;) at the 0.1 level.

and 0.02) and no statistically significant results for any sub-
basins, both in favour of or against the prototype.

The prototype shows the best performance when discrim-
inating between AN events and non-AN events. The per-
centage of sub-basins for which the prototype shows skill
over HE in the upper tercile ranges between 85 and 98 %
for hindcasts initialised in the first three months ($% = 47—
89 %, and S! = 48-84 %) then 57 and 25 % for the last two
months, respectively (S2 =63 and 53 %, and S! = 80 and
32 %). The mean AROCSS ranges between —0.02 and 0.13
(5% = —0.01 and 0.14, and S' = —0.01 and 0.07). The per-
centage of sub-basins in cluster > for which AROCSS > 0
is statistically significant are 18, 10, and 3 % for hindcasts
initialised in January, February, and March respectively, and
16 % for forecasts initialised in January and February in clus-
ter S2. There are no statistically significant results in favour
of HE.

3.3 Analysis of the forecast ensemble sharpness

Figure 6 shows the cross-validated hindcasts by the prototype
initialised in January (top panel) and May (bottom panel) for
Gouta-Ajaure, a cluster S3 sub-basin in upper reaches of the
Ume River system. This basin was chosen as an example of
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a where the prototype showed typical performance results
i.e. neither the best nor the worst. The total ensemble spread
(the whiskers) of the forecasts initialised in January remains
somewhat consistent from year to year while the IQR (the
blue boxes) displays a more pronounced variation. The lack
of variation in total spread is primarily the result of the cli-
matological nature of the HE component which tends to have
a larger and more consistent spread than that for DE and SE
at longer lead times. The greater variation exhibited by the
IQR is mostly due to the "true” forecast nature of the DE and
SE components in the multi-model ensemble. If we turn our
attention to the forecasts initialised in May we see a more
pronounced variation in both the total spread and the IQR.
This is because the spread in the DE and SE components is
now comparable to and often larger than the spread in the
HE component. Table 4 shows how the IQRSS drops as the
spring flood season approaches. It can also be seen in Fig. 6
that the ensemble median (red line) is more responsive to the
year on year variation in SFV in the May forecasts than in the
January forecasts. This is because the relative contribution to
predictability by the initial conditions is greater than the con-
tribution from the meteorological drivers closer to the spring
flood period. These patterns are generally true for both the
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Figure 6. The cross-validated hindcasts of the SFV for a sub-basin in cluster $3 made by ME} g4 (boxplots) together with the observed SFV
(black line). The box plots represent the entire forecast ensemble, the red lines represent the ensemble medians, the blue boxes the 25th and
75th percentiles (IQR), and the feelers represent the Oth and 100th percentiles.

forecasts initialised in the intermediate months and for the
other sub-basins.

If we assume that the more sensitive an ensemble is to un-
certainty the more the forecast sharpness will vary. We would
therefore expect the USS values to generally be positive i.e.
that the forecast sharpness of prototype is better correlated
with the forecast error than for HE. This is largely supported
by the USS values in Table 4 where only three values are
negative, the January forecast in cluster S2 and the April fore-
casts in both clusters S! and 2, and even then not by very
much. This suggests that at least one but probably both of the
DE and SE ensembles are responsible for this improvement
due to their variability. There is a general decreasing trend
with initialisation date in the USS values in clusters S! and
S? (if we ignore the value for January in S%) while the values
are more consistent in cluster S3. All the uncertainty correla-
tion values for both the HE and the prototype are significant
at the 0.1 level (not shown for brevity) suggesting that both
exhibit sensitivity to uncertainty to some extent, however the
prototype is more sensitive to uncertainty which should instil
more confidence in the forecast for the users.

The IQRSS values show that the prototype tends to pro-
duce sharper forecasts than HE early in the season i.e. for
forecasts initialised in January and February in cluster S! and
forecasts initialised in January, February, and March in clus-
ters S2 and S3. This is reversed for the remaining initialisa-
tion dates where HE tends to produce sharper forecasts than
the prototype. This is probably due to the climatological na-
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ture of the HE having less of an impact on forecast sharpness
as the initialisation date approaches the spring flood period
in combination with the uncertainties and biases in the other
individual ensembles, which further exacerbate the situation.

3.4 Spatial and temporal variations and transferability
of the prototype

Both multi-model ensembles show skill at forecasting SFV
with respect to forecast error, ability to reproduce the inter-
annual variability in SFV, and the ability to discriminate be-
tween BN, NN, and AN events. The prototype, in particular,
is at worst comparable to the HE and at best clearly more
skilful. This relative performance of the prototype varies both
in space and time. Figure 7 shows maps of the median boot-
strapped FY™ values. For hindcasts initialised in January
the spatial pattern in the FY+ scores show that the proto-
type tends to outperform HE more in sub-basins that have
a higher latitude or elevation. However, as the initialisation
date approaches the spring flood period this pattern becomes
less and less coherent. This general pattern is also true for
MAESS scores. This suggests that the change in the perfor-
mances of the prototype and HE, as a function of initialisa-
tion date, are not always similar for sub-basins that are near
one another. Further work would be needed to find out what
the underlying reason for this is.

Data availability is the biggest limiting factor to the trans-
ferability of this approach to other areas. The HE, AE, and
SE approaches are all dependant on good quality observation
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Table 4. Bootstrapped (N = 10000) USS and IQRSS for MEy 4 using HE as a reference, and the percentage of sub-basins where MEj}4¢
performed better than HE. The n values in brackets show the percentages of the sub-basins for which these scores are statistically significant

at the 0.1 level.

USS | IQRSS

Jan Feb Mar Apr May | Jan Feb Mar Apr May

st ss 0.21 0.04 0.02 —0.02 0.00 0.01 0.05 —-0.02 —0.08 —0.18
nt (%) 80(16) 64 (0) 56 (8) 48 (4) 528) | 56(24) 72 (20) 40(8) 16(4) 16 (4)

s§2 ss —0.05 0.17 0.07 —-0.10 0.17 0.01 0.06 0.05 —-0.13 —0.15
nt (%) 48 (4) 80 (4) 60 (4) 40 (0) 68 (4) | 52(36) 68(40) 64(16) 16(4) 12 (0)

s3 ss 0.05 0.06 0.11 0.07 0.06 0.09 0.08 0.02 —0.05 —0.03
nt (%) 60(12) 65(10) 65(15) 58(10) 60(12) | 70(52) 80(48) 60(25) 32(8) 48(18)

FY*

. 10-20
I 2030

30-40
40-50
5060
6070

700

B s0-%0

Figure 7. Maps of the median bootstrapped FY T values for each of the initialisation dates.

time series. Additionally, the skill of all three of these ap-
proaches would be expected to be affected by the length of
these time series. They length of the time series should be
long enough to be a good representative sample of the clima-
tology otherwise the forecasts would be biased in favour of
the climate represented in the data and not the true climatol-

ogy.
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The SE and AE approaches require an understanding of
how the variability in the local hydrology is affected by large
scale circulation phenomena such as teleconnection patterns
to help select predictors and teleconnection indices for inputs
to each approach, respectively. The hydrological rainfall-
runoff model used in the prototype should not pose a prob-
lem, although HBV has been successfully set up for snow
dominated catchments outside of Sweden (e.g. Seibert et al.,
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2010; Okkonen and Klgve, 2011), any sufficiently well cali-
brated rainfall-runoff model would suffice.

We believe that, if the above requirements are met, a sea-
sonal hydrological forecast system similar to the prototype
can be set up in other snow dominated regions around the
world.

4 Conclusions

In this paper we present the development and evaluation of a
hydrological seasonal forecast system prototype for predict-
ing the SFV in Swedish rivers. Initially, two versions of the
prototype, ME,4s and MEpgg, were evaluated together using
the HE using climatology as a reference for both, to help se-
lect which version of the prototype to proceed with and to
get a general impression of their skill to forecast the SFV.
Thereafter the chosen prototype was evaluated using HE as a
reference and finally the sharpness of the hindcast ensembles
were analysed.
The main findings are summarised as follows:

— The prototype is able to outperform the HE approach
57 % of the time on average. It is at worst comparable to
the HE in forecast skill and at best clearly more skilful.

— The prototype is able to reduce the forecast error by
6 % on average. This translates to an average volume
0of 9.5 x 109 m>.

— The prototype is generally more sensitive to uncertainty,
that is to say that the ensemble spread tends to be more
correlated with the forecast error. This is potentially
useful to users as the ensemble spread could be used
as a measure of the forecast quality.

— The prototype is able to improve the prediction of above
and below normal events early in the season.

Looking forward, future studies need to address the ques-
tions raised by Zhao et al. (2017) regarding the bias adjust-
ment of meteorological seasonal forecast data using quantile
mapping. Results from this study show that while the sea-
sonal forecasts were bias adjusted the performance of the
DE was disappointing; however it still had value within the
multi-model setting suggesting that it has more of a modu-
lating roll on the other modelling chains as opposed to con-
tributing directly to predictability.

How the individual model ensembles are combined to give
the multi-model output needs to be revisited. When we ap-
plied the asymmetric weighting scheme proposed by Olsson
et al. (2016) we did not find that it improved the multi-model
performance in general across all stations and forecasts and
so we did not use it. However, we do believe that more work
should be done to find a more appropriate weighting scheme
than simple pooling. Perhaps better understanding how the
performance of the different modelling chains are affected
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by the initial conditions and lead time will shed more light
on how to best approach this issue. Further development and
testing along these lines are planned for the future.

The AE approach did not exhibit the promising perfor-
mance found by Olsson et al. (2016) using circulation pat-
tern analysis to select the analogues. A part of the expla-
nation for this poor performance is that the teleconnection
information used to select the analogues only partially span
the full periods identified by Foster et al. (2016), from Oc-
tober/November to the beginning of the spring flood. The
missing data could be filled by making forecasts of the in-
dices. Another approach would be to revisit the circulation
pattern analysis based approach now that data inhomogene-
ity issues are largely addressed by the new ERAS reanaly-
sis data that is becoming available (http://climate.copernicus.
eu/products/climate-reanalysis, last access: 15 September
2017). Yet another approach would be to use GCM forecasts
to select the analogues (e.g. Crochemore et al., 2016).

Lastly, the post processing of model outputs (e.g. Lucatero
et al., 2017) has been shown to be beneficial, the incorpora-
tion of a simple approach like linear scaling is possibly the
most appealing due to its ease of implementation in an oper-
ational environment.

Data availability. ECMWEF seasonal forecasts are available under
a range of licences, for more information visit http://www.ecmwf.
int. AO (Climate Prediction Center, 2017a) and SCAND (Cli-
mate Prediction Center, 2017b) teleconnection indices are available
for download from the Climate Prediction Center website (http:
/Iwww.cpc.ncep.noaa.gov). For streamflow data and the PTHBV
dataset please contact customer services at SMHI (customerser-
vice@smhi.se).
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