

Supplement of

Basin-scale impacts of hydropower development on the Mompós Depression wetlands, Colombia

Héctor Angarita et al.

Correspondence to: Héctor Angarita (hangarita@javeriana.edu.co)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

SI-1. SUPPLEMENTARY INFORMATION

ReservoirSimulator model description

The ReservoirSimulator allows simulation of the water balance of a group of reservoirs, based on individual or system-level dispatch rules for three main categories of use: downstream instream requirements, hydropower, and other supply (supply that

5 bypasses turbines).

For a given reservoir, the model takes into account physical and technical constraints, such as the volume–elevation curve, tail-water elevation, operational levels (inactive, buffer, technical, and safety), turbine type, capacity, and efficiency. It allows modeling of the topology of reservoirs and tributary sub-basins.

ReservoirSimulator performs a lumped, discrete-time water balance of the components shown in Figure SI-1 with the model

10 parameters and inputs shown in Table SI-1.

Losses: L $Q_u + Q_a$: inflow Z_{max}: Maximum level Z_e : Top of conservation : Floodgates operative level Spills: $V_{spill}(t) = V_{weir} + V_{overflow}$ S: Storage :Top of buffer Zh D: Diversion(t) :Top of inactive Z. Flow requirement: V_{mo}(t) Zo:Tail water 1900 Turbined flow: $V_{te}(t)$

For each reservoir, calculations are done according to the sequence in Table SI-2:

Figure SI-1. Schematic of reservoir inflow, outflow and storage components of the reservoir simulator model.

15

Table SI-1. Description of reservoir data requirements of the model

Symbol	Reservoir physical and technical data	Units	
$Q_a(t)$	Specific runoff: Runoff from upstream sub-watershed during step t (excludes outflows from	m ³ /s	
cu ()	upstream infrastructure)		
Δt	Time step		
Vc	Reservoir storage capacity at top of conservation level (Z _c)		
V _{buffer}	Reservoir storage capacity at buffer level (Z _b)		
V _{min}	Reservoir storage capacity at top of inactive level (Z _d)		
V _{w0}	Reservoir storage capacity at floodgates operative level (Z _w)		
H(V)	Volume-elevation curve of reservoir		
A(V)	Area-elevation curve of reservoir		
B _c	Buffer coefficient: fraction of buffer storage that can be allocated in a given time step	%	
-	Note: Can be a user defined function of local (i.e. reservoir storage, etc.) or system-level state		
	variables or context variables (i.e. downstream storage, etc.).		
B_w	Floodgates allocation factor: determines the fraction of storage above the floodgates		
	operational level delivered downstream in a given time step.		
	Note: Can be a user defined function of local (i.e. reservoir storage, etc) or system-level state		
	variables or context variables (i.e. downstream storage, etc.).		
ET(t)	Evaporation rate in a time step t		
Z ₀	Tail water elevation (water level at the point where turbine flow is discharged)	masl	
D(t)	Water demand diverted from the reservoir, bypassing the turbines, with higher priority than hydropower	m ³	
$V_{eco,1}(t)$	Average instream flow requirement at step t, for the reach between reservoir and turbines	m ³	
	discharge		
Р	Installed generation capacity		
f	Friction loss factor in hydropower load pipes.	m	
N	Number of turbines		
E(H,Q)	Turbine efficiency curve, as a function of net head and flow (typically a function of turbine	%	
	type i.e. Francis, Pelton, etc.)		
e _{target}	Minimum efficiency threshold of turbines. Hydropower won't be generated if actual efficiency	%	
	is lower than <i>e</i> _{target}	,	
Q_w	Floodgates max hydraulic capacity	m ³ /s	
Reservoir	topological data		
K_T	Identifier of the project downstream of turbine flow discharge		
K_E	Identifier of the project downstream of e-flow discharge		
Ks	Identifier of the project downstream of spills discharge		
R	Position of the reservoir in the simulation sequence $(1^{\text{st}}, 2^{\text{nd}},)$		

Table SI-2. Sequence of calculations performed by the reservoir simulator model at a given time-step

Value	Description	Calculation	Units
$Q_u(t)$	Sum of upstream outflows (turbine, e- flows and/or spills) directed to the reservoir		[m ³ /s]
St	Reservoir storage at the beginning of step t		[m ³]
A _t	Area of reservoir at the beginning of step t, calculated from area volume curve	A(S _t)	[m ²]
L	Reservoir losses as evaporation	A _t * ET	[m ³]
Va _t	Total available water for allocation without restrictions at the reservoir, during step t	$\max(0, S_t + (Q_a(t) + Q_u(t)) * \Delta t - L(t) - V_{buffer})$	[m ³]
Vr _t	Total available water for allocation, from the buffer zone, during step t	$(V_{buffer} - V_{min}) * B_c: \text{ if } Va_t > 0$ (S _t + Q _a (t) * Δ t- L(t) - V _{min}) * B _c : if Va _t = 0	
Vu _t	Total available water for allocation during step t	$Vr_t + Va_t$	
Zt	Reservoir water level at the beginning of step t, calculated from volume elevation curve	$Z(S_t)$	masl
$\Delta Z_{\rm t}$	Working water head at step t.	$Z_t - Z_0$	[m]
Hf	Friction losses	$\Delta Z_t * f$	[m]
RPE	Expected generation at step t, expressed as a percentage of installed capacity.	User defined function of local (i.e. reservoir storage at previous timestep, instream flow requirement downstream of turbines, etc) or system-level state variables or context variables (i.e. system level demand, ENSO signal, etc.). See paper Figure 3	[%]
V _{pt}	Release requirement, to fulfill 100% of expected energy generation at step t, operating at target efficiency	RPE * P * 1e6 / (9801 * $(\Delta Z_t - H_f) * e_{target}$) * Δt	[m ³]
Vd _t	Total water available during step t, after the allocation of demands with higher priorities than hydropower	$\max(0, Vu_t - D_t - V_{eco,1})$	[m ³]
V _{te}	Effective turbined volume during step t	min(V _{pt} , Vd _t t)	[m ³]
Q_{te}	Effective turbined flow during step t	$V_{te}/\Delta t$	[m ³ /s]
Vs _t	Water available after hydropower is allocated.	$Vd_t - Vt_e$	[m ³]
V _w	Controlled spill volume (floodgates operation)	$V_{w} = \min(R_{w}^{1/B_{w}}, Q_{w} * \Delta t)$ with: $R_{w} = \max(0, Vs_{t} - V_{w0}):$ Volume above the floodgates operational level	[m ³]
Vs _w	Water available after controlled spill is allocated.	Vs _t – V _w	[m ³]
$V_{\rm spill_t}$	Total spill during step t	$\max(0, Vs_w - Vc)$	[m ³]

Value	Description	Calculation	Units
P _n	Net power output if available flow is turbined given $H_{n,t}$, using n turbines.	$\gamma * \frac{Q_{te}}{n} * H_{n,t} * e_{t,n}$	[Mw]
e _{t,n}	Actual Turbine/Generator efficiency given $(\Delta Z_t - H_f)$ and flow $= \frac{Q_{te}}{n}$. See example in Figure SI-2. If efficiency is lower than a target efficiency, is adopted as 0.	e_n 0 if $e_n < e_{target}$	%
Pt	Average power output during step t	$\max(P_1, 2 * P_2, N * P_N)$	[Mw]
S _{t+1}	Reservoir storage at the beginning of step t+1	$Vs_t - V_{spill_t}$	m ³

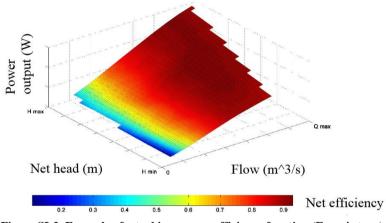


Figure SI-2. Example of a turbine power–efficiency function (Francis type)