

Name	Equation	Description
Mean absolute error skill score (MAESS)	$MAESS = 1 - \frac{MAE_f}{MAE_r}$	Measure of the model's general performance; it quantifies the relative forecast error against a reference forecast.
Frequency of years (FY ⁺)	$FY^+ = \frac{100}{n} \sum_{y=1}^n H^y,$ where H is the Heaviside function defined by $H^y = \begin{cases} 0, & AE_r^y < AE_f^y \\ 1, & AE_r^y > AE_f^y \end{cases}$ AE is the absolute error.	Measure of the model's general performance; it quantifies how often the forecast outperforms a reference forecast.
Nash–Sutcliffe efficiency (NSE)	$NSE = 1 - \frac{\sum_{y=1}^n (SFV_{obs}^y - SFV^y)^2}{\sum_{y=1}^n (SFV_{obs}^y - \overline{SFV}_{obs})^2}$	Measure of the model's general performance; it quantifies the model's residual variance against a reference forecast's variance.
Relative operating characteristic skill score (ROCSS)	$ROCSS = 2 \cdot AUC - 1$ where AUC is the area under the curve $AUC = \sum_{y=1}^{n+1} \frac{(FR^y - FR^{y-1})(HR^y + HR^{y-1})}{2},$ where FR is the false alarm rate and HR is the hit rate.	Measure of the model's probabilistic performance; it quantifies the model's ability to discriminate between an event and a non-event given a specific threshold.
Interquartile range skill score (IQRSS)	$IQRSS = 1 - \frac{IQR_f}{IQR_r},$ where IQR is the interquartile range.	Measure of the forecast sharpness; it quantifies the relative spread in the forecast against a reference forecast.
Uncertainty sensitivity skill score (USS)	$USS = \frac{(\rho_r - \rho_f)}{(1 - \rho_r)},$ where ρ is the Spearman rank correlation between the IQR and absolute error.	Measure of the model's sensitivity to uncertainty; it quantifies the correlation between forecast sharpness and absolute error