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Abstract. We show that satellite-derived estimates of shal-
low soil moisture can be used to calibrate a land surface
model at the regional scale in Ghana, using data assimila-
tion techniques. The modified calibration significantly im-
proves model estimation of soil moisture. Specifically, we
find an 18 % reduction in unbiased root-mean-squared differ-
ences in the north of Ghana and a 21 % reduction in the south
of Ghana for a 5-year hindcast after assimilating a single
year of soil moisture observations to update model parame-
ters. The use of an improved remotely sensed rainfall dataset
contributes to 6 % of this reduction in deviation for northern
Ghana and 10 % for southern Ghana. Improved rainfall data
have the greatest impact on model estimates during the sea-
sonal wetting-up of soil, with the assimilation of remotely
sensed soil moisture having greatest impact during drying-
down. In the north of Ghana we are able to recover improved
estimates of soil texture after data assimilation. However, we
are unable to do so for the south. The significant reduction
in unbiased root-mean-squared difference we find after as-
similating a single year of observations bodes well for the
production of improved land surface model soil moisture es-
timates over sub-Saharan Africa.

1 Introduction

In regions where the population relies on subsistence farming
it is soil moisture, rather than precipitation per se, that is the
critical factor in growing crops. The production of improved
soil moisture forecasts should therefore enhance the drought

resilience of these regions through improved capacity for
early warning agricultural drought (Brown et al., 2017). Soil
moisture is also an important variable for weather and cli-
mate prediction (Seneviratne et al., 2010), playing a key
role in controlling land surface energy partitioning (Beljaars
et al., 1996; Bateni and Entekhabi, 2012) and in the carbon
cycle (McDowell, 2011). However, modelling soil moisture
is complex and exhibits large sensitivities to meteorological
forcing data and land surface model parameterisations (Pit-
man et al., 1999).

Globally, precipitation is the most influential meteorolog-
ical driver in the estimation of soil moisture (Guo et al.,
2006). However there is considerable variability in avail-
able precipitation data, which in turn has impacts on mod-
elled predictions of soil moisture. When forcing a global land
data assimilation system with different precipitation products
Gottschalck et al. (2005) showed that the percentage differ-
ence in estimates of volumetric soil water content ranged be-
tween −75 and +100 %. Similarly Liu et al. (2011) showed
that driving a catchment land surface model with an im-
proved precipitation product (merged gauge and satellite ob-
servations vs. a reanalysis product) increased the model soil
moisture skill by 14 %, when compared to in situ observa-
tions.

There are now a variety of remotely sensed surface soil
moisture observational products from both active and passive
microwave sensors. Data assimilation (DA) has been used
to combine information from these observations with land
surface models to improve surface soil moisture estimates
(Liu et al., 2011; De Lannoy and Reichle, 2016; Yang et al.,
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2016). DA refers to the suite of mathematical techniques
used to combine models and observations, combining avail-
able knowledge about their respective uncertainties. These
techniques are typically derived from a Bayesian standpoint
and can be broadly classified as sequential and variational.
Sequential methods adjust the model state and/or parame-
ters at the time when observations are available, whereas
variational methods adjust state and/or parameters at the be-
ginning of some time window considering all observations
within that window.

It has been shown by Bolten et al. (2010) that assimilation
of remotely sensed surface soil moisture can significantly im-
prove the prediction of root-zone soil moisture and drought
modelling, in which a sequential DA technique is used for
soil moisture state estimation. Many other recent studies also
use sequential assimilation methods to update the model soil
moisture state at each time step when an observation is avail-
able (Liu et al., 2011; Draper et al., 2012; De Lannoy and
Reichle, 2016; Kolassa et al., 2017). In addition some stud-
ies employing sequential methods estimate the model param-
eters as well as the state (Moradkhani et al., 2005; Qin et al.,
2009; Montzka et al., 2011). Using sequential methods in
this way will likely result in parameters that vary over time,
which will not be optimal when using land surface models to
run forecasts because the time-varying nature of the parame-
ters will not be carried forward. An alternative is to use varia-
tional assimilation methods for parameter estimation (Navon,
1998). Variational methods will yield time-invariant param-
eter estimates over the assimilation time window. For a suit-
ably chosen length of assimilation window (i.e. over one or
more whole years) this allows us to avoid seasonally varying
parameters. Using variational methods to assimilate remotely
sensed observations for land surface model parameter esti-
mation has previously been shown to improve soil moisture
estimates in several studies (Yang et al., 2007, 2009; Rasmy
et al., 2011; Sawada and Koike, 2014; Yang et al., 2016).
These studies all optimise both model parameters and state.
Here we propose an alternative, which is to include the model
spin-up within the data assimilation routine so that the initial
soil moisture state is consistent with the updated parameters
at each optimisation step.

The work in this paper forms part of the Enhancing Re-
silience to Agricultural Drought in Africa through Improved
Communication of Seasonal Forecasts (ERADACS) project.
Part of ERADACS is the development of TAMSAT-ALERT
(Tropical Applications of Meteorology using SATellite data
and ground-based observations AgricuLtural dEcision sup-
poRT), a light-weight system for prediction of agricultural
drought in northern Ghana. Previous work (Brown et al.,
2017) has shown that TAMSAT-ALERT’s skill for predict-
ing root-zone soil moisture in Ghana ensues largely from ac-
curate knowledge of antecedent soil moisture conditions. In
this paper we describe a method for improving soil mois-
ture estimates for the Joint UK Land Environment Simula-
tor (JULES; see Sect. 2.1) over Ghana through the assimi-

lation of remotely sensed soil moisture and use of improved
satellite-observed rainfall. Ultimately, we expect that the im-
proved soil moisture estimates will increase the prediction
skill of TAMSAT-ALERT, and hence the quality of drought
early warning issued to farmers. We use the technique of
four-dimensional variational (4D-Var) data assimilation to
estimate the soil thermal and hydraulic parameters of JULES
by assimilating European Space Agency Climate Change Ini-
tiative (ESA CCI) merged active and passive microwave sur-
face soil moisture observations (Dorigo et al., 2015). We also
drive the JULES model with two successive versions of the
TAMSAT rainfall dataset (see Sect. 2.2) to investigate the
effect of improved precipitation on soil moisture estimates.
We assimilate a single year of soil moisture observations
(2009), then perform a 5-year hindcast (2010–2014), driving
the model with reanalysis meteorology, to judge the impact
of both the precipitation products and data assimilation on
the model’s representation of soil moisture when compared
to independent observations.

2 Method

2.1 JULES land surface model

The Joint UK Land Environment Simulator (JULES) is
a process-based land surface model developed at the UK
Met Office (Best et al., 2011; Clark et al., 2011). We used
the global land configuration 4.0 of JULES designed for use
across weather and climate modelling timescales and sys-
tems (Walters et al., 2014). JULES is typically run with 4
soil layers, with the top layer being 10 cm deep. In this pa-
per we have updated JULES to run with a top layer of 5 cm
to be more representative of the ESA CCI soil moisture ob-
servations. Another option to deal with the issue of repre-
sentativity would be to use an exponential filter (Albergel
et al., 2008) which has been used in sequential data as-
similation studies previously (Massari et al., 2015; Alvarez-
Garreton et al., 2016). The model is forced with WFDEI
data (WATCH Forcing Data methodology applied to ERA-
Interim reanalysis data), described by Weedon et al. (2014),
for radiation, wind, temperature, pressure and humidity val-
ues. The WFDEI data have a 0.5◦ spatial resolution and a 3-
hourly temporal resolution. The JULES model was run at
a half-hourly timestep, with a soil map taken from the har-
monised world soil database (Nachtergaele et al., 2008). Pre-
viously JULES has been used in sequential DA experiments
(Ghent et al., 2010), and has been implemented in a vari-
ational framework with focus on the carbon cycle (Raoult
et al., 2016).

2.2 TAMSAT rainfall observations

We replaced the precipitation in the WFDEI data with Trop-
ical Applications of Meteorology using SATellite data and
ground-based observations (TAMSAT) rainfall monitoring
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products (Maidment et al., 2014; Tarnavsky et al., 2014).
TAMSAT produces daily rainfall estimates over Africa at
a 4 km resolution with data ranging back to 1983. The rain-
fall estimates are derived from Meteosat thermal infrared im-
ages calibrated against an extensive network of African rain
gauges. When aggregated over time and space, TAMSAT
has been shown to have good skill over much of Africa, in
comparison to ground-based observations (Maidment et al.,
2013; Maidment et al., 2017). On daily timescales, occur-
rence is better represented than amount (Greatrex et al.,
2014), with the magnitude of high intensity rainfall events
not captured. For these reasons, TAMSAT tends to be used to
monitor drought rather than to provide real-time early warn-
ing of floods. Data are available from https://www.tamsat.
org.uk (last access: 20 April 2018).

We ran JULES with WFDEI 3-hourly meteorological forc-
ing data (Weedon et al., 2014) and TAMSAT daily rainfall
estimates. Therefore we had to disaggregate the TAMSAT
daily estimates to 3-hourly estimates. We did this by merging
the TAMSAT data with the WFDEI precipitation data. We
divided the WFDEI 3-hourly precipitation values by the cor-
responding WFDEI daily precipitation and then multiplied
these values by the corresponding TAMSAT daily precipita-
tion values. This spreads the daily TAMSAT estimates over
the diurnal cycle.

In this study, we drive the JULES model with two differ-
ent TAMSAT products (v2.0 and v3.0). The difference be-
tween JULES model outputs when forced with these two
distinct products will help us to understand the impact of im-
proved precipitation forcing on our estimation of soil mois-
ture. TAMSAT v3.0 differs from TAMSAT v2.0 in that it uses
an updated calibration against in situ data that is more rep-
resentative of local scales. It has been shown that TAMSAT
v3.0 has greatly reduced the dry bias present in TAMSAT
v2.0 (Maidment et al., 2017) and has eliminated the spatial
artefacts. Despite this there are still areas where both prod-
ucts struggle, with coastal regions subject to large amounts
of warm rain and sharp topographic contrasts being an exam-
ple of this. For this reason, inter-annual rainfall variability is
less well represented over the south of Ghana than the north.
For more information on the differences between the two
TAMSAT products see Maidment et al. (2017). In Fig. 1 we
show yearly cumulative rainfall averaged over 2009–2014 for
TAMSAT v2.0 and v3.0; we can see the different spatial dis-
tributions of rain with v3.0 being wetter in the south and v2.0
wetter in the east. To illustrate the difference in the amount
of rainfall for the two products we show cumulative rainfall
for the period 2009–2014 averaged spatially over Ghana in
Fig. 2. This shows TAMSAT v2.0 to be the drier of the two
products, as expected.

2.3 ESA CCI soil moisture observations

In this study we use the ESA CCI level 3 version 03.2 com-
bined active and passive soil moisture observations. This

product merges data from 11 different sensors, using an algo-
rithm described in Dorigo et al. (2017) to give an estimate of
surface soil moisture together with its associated uncertainty.
These estimates are assumed to represent the top 2–5 cm of
soil. However, observations based on different microwave
frequencies and soil moisture conditions may be represen-
tative of deeper layers (Ulaby et al., 1982). It has been pre-
viously shown that it is best to use both active and passive
retrievals together (Draper et al., 2012) and that the ESA CCI
merged product performs better than either the active or pas-
sive product alone (Dorigo et al., 2015). Dorigo et al. (2015)
also show that the ESA CCI product performs well over west-
ern Africa when judged against in situ soil moisture obser-
vations from the African Monsoon Multidisciplinary Analy-
ses (AMMA) network (Cappelaere et al., 2009), with stations
in Benin, Mali and Niger. When judged against the AMMA
network, CCI soil moisture was shown to have a high cor-
relation (∼ 0.7) and one of the lowest unbiased root-mean-
squared differences (∼ 0.04) of the 28 worldwide networks
used in the study. This bodes well for our comparison over
Ghana, which has a similar climate regime in the north to the
sites in the AMMA network. Figure 3 shows the number of
available daily soil moisture observations in the experiment
period (2009–2014) over Ghana, with the maximum number
of possible observations being 2190. We can see that there
is higher data availability in the north of Ghana than in the
south. There are some pixels in the south for which we have
no data; this is due to high vegetation cover.

2.4 4D-Variational data assimilation

We use the method of four-dimensional variational data as-
similation (4D-Var) to estimate the soil thermal and hydraulic
parameters of the JULES land surface model for each grid
cell over Ghana (Pinnington, 2017). 4D-Var aims to find the
initial state that minimises the weighted least squares dis-
tance to the prior guess while minimising the weighted least
squares distance of the model trajectory to the observations
over the time window. This is done by minimising a cost
function at each grid cell:

J (x0)=
1
2
(x0− xb)

TB−1(x0− xb)

+
1
2

N∑
i=0

(
yi −hi(x0)

)TR−1
i,i

(
yi −hi(x0)

)
, (1)

where x is the vector of model parameters, xb is a prior guess
and x0 the current update, B is the prior error covariance ma-
trix, yi is the observation at time ti , hi is the observation op-
erator (here the JULES model) mapping the model parame-
ters (x0) to the observation yi at time ti , Ri is the observation
error covariance matrix andN is the number of observations.
We chose a variational DA method for parameter estimation
over a sequential method because variational methods ensure
that the retrieved model parameters are time-invariant over
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Figure 1. TAMSATv2.0 and v3.0 yearly cumulative rainfall averaged over the 6 years in our experiments (2009–2014).
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Figure 2. TAMSATv2.0 and v3.0 cumulative rainfall averaged over the whole of Ghana.

the assimilation window and will hence fit seasonal model
dynamics when the window is sufficiently large. As we do
not have a good estimate of the error in the prior estimates
of model parameters we chose a conservative 5 % standard
deviation (SD) for the prior error covariance matrix B. This
ensures we do not retrieve unrealistic estimates of soil texture
after data assimilation. For the observational error covariance
matrix R we have a diagonal matrix with variances estimated
from the SDs included in the ESA CCI soil moisture product.

In this study, we updated the percentage of sand and silt
in the soil at each minimisation step (with clay being up-
dated implicitly) and then used a set of pedo-transfer func-
tions (Cosby et al., 1984) to relate the new sand, silt and clay
proportions to the eight soil parameters in JULES. This is
a similar framework to that introduced in Yang et al. (2007,
2009) for data assimilation with the Simplified Biosphere
model 2 (SiB2) (Sellers et al., 1996), with the exception that
the soil porosity parameter of JULES is updated implicitly
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Figure 3. Number of available days of ESA CCI soil moisture ob-
servations in the experiment period (2009–2014) out of a maximum
of 2190 days.

within the pedo-transfer functions rather than explicitly in-
cluded in the optimisation. Parameterising the model in this
way reduces the issue of equifinality (which potentially arises
from minimising eight related parameters) and decreases the
convergence time of the minimisation. Our prior guess for
the sand, silt and clay values at each grid cell comes from the
harmonised world soil database. At each minimisation step
after updating the parameters of JULES we included a model
spin-up to ensure that the initial soil moisture state is consis-
tent with the updated parameters. We used the Nelder–Mead
simplex algorithm (Nelder and Mead, 1965) to minimise the
cost function in Eq. (1) without the use of a model adjoint.
Whilst an adjoint facilitates efficient calculation of gradients
in the cost function it is costly to maintain and keep up-to-
date with the latest model version. The only example of an
adjoint of JULES for which we are aware is provided by
Raoult et al. (2016) and is implemented for version 2.2 of
the model, several major versions behind the current release.
In future work a 4D-Ensemble-Var (Liu et al., 2008, 2009)
approach could prove a useful compromise as it allows for
the use of a gradient-based descent algorithm, reducing the
total number of function calls required to reach a solution
without the use of an adjoint.

2.5 Experimental design

For each data assimilation experiment with JULES (driven
with TAMSAT v2.0 or v3.0 rainfall) we assimilate a single

year of ESA CCI soil moisture observations (2009) and then
run a 5-year hindcast (2010–2014). The hindcast allows us
to evaluate the performance of each experiment against in-
dependent soil moisture observations. In our results, we con-
sider four different model runs:

1. JULES model “free-run”, driven with TAMSAT v2.0
rainfall (“prior”)

2. JULES model after calibration with DA, driven with
TAMSAT v2.0 rainfall (“posterior”)

3. JULES model “free-run”, driven with TAMSAT v3.0
rainfall (“prior”)

4. JULES model after calibration with DA, driven with
TAMSAT v3.0 rainfall (“posterior”).

From these four distinct experiments we can interrogate the
impact of both the DA and use of the updated rainfall prod-
uct.

3 Results

We split our analysis over northern and southern Ghana
(above and below 9◦ N respectively) due to the issues of
data quality between the two regions. The data quality of
both precipitation and soil moisture is higher in the north
than the south and also much of the subsistence agriculture
in Ghana takes place in the northern regions, with a higher
percentage of cash crops grown in the south (Martey et al.,
2013). In Fig. 4 we show the results of a data assimilation
and forecast for a single grid cell in the north of Ghana;
here both the prior (light grey line) and posterior (dark grey
line) are forced with TAMSAT v3.0 precipitation (experi-
ments 3 and 4 respectively, described in Sect. 2.5). From
Fig. 4 we can see that the data assimilation has greatly im-
proved the fit to the observations in the assimilation window
(2009), which is to be expected, since these observations are
what the model is calibrated against. However, the improved
fit continues into the forecast (2010–2014) when comparing
against the unassimilated observations. We can see a dis-
tinct seasonal pattern for soil moisture in northern Ghana,
where there is a rainy season and corresponding “wetting-
up” of soil moisture from approximately March–May and
a dry season with “drying-down” of soil moisture from ap-
proximately November–January. The model skill for predict-
ing this seasonal cycle is markedly improved after data as-
similation, with a root-mean-squared difference (RMSD) of
0.035 after data assimilation compared to a RMSD of 0.094
before, for 2009. In Fig. 4 we can also see the amplitude of
this seasonal cycle slightly decreasing; this is a pattern also
seen in both TAMSAT products which exhibit a drying over
the period 2010–2014 for this grid cell. In Fig. 5 we show
the same model runs for a grid cell in the south of Ghana.
The season in the south of Ghana is much less pronounced
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Figure 4. Soil moisture data assimilation results for a northern Ghana grid cell using TAMSAT v3.0 driving data. Light grey line: prior
JULES trajectory. Dark grey line: posterior JULES trajectory. Black dots: ESA CCI level 3 soil moisture observations. Faint grey vertical
lines: error bars for observations. The vertical dashed line represents the end of the assimilation window.

and this is seen in both the model runs and the observations.
However, the observations are of poorer quality in the south
due to the higher vegetation cover and cloud cover, adding
to the noise seen in Fig. 5. Although we do improve the fit
to the observations after data assimilation in Fig. 5 (RMSD
of 0.059 after data assimilation compared to RMSD of 0.102
before, for 2009) we do not see the same scale of improve-
ment as for the northern Ghana grid cell in Fig. 4. This is
most likely due primarily to the higher error in both the pre-
cipitation and soil moisture observations. In addition, the less
pronounced seasonal cycle is more difficult to forecast after
just assimilating a single year of data. The lower layer soil
moisture in JULES responds in a similar way to the top lay-
ers shown in Fig. 4 and 5, becoming slightly dried compared
to our prior estimates after data assimilation. Without inde-
pendent observations of these deeper layers it is difficult to
know if this is realistic or not.

Figures 4 and 5 show results from experiments 3 and 4
when forcing the JULES model with TAMSAT v3.0 rainfall.
In Fig. 6 we show model mean relative error (MRE) (judged
against ESA CCI observations in the forecast period, 2010–
2014 and calculated as the mean absolute deviation) for wet
and dry seasons and experiments 1 to 4. Without DA (top
row) we can see that for both wet and dry seasons there is
a larger dry MRE in soil moisture in northern Ghana for
TAMSAT v2.0 than v3.0 and a larger wet MRE in south-
ern Ghana for TAMSAT v3.0 than v2.0. This finding is con-
sistent with the comparisons of precipitation between v3.0
and v2.0 presented by Maidment et al. (2017), where TAM-

SATv3.0 was shown to reduce a dry bias present in TAM-
SATv2.0 when compared to ground station data. After DA
(bottom row) we can see that the wet MRE in southern Ghana
is largely reduced for both TAMSAT v2.0 and v3.0. However,
in northern Ghana a dry MRE still remains, with this being
slightly drier for TAMSAT v2.0, compared to v3.0.

Figure 7 and 8 show experiment monthly RMSDs for north
and south Ghana respectively. For Fig. 7 this shows that the
most accurate model run overall is experiment 4 (TAMSAT
v3.0 with DA). We see in the majority of years that towards
the start of the season as soils are wetting up it is experiment
3 and 4 (TAMSAT v3.0 no DA and with DA respectively)
that have the lowest RMSD, suggesting that it is precipita-
tion, as opposed to the assimilation of soil moisture, that is
most important for improving soil moisture estimates dur-
ing this period. This relationship changes towards the end of
the rainy season, with experiment 2 and 4 being the most
accurate (TAMSAT v2.0 with DA and TAMSAT v3.0 with
DA respectively), suggesting that assimilation of soil mois-
ture estimates is most important in this period. In Fig. 8 the
most accurate model run is again experiment 4 (TAMSAT
v3.0 with DA), although experiment 2 (TAMSAT v2.0 with
DA) is much closer in accuracy than for the north. This sug-
gests that both rainfall products are poor in the south com-
pared to the north. We also note that experiment 1 (TAMSAT
v2.0 no DA) is markedly more accurate than experiment 3
(TAMSAT v3.0 no DA) in the south. However, considering
the results after DA (experiment 4 outperforming experiment
2) this can be explained by an incorrect specification of the
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Figure 5. As Fig. 4, except for southern Ghana.

Figure 6. Soil moisture model minus observations for the 5-year JULES forecast (2010–2014) driven with TAMSAT v2.0 and v3.0 precipi-
tation and before and after data assimilation. Subplot (a) shows statistics calculated over March to May for the wet period; subplot (b) shows
statistics calculated over November to January for the dry period. White pixels indicate areas where there are no data to calculate statistics
(mainly due to high vegetation cover in the south).
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prior soil map in the south rather than TAMSAT v2.0 rain-
fall outperforming TAMSAT v3.0 (it is expected that both
products perform poorly in coastal regions; Maidment et al.,
2017). Experiments 2 and 4 have a lower RMSD in the south
(Fig. 8) compared to the north (Fig. 7); this seems surprising
given that we consider the quality of the data to be poorer
in the south. However, this is in part due to the much more
pronounced seasonal cycle in the north leading to peaks in
RMSD when the seasonal cycle is even slightly mistimed by
the model. We also have less confidence in the CCI soil mois-
ture observations in the south so a lower RMSD in compari-
son to this product over this region is perhaps not indicative
of a better soil moisture estimate overall.

Figure 9 compares the prior soil map used as the initial
guess in the DA (i.e. from the Harmonised World Soil Data
Base) with the posterior soil map retrieved by DA. The pos-
terior soil map shown is the soil map retrieved when forcing
JULES with TAMSAT v3.0 rainfall. It can be seen that af-
ter DA, the percentage clay is greatly reduced with increased
percentages in silt and sand for the majority of grid cells.
This change is reasonable for some grid cells, particularly in
northern Ghana where soils are often much more sandy/silty
in texture (Braimoh and Vlek, 2004). Comparing estimates
of soil texture derived from CCI soil moisture to in situ ob-
servations is inevitably problematic due to issues of represen-
tativity in the spatial domain. However, independent sources
of verification are difficult to find over Ghana. We therefore
compare our soil maps to in situ observations from the Africa
Soil Profiles Database (Leenaars et al., 2014). This database
is compiled by the International Soil Reference and Informa-
tion Centre (ISRIC), with the quality of the data being rated
from 1 (highest quality) to 4 (lowest quality); here we only
compare our maps to observations with a quality flag of 1 or
2. In table 1 we show the root-mean-squared error (RMSE)
for our soil maps when compared to 21 in situ observations of
soil texture in the north of Ghana and 36 in situ observations
in the south (locations shown as red dots in Fig. 9). For the
north of Ghana where we have most confidence in our results
we find a reduction in RMSE for both sand and clay (almost
halving the RMSE in clay). However, the RMSE for silt is
increased. In the south of Ghana we do not manage to re-
cover a better estimate of soil texture after data assimilation,
with an increase in RMSE for silt and clay but a decrease
in RMSE for sand. The inability of the data assimilation to
improve soil texture estimates at certain points is most likely
due to issues of spatial representativity between the modelled
soil map and the in situ data. It is also possibly impacted
by errors in our pedo-transfer functions, which may perform
better if they were specifically calibrated for Ghanaian soils
(Patil and Singh, 2016).

Satellite soil moisture products can be subject to larger er-
rors and biases associated with data processing. This is par-
ticularly true for the CCI level 3 combined active and passive
product used in this paper, as in order to merge information
from 11 different sensors, data are matched using cumulative

Table 1. RMSE between JULES model soil maps (prior and pos-
terior) and in situ observations of soil texture from the Africa Soil
Profiles Database (Leenaars et al., 2014).

North Ghana

Sand RMSE Silt RMSE Clay RMSE

Prior soil map 0.43 0.25 0.30
Posterior soil map 0.38 0.29 0.16

South Ghana

Sand RMSE Silt RMSE Clay RMSE

Prior soil map 0.35 0.27 0.16
Posterior soil map 0.27 0.35 0.20

distribution functions to the GLDAS-Noah v1 model (Rodell
et al., 2004). Therefore, any bias within the GLDAS-Noah
model will be included in the level 3 soil moisture prod-
uct used here. To make sure we are not just correcting the
bias of the JULES model to that of GLDAS-Noah we in-
clude summary statistics of unbiased root-mean-squared dif-
ference (ubRMSD) and temporal correlation in Table 2. In
every case we find that after data assimilation we improve
both ubRMSD and correlation and in the majority of cases
find the best results for experiment 4 (TAMSAT v3.0 with
DA). For the north of Ghana, we reduce the ubRMSD by
18 % from experiment 3 (0.0622 m3 m−3) to experiment 4
(0.0508 m3 m−3). From experiment 2 to 4 we can see that,
after data assimilation, using TAMSAT v3.0 rainfall over
v2.0 has contributed to a 6 % reduction in ubRMSD when
calculating statistics over the whole period. In the south of
Ghana, we reduce the ubRMSD by 21 % from experiment 3
(0.0590 m3 m−3) to experiment 4 (0.0467 m3 m−3); here im-
proved rainfall data have contributed to 10 % of this reduc-
tion. We find the highest correlations in the north of Ghana
for the whole period (2010–2014); this is mainly due to the
seasonal cycle being much more pronounced in this region.

4 Discussion

For northern Ghana there is a prominent seasonal cycle for
soil moisture, with observations of higher quality than in the
south for both TAMSAT rainfall and ESA CCI soil mois-
ture. We find that soil moisture estimates based on TAM-
SAT v3.0 outperform v2.0, especially during the wetting-up
phase of the seasonal cycle, with the effect of the rainfall
dataset less marked during the drying-down phase. This is to
be expected as little or no rain occurs during drying-down
so that it is model dynamics that are the dominant factor in
the estimation of soil moisture. Therefore, it is the updat-
ing of soil parameters via data assimilation and not improved
precipitation that has the greatest impact on soil moisture
estimates during drying-down. Conversely, improved rain-
fall data have the greatest impact for estimating wetting-up
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Figure 7. Monthly root-mean-squared difference (RMSD) of JULES soil moisture estimate compared to ESA CCI for northern Ghana. Light
grey dashed line: prior JULES estimate, driven with TAMSAT v2.0 precipitation (exp. 1). Dark grey dashed line: prior JULES estimate,
driven with TAMSAT v3.0 precipitation (exp. 3). Light grey solid line: posterior JULES estimate, driven with TAMSAT v2.0 precipitation
(exp. 2). Dark grey solid line: posterior JULES estimate, driven with TAMSAT v3.0 precipitation (exp. 4).
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Figure 8. As Fig. 7, except for southern Ghana.

and constraining the start of the growing season. This can be
seen in Fig. 7 where TAMSAT v3.0 without DA outperforms
TAMSAT v2.0 with DA at certain times in the season. This
is because at these times the data assimilation system is not
able to overcome the errors in the precipitation forcing data
to improve the estimates further. If there is too little rain-

fall, there is a point where the DA system cannot make the
soil any wetter because we are not changing the model soil
moisture state – only the soil texture. Assimilation of CCI
soil moisture estimates in the north of Ghana allows us to re-
cover improved estimates of soil texture when judged against
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Figure 9. Prior and posterior soil maps over Ghana showing percentage of sand, silt and clay. Red dots represent locations where in situ
observations of soil texture are available from the Africa Soil Profiles Database (Leenaars et al., 2014).

Table 2. Experiment statistics calculated over the north and south of Ghana in the hindcast period (2010–2014), for the whole period, wetting-

up (March–May) and drying-down (November–January). The ubRMSD is calculated as
√

1
N

∑N
i=0((θmodi − θmod)− (θobsi − θobs))2,

where N is the number of observations, θmodi the model estimate at time i, θmod the mean model estimate over the time window, θobsi
the observation estimate at time i and θobs the mean observation estimate over the time window. The units of ubRMSD are m3 m−3.

North Ghana

(1) TAMSAT 2 no DA (2) TAMSAT 2 DA (3) TAMSAT 3 no DA (4) TAMSAT 3 DA

ubRMSD Correlation ubRMSD Correlation ubRMSD Correlation ubRMSD Correlation

Whole period 0.0605 0.86 0.0541 0.89 0.0622 0.86 0.0508 0.90
Wet 0.0643 0.59 0.0592 0.64 0.0626 0.58 0.0529 0.65
Dry 0.0396 0.77 0.0332 0.83 0.0486 0.78 0.0365 0.84

South Ghana

(1) TAMSAT 2 no DA (2) TAMSAT 2 DA (3) TAMSAT 3 no DA (4) TAMSAT 3 DA

ubRMSD Correlation ubRMSD Correlation ubRMSD Correlation ubRMSD Correlation

Whole period 0.0651 0.77 0.0519 0.82 0.0590 0.76 0.0467 0.82
Wet 0.0629 0.57 0.0515 0.67 0.0571 0.55 0.0472 0.66
Dry 0.0642 0.82 0.0492 0.85 0.0604 0.83 0.0432 0.87

in situ data from the Africa Soil Profiles Database (Leenaars
et al., 2014).

For southern Ghana, there is a much less prominent sea-
sonal cycle than in the north, with poorer quality observa-

tions for both TAMSAT rainfall and ESA CCI soil moisture.
This is due to large amounts of coastal convective cloud and
higher vegetation cover. We find that, after assimilating soil
moisture data, runs forced with TAMSAT v3.0 outperform
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those forced with TAMSAT v2.0. Although we do not have
reliable precipitation observations in the south we can still
greatly improve our forecast skill for soil moisture through
DA. This bodes well for other regions with unreliable precip-
itation observations (Crow, 2003). In the south we find larger
reductions in ubRMSD than in the north after data assimila-
tion. However, we also have less confidence in the CCI soil
moisture product to which we are comparing in the south. It
is therefore unlikely that we have improved estimates more
than in the north in comparison to the truth. This is backed
up by the inability of our data assimilation system to recover
an improved soil map when compared to in situ observations
in the south.

There is likely an issue of representativity between the
satellite-derived soil moisture observations and the JULES
modelled soil moisture in our DA system. We make the prag-
matic assumption that satellite soil moisture is representative
of the top 5 cm layer of soil in JULES. However, during in-
tense dry periods the satellite will become more sensitive to
greater depths (Ulaby et al., 1982) and hence less represen-
tative of the JULES top level soil moisture. This can be seen
in Fig. 4 where the model fails to capture the satellite ob-
servations during the driest periods, with the JULES model
predicting a lower soil moisture than the ESA CCI obser-
vations; this same phenomenon appears at a number of grid
cells during dry periods. We can also see this consistent dry
bias in the bottom row of Fig. 6b. More work is needed to
understand how best to address this issue between satellite-
observed and modelled soil moisture. One option could be
to create a multi-layer observation operator for land sur-
face models. Previous DA studies have opted to assimilate
satellite-retrieved brightness temperature and then use a ra-
diative transfer model on top of their chosen land surface
model (Moradkhani et al., 2005; Qin et al., 2009; Montzka
et al., 2011; Rasmy et al., 2011; Sawada and Koike, 2014;
Yang et al., 2016).

Our results highlight the importance of having quality ob-
servations of both precipitation and soil moisture. TAMSAT
rainfall observations and the ESA CCI soil moisture data are
available as daily products but at different spatial resolutions
and different observation times. TAMSAT data are produced
at 4 km spatial resolution by calculating cold cloud dura-
tion over a 5-day period of 15 min thermal infrared obser-
vations. The ESA CCI soil moisture data on the other hand
are merged from various passive and active microwave obser-
vations and available in various spatial resolutions that are
typically in the order of 0.25◦. The core observations that
make up the daily product are, in effect, instantaneous but
then merged into a harmonised product. The ideal situation
would be to have precipitation measurements and soil mois-
ture observations that are representative of the same time pe-
riods and spatial domains, but there are no such current mis-
sions.

5 Conclusions

Previous studies at the grid cell level have shown that cal-
ibrating land surface models with satellite observations im-
proves performance when judged against in situ observa-
tions (Moradkhani et al., 2005; Qin et al., 2009; Montzka
et al., 2011; Rasmy et al., 2011; Sawada and Koike, 2014;
Yang et al., 2016). In this study we calibrated the JULES
land surface model at the regional scale (over Ghana) and
show that this reduces ubRMSD and correlation when judged
against independent observations in a set of hindcast exper-
iments. From the results, it is clear that both improved rain-
fall estimates and the implementation of data assimilation are
required in order to improve modelled estimates and fore-
casts of soil moisture. We have split our analysis between
north and south Ghana due to the hydrological regimes vary-
ing considerably between these two regions. In the north of
Ghana, where the observations are of highest quality due to
lower cloud and vegetation cover, we find that improved pre-
cipitation estimates are of greatest importance for accurate
representation of the start of season soil moisture. In con-
trast, the assimilation of relevant soil moisture observations
with our land surface model gives the largest benefit for im-
proving estimates during drying-down. This makes physical
sense as when no rain is occurring it will be model dynamics
that are the dominant factor in the estimation of soil moisture.
After data assimilation we are able to improve our estimates
of soil texture in the north, judged against in situ observa-
tions. After assimilation of a single year of soil moisture ob-
servations (2009) we reduce the ubRMSD of a 5-year model
hindcast (2010–2014) by 18 % in northern Ghana and 21 %
in the south, with the improved rainfall product contributing
a 6 and 10 % reduction in ubRMSD respectively. The higher
reduction in ubRMSD in the south is not necessarily indica-
tive of a soil moisture estimate closer to the truth as we also
have less faith in the ESA CCI soil moisture product in this
region due to higher amounts of convective cloud and veg-
etation cover. This is supported by the fact that in the south
we are unable to recover an improved estimate of soil texture
after data assimilation, when judged against in situ obser-
vations. However, in the north we do recover improved soil
texture estimates despite the lower reduction in ubRMSD.
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