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Abstract. Quantitative knowledge of the subsurface mate-
rial distribution and its effective soil hydraulic material prop-
erties is essential to predict soil water movement. Ground-
penetrating radar (GPR) is a noninvasive and nondestructive
geophysical measurement method that is suitable to monitor
hydraulic processes. Previous studies showed that the GPR
signal from a fluctuating groundwater table is sensitive to
the soil water characteristic and the hydraulic conductivity
function. In this work, we show that the GPR signal originat-
ing from both the subsurface architecture and the fluctuating
groundwater table is suitable to estimate the position of lay-
ers within the subsurface architecture together with the asso-
ciated effective soil hydraulic material properties with inver-
sion methods. To that end, we parameterize the subsurface
architecture, solve the Richards equation, convert the result-
ing water content to relative permittivity with the complex
refractive index model (CRIM), and solve Maxwell’s equa-
tions numerically. In order to analyze the GPR signal, we
implemented a new heuristic algorithm that detects relevant
signals in the radargram (events) and extracts the correspond-
ing signal travel time and amplitude. This algorithm is ap-
plied to simulated as well as measured radargrams and the
detected events are associated automatically. Using events in-
stead of the full wave regularizes the inversion focussing on
the relevant measurement signal. For optimization, we use a
global-local approach with preconditioning. Starting from an
ensemble of initial parameter sets drawn with a Latin hyper-
cube algorithm, we sequentially couple a simulated anneal-
ing algorithm with a Levenberg—Marquardt algorithm. The
method is applied to synthetic as well as measured data from

the ASSESS test site. We show that the method yields rea-
sonable estimates for the position of the layers as well as for
the soil hydraulic material properties by comparing the re-
sults to references derived from ground truth data as well as
from time domain reflectometry (TDR).

1 Introduction

Quantitative understanding of soil water movement is in par-
ticular based on accurate knowledge of the subsurface ar-
chitecture and the hydraulic material properties. As direct
measurements are time-consuming and near to impossible
at larger scales, soil hydraulic material properties are typi-
cally determined with indirect identification methods, such
as inversion (Hopmans et al., 2002; Vrugt et al., 2008). Time
domain reflectometry (TDR, e.g., Robinson et al., 2003) is
a standard method to acquire the required measurement data,
because it is sensitive to hydraulic processes. Yet, being an
invasive method, the TDR sensors disturb the soil texture of
interest and typically require the maintenance of a local mea-
surement station. Hence, it is difficult to apply the method at
larger scales or to transfer the sensors to another field site.
Ground-penetrating radar (GPR, e.g., Daniels, 2004; Neal,
2004) is an established noninvasive method for subsurface
characterization and has the potential to become a standard
method for efficient, accurate, and precise determination soil
hydraulic material properties.
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Available research studies regarding the estimation of hy-
draulic properties from GPR measurements may be catego-
rized according to the applied methods for the different com-
ponents of the research study, such as the (i) GPR measure-
ment procedure, (ii) experiment type, (iii) GPR simulation
method, (iv) optimization method, and (v) evaluation method
of the GPR signal.

Most of these studies either use on-ground, off-ground,
or borehole GPR measurements. On-ground measurements
(e.g., Buchner et al., 2012; Busch et al., 2012; Léger et al.,
2015) offer the most flexible approach. They have the disad-
vantage, however, that the antenna characteristics are influ-
enced by the coupling to the ground. Off-ground measure-
ments (e.g., Lambot et al., 2009; Jadoon et al., 2012; Jonard
et al., 2015) avoid these effects, but the measurements are
influenced by surface roughness. Cross-borehole measure-
ments allow for high-resolution tomography of the subsur-
face (e.g., Ernst et al., 2007; Looms et al., 2008; Scholer
et al., 2011) but require boreholes which are destructive and
expensive.

The applied experiment types range from infiltration, fluc-
tuating groundwater table, to evaporation. Infiltration exper-
iments (e.g., Léger et al., 2014; Thoma et al., 2014; Rossi
et al., 2015) are fast (hours) and provide indirect informa-
tion about the near-surface material properties. Through its
dependence on the form of the infiltration front or plume, the
resulting GPR signal can get rather complicated to reproduce
when used for quantitative evaluation. Difficulties arise from
multiple reflections in the plume, waveguides in the infiltra-
tion front, and from noise originating for small-scale hetero-
geneity or fingering. In particular, if the infiltration is done
artificially, accurate knowledge of the spatial distribution of
the infiltration flux is required. Also simultaneous GPR mea-
surements during the infiltration process are difficult, be-
cause the antenna coupling to the subsurface is influenced by
the changing water content close to the surface. Fluctuating
groundwater table experiments (e.g., Bradford et al., 2014;
Léger et al., 2015) require intermediate timescales (hours to
days) and provide information about the material properties
close to the groundwater table. These experiments are typi-
cally limited to fluvial or coastal areas or are induced artifi-
cially in test sites. Evaporation experiments (e.g., Moghadas
et al., 2014) demand long timescales (weeks), because the
hydraulic dynamics are slow at low water contents. Yet, this
kind of experiment is important to understand the coupling
of the pedosphere with the atmosphere.

The applied models to simulate the GPR signal are faced
by an inherent tradeoff between performance and accuracy.
Ray tracing (Léger et al., 2014, 2015) is fast but merely
yields an approximate solution of Maxwell’s equations.
These equations can be solved analytically with Green’s
function (e.g., Lambot et al., 2009; Busch et al., 2012; Jonard
et al., 2015) assuming a layered subsurface architecture. Al-
ternatively, Maxwell’s equations can be solved numerically
with the finite differences time domain (FDTD) method (e.g.,
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Taflove and Hagness, 2000). This method is computationally
expensive, but grants full flexibility concerning the source
wavelet and the subsurface architecture (e.g., Lampe et al.,
2003; Giannopoulos, 2005; Buchner et al., 2012).

Due to the inherent oscillating nature of the electromag-
netic signal, inversion of GPR data generally demands glob-
ally convergent and robust optimization techniques. Sequen-
tially coupling a globally convergent search algorithm, e.g.,
the global multilevel coordinate search algorithm (GMCS,
Huyer and Neumaier, 1999) with the gradient-free locally
convergent Nelder—-Mead simplex algorithm (NMS, Nelder
and Mead, 1965), was successfully applied to estimate hy-
draulic material properties from GPR measurements (e.g.,
Lambot et al., 2004; Busch et al., 2012; Moghadas et al.,
2014). The NMS was further developed to the shuffled com-
plex evolution (SCE-UA, Duan et al., 1992) which has be-
come a standard tool in hydrology and was also applied
on GPR measurements (e.g., Jadoon et al., 2012; Léger
et al., 2014, 2015). Additionally, Markov chain Monte Carlo
(MCMC) methods (e.g., Scholer et al., 2011; Thoma et al.,
2014; Jonard et al., 2015) and data assimilation approaches
(e.g., Tran et al., 2014; Manoli et al., 2015; Rossi et al., 2015)
have been successfully applied so far.

The GPR signal has to be processed automatically for
parameter estimation. Many full waveform inversion ap-
proaches directly use the resulting Green’s function (e.g.,
Lambot et al., 2009; Busch et al., 2012; Jadoon et al., 2012)
in the cost function. Using the full antenna signal may lead
to many local minima prohibiting a reliable identification of
the global minimum (e.g., Bradford et al., 2014). In contrast,
filtering the radargram with convolution approaches to deter-
mine travel time and amplitude of a limited number of events
leads to better convergence and may even allow the applica-
tion of efficient locally convergent algorithms (e.g., Buchner
etal., 2012).

In homogeneous materials, the transition zone above the
groundwater table exhibits a smooth variation of the relative
permittivity. Since the resulting GPR reflection is a super-
position of a series of infinitesimal contributions along the
transition zone, the detailed form of this reflection is sen-
sitive to the variation of the relative permittivity. For sim-
plicity, we refer to this reflection as transition zone reflec-
tion. Dagenbach et al. (2013) showed that this reflection is
sensitive to the hydraulic material parameterization model.
Bradford et al. (2014) measured the transition zone reflec-
tion of a drainage pumping test in a fluvial area with an an-
tenna center frequency of 200 MHz and estimated hydraulic
material properties. Klenk et al. (2015) employed numeri-
cal forward simulations and experiments using GPR anten-
nas with higher antenna center frequency (400 and 600 MHz)
for a more-detailed explanation of the transition zone reflec-
tion during imbibition, equilibration, and drainage. They also
concluded that the transition zone reflection is sensitive to
hydraulic material properties.
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Figure 1. ASSESS provides an effectively 2-D subsurface architecture consisting of three kinds of sand (A, B, and C). During the experiment
that is evaluated in this work, the groundwater table was manipulated via a groundwater well (white square at 18.3 m). The resulting hydraulic
dynamics were monitored automatically with a stationary GPR antenna (black square at 17.05m), a tensiometer (black square, at 4.0 m), and
32 TDR sensors (black dots). A gravel layer below the sands allows for a rapid water pressure distribution at the lower boundary of the
site. An L-element (left wall, at 0.4 m) and compaction interfaces (white lines) result from the construction of the site. Additionally to those
visualized, GPR evidence indicates additional compaction interfaces (Fig. 14) that were not determined during construction. Roman numerals
(D—(VID) indicate material interfaces referred to in the text. Note the different scales on the horizontal and vertical axes.

This work builds upon previously published methods for
simultaneous estimation of the subsurface architecture and
the effective water content based on on-ground multi-offset
GPR measurement data (e.g., Gerhards et al., 2008; Buch-
ner et al., 2012). In order to develop methods to addition-
ally estimate hydraulic material properties, the ASSESS test
site was forced with a fluctuating groundwater table ensuring
large hydraulic dynamics. In this work, we use the result-
ing transition zone reflection together with reflections orig-
inating from material interfaces to estimate the positions of
layers within the subsurface architecture as well as their hy-
draulic material properties. Running 2-D or even 3-D mea-
surements and inversions is a massive experimental and com-
putational effort. Prior to embarking on this, the individ-
ual steps must be demonstrated. To this end, the experiment
was monitored with a stationary on-ground bistatic antenna
that operates at a center frequency of 400 MHz, leading to
time-lapse GPR measurement data. The hydraulic dynamics
below this antenna are modeled in 1-D using the Richards
equation. The resulting water content distribution is extruded
and converted to a relative permittivity distribution to solve
Maxwell’s equations in 2-D. Similar to Buchner et al. (2012),
we developed a new heuristic semiautomatic approach to ex-
tract the signal travel time and amplitude of relevant reflec-
tions in the radargram (events). This approach is applied to
both the simulated and measured radargram and the corre-
sponding events are associated automatically. For optimiza-
tion, a global-local inversion approach with preconditioning
is applied. To that end, we draw parameter sets with a Latin
hypercube algorithm that serve as initial parameters for the
preconditioning step. In this step, a simulated annealing al-
gorithm and a Levenberg—Marquardt algorithm are sequen-
tially coupled using a subsampled data set for a limited num-

www.hydrol-earth-syst-sci.net/22/2551/2018/

ber of iterations. Subsequently, the resulting parameters of
the preconditioning step serve as initial parameters for an-
other run of the Levenberg—Marquardt algorithm using the
full data set. We show that this procedure accurately esti-
mates the layered subsurface architecture as well as the as-
sociated effective hydraulic material properties for synthetic
and measurement data.

2 Methods
2.1 ASSESS

The measurement data for this work are acquired at an ap-
proximately 2m x 20m x 4m large the test site (ASSESS)
which is located near Heidelberg, Germany, and provides an
effectively 2-D subsurface architecture consisting of three
kinds of sands (Fig. 1). Below the sands, an approximately
0.1 m thick gravel layer ensures rapid distribution of the wa-
ter pressure at the lower boundary. This gravel layer is sepa-
rated from the sand via a geotextile and is the only connec-
tion of the site to a groundwater well. The groundwater well
is in particular used to manipulate the groundwater table by
pumping water in and out of the well. The groundwater table
in the test site is automatically determined with a tensiometer
(UMS T4-191). The test site incorporates 32 soil temperature
and TDR sensors which are operated via a weather station
and a Campbell Scientific TDR100. The site is confined by
a basement layer below the gravel layer and by a wall at each
of the four sides. During the construction, the materials were
compacted with a vibrating plate for stabilization.
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2.2 Representation

Quantitative understanding of a system of interest requires its
mathematical representation. Based on Bauser et al. (2016),
we define the representation of a system as a set consisting
of (i) the dynamics corresponding to the mathematical propa-
gation of the variable of interest at predefined scales in space
and time, (ii) the coupling to the sub-scale physics through
typically heuristic material properties, (iii) the coupling to
the super-scale physics through the forcing in space and time,
and (iv) the state corresponding to the variable of interest that
is propagated by the dynamics.

2.2.1 Dynamics

The standard model to describe the volumetric water content
0 (-) and the matric head Ay, (m) in space and time 7 (s) is
the Richards equation (Richards, 1931),

0 — V- [Kw(O)[Vhn(0) —e.]] =0. (1)

To solve this partial differential equation, the soil water
characteristic 6 (hy) and the hydraulic conductivity function
K (0) are required. The direction of gravity is indicated with
the unit vector in z direction e;.

2.2.2 Sub-scale physics

We choose the Brooks—Corey parameterization (Brooks and
Corey, 1966) for the soil water characteristic 6 (hy,), since
it describes the materials in ASSESS appropriately (Dagen-
bach et al., 2013). Inverting this parameterization for 6, <
0 < 6, leads to

0—0, —1/a
hmw)=ho(eﬂ_9) : @)

with a saturated water content 65 (), a residual water con-
tent 6, (), a scaling parameter h¢ (m) related to the air entry
pressure (hg < Om), and a shape parameter A (—) related to
the pore size distribution (A > 0).

The hydraulic conductivity function K, (6) is parameter-
ized combining the Brooks—Corey parameterization with the
hydraulic conductivity model of Mualem (1976). This yields

_ T4+242/2
me=K{9 %) : 3)

Gs _Or

with the saturated hydraulic conductivity K (ms™') and
a tortuosity factor t (-).

2.2.3 Forcing

In order to provide the measurement data for this study,
ASSESS was forced with a fluctuating groundwater table
leading to two characteristic phases comprising an initial
drainage phase and a multistep imbibition phase (Fig. 2).
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Figure 2. During the experiment with two distinct phases (initial
drainage and multistep imbibition — separated by the vertical line),
the position of the groundwater table was measured manually in the
groundwater well and automatically with the tensiometer (Fig. 1).
The difference between them is proportional to the driving force of
water flow in the gravel layer.

The experiment was realized at the end of November and
the weather was cloudy with 2—7°C air temperature. Hence,
evaporation is neglected in this work. Further details about
the experiment are given by Jaumann and Roth (2017).

2.2.4 State

During the experiment, the groundwater table was measured
(1) automatically with a tensiometer and (ii) manually via
the groundwater well (Fig. 2). The hydraulic state was mon-
itored with a stationary GPR antenna (Fig. 1). This shielded
bistatic single-offset 400MHz GPR antenna (Ingegneria dei
Sistemi S.p.A., Italy) has an internal antenna separation of
0.14 m. The measurement resolution was set to 2048 samples
for 60ns. The acquired GPR data are analyzed in detail in
Sect. 3.3. Additionally, a mean soil temperature (75 = 8.5°C)
and a mean electrical conductivity (o = 0.003Sm™!) was
estimated from TDR-related measurements available in AS-
SESS. The electrical conductivity was evaluated from the
TDR pulse shape and thus includes the direct current con-
ductivity as well as dielectric losses. For this evaluation and
the corresponding temperature correction, we implemented
the methods of Heimovaara et al. (1995).

The observation operator required to compare the simu-
lated hydraulic state with the GPR measurement data in-
volves the solution of the time-dependent Maxwell equations
in linear macroscopic isotropic media. These equations quan-
tify the propagation of the electric field E and the magnetic
field B (Jackson, 1999):

B oE
Vx——¢e—=0E+], “)
u at
oB
VxE~|—W=O. (5)
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The dielectric permittivity &€ = gg&;, magnetic permeability
W = popmr, and electrical conductivity o are generally spa-
tially variable and represent the electromagnetic properties
of the subsurface. Here, we use the static relative permittivity
& = limg,_, o&r(w), neglect dispersive effects (de;/dw = 0),
and assume the permittivity to be real valued (e € R). The
relative magnetic permeability is assumed to be that of vac-
uum (u; = 1). The source current density J is applied at the
position of the transmitter antenna.

The relative permittivity of the subsurface ¢, = &, , is cal-
culated from the water content distribution using the complex
refractive index model (CRIM, Birchak et al., 1974):

VernO,Ts, ) =0 - Jer w(To) + (¢ —0) - fera
+ (1 =) - /ers. (©6)

The application of the CRIM requires knowledge of the
porosity ¢, the relative permittivity of water &, the rela-
tive permittivity of air &;,, and the relative permittivity of
the soil matrix &, . The relative permittivity of air &, was
set to 1. Since we assume that the soil matrix consists mainly
of quartz (SiOy) grains, the relative permittivity of the soil
matrix & ¢ was set to 5 (Carmichael, 1989). We further as-
sume that porosity ¢ is equal to the saturated water content
05 (Eq. 2). The dependency of the static relative permittivity
of water ¢, on the soil temperature 7 (°C) is parameterized
following Kaatze (1989)

- -3
erw(Ts) = 101‘94404 Tsx1.991x10 . o

The electrical conductivity o of the subsurface is assumed to
be constant in space and time. As for the relative permittivity,
we neglect dispersive effects of the electrical conductivity
(00 /0w = 0) and assume it to be real valued (o € R).

2.3 GPR analysis

To analyze the GPR data, we follow Buchner et al. (2012)
and extract the travel time ¢ and the corresponding amplitude
A for M samples of the GPR signal (events)

EHI(AII)(XL)] ®)

with a heuristic approach, because this allows us to focus
on the phenomena that are represented in the model. How-
ever, to associate the events extracted from the measured sig-
nal with events extracted from the simulated signal, this pro-
cedure demands an automatic event association algorithm.
Thus, the evaluation method consist of four steps: (i) signal
processing, (ii) event detection, (iii) event selection, and (iv)
event association (Fig. 3).

2.3.1 Signal processing
The processing of the GPR signal includes the following

step: (i) time-zero correction, (ii) dewow filter, (iii) 2-D to 3-
D conversion, (iv) removal of the direct signal (particularly
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Figure 3. The GPR data evaluation method presented in this section
consists of four main steps. In the first step, the signal is processed
(Sect. 2.3.1). The 2-D to 3-D conversion in this step is applied to the
simulated data. In the second step, extrema in the GPR signal are
detected (Sect. 2.3.2). The detected events in the measurement data
can be selected manually for the subsequent evaluation (Sect. 2.3.3).
This ensures that the optimization focuses only on the most relevant
information in the data. Finally, the most plausible association of
simulated and measured events is determined (Sect. 2.3.4). Note
that for each parameter set that is tested during the optimization
procedure, the simulation data are evaluated automatically (solid
lines). In contrast, the measurement data are only evaluated once
before starting the optimization procedure (dashed lines).

including the direct wave and the ground wave) and the trail-
ing signal (signal at the end of the trace which is disturbed
by the dewow filter), and (v) normalization (Fig. 3).

Since the time-zero of the GPR antennas changes over
time, we pick the direct signal and subtract the evaluated
travel time from each trace of the radargram for time-zero
correction. Subsequently, a dewow filter is applied to sub-
tract inherent low-frequency wow noise of the GPR signal.
Because the observation is in 3-D and the simulation in 2-
D, we convert the simulated signal to 2.5-D, meaning to 3-D
with translational symmetry perpendicular to the survey line
and parallel to the ground surface (Bleistein, 1986). The AS-
SESS site conforms to this 2-D requirement (Sect. 2.1). For
the conversion, each trace is transformed to the frequency
domain with the fast Fourier transform (FFT, denoted by 7).

Hydrol. Earth Syst. Sci., 22, 2551-2573, 2018
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Afterwards, the electric field is modified depending on the
angular frequency w:

B R |w| im .
EX?’=EP.¢- rro P (—Tslgn«o)) : ©)

where i is the complex unit, C; is a constant (m), and o, de-
notes the integral of the velocity with respect to the length s
of the ray trajectory. Assuming a direct ray path and a hor-
izontal reflector with the reflector distance d as well as the
mean square root of the dielectric permittivity ,/e; along the
ray path, this is leads to

0. = /c(s)ds _ od (10)

NG

Subsequently, all traces are transformed back to the time
domain with the inverse FFT. Due to the frequency con-
version and the manipulation, a high-frequency noise re-
mains on the signal which is smoothed with a fourth-order
Savitzky—Golay filter (e.g., Press, 2007, we employed the
implementation of the “signal” package for GNU Octave:
https://octave.sourceforge.io/signal/) using a window width
of 41 samples. Subsequently, the direct signal and the trail-
ing signal of the dewow filter are set to zero. Finally, each
trace is normalized to its maximal absolute amplitude since
the absolute power of the GPR source is typically unknown.
Thus, the value of the constant C; in Eq. (9) also becomes
irrelevant.

2.3.2 [Event detection

In this step, events are detected in each trace separately
(Fig. 4). To facilitate the detection of relevant events at large
signal travel times, the amplitude of the processed signal
(Sect. 2.3.1) is amplified quadratically with travel time us-
ing an arbitrary gain function that was shown to work well.
Subsequently, the extrema of the amplified amplitude are de-
tected with a local neighborhood search. We keep a prede-
fined number of events (15) with the largest amplified abso-
lute amplitude. If the non-amplified amplitude of a detected
extremum is below a predefined amplitude threshold (0.006),
the event is discarded in any case. In order to correct the per-
turbation in travel time due to the amplification and to cope
with the discrete measurement resolution, we fit a Gaussian
curve centered at the travel time of the detected event with a
width of &5 samples to the non-amplified amplitude of the
processed signal. The travel time of the resulting extremum
of the Gaussian fit is directly used for the following eval-
uation. The amplitude of the extremum is used as the am-
plitude of this event. This procedure makes the form of the
previously applied gain function irrelevant. The amplitude of
all detected events is normalized with the absolute maximal
amplitude of all detected events within the same trace.

Hydrol. Earth Syst. Sci., 22, 2551-2573, 2018
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2.3.3 Event selection

After the event detection, the measured signal and the de-
tected events (Sect. 2.3.2) are inspected manually. In this
one-time processing step, events can either be deleted or
added manually. Thus, it can be ensured, that only those
events that are also represented in the model enter the pa-
rameter estimation. This step is skipped for the analysis of
the simulated data. The resulting amplitude of the selected
events is normalized with the absolute maximal amplitude of
all selected events of each trace.

2.3.4 Pairwise event association

The selected events extracted from the measured data have
to be associated with the detected events extracted from the
simulated data for the parameter estimation. To this end,
Buchner et al. (2012) tested all possible combinations of
events, using the one with the minimal summed absolute
travel time difference. However, this is only feasible for
a small number of events. As we are not using a Gaussian
convolution of the data but the data themselves, the number
of events increases. Hence, testing all combinations is often
prohibitively expensive.

In order to exclude combinations a priori, the detected
events are aggregated in clusters (Fig. 5a). Then, these clus-
ters are associated by testing all possible combinations and
finally using the combination with the minimal summed ab-
solute travel time difference. Afterwards, those events that
are aggregated in the associated clusters are associated them-
selves. The applied association procedure requires the events
to have an identical amplitude sign and a consistent temporal
order which reflects the principle of causality (Fig. Sb). After
iterating over all allowed combinations, the association with
the maximal number of associated events and the minimal
summed absolute travel time difference is used. It is criti-
cal to also consider combinations where some intermediate
events (e.g., (f;,2, As,2) in Fig. 5) cannot be associated.

After the association of the events, outliers are detected by
calculating the mean and standard deviation of the travel time
differences. All associations that exhibit an absolute travel
time difference larger than 3 standard deviations of all ab-
solute travel time differences are discarded. Finally, the am-
plitude of the associated events is normalized to the maximal
absolute amplitude of the associated events of each trace sep-
arately for the simulation and the measurement.

2.4 Parameter estimation

Inversion of GPR data typically requires globally convergent
parameter estimation algorithms which are computationally
expensive. In order to keep the parameter estimation proce-
dure efficient, we use an iterative strategy (Fig. 6). We start
the optimization procedure by drawing an ensemble of ini-
tial parameter sets with a Latin hypercube algorithm (imple-

www.hydrol-earth-syst-sci.net/22/2551/2018/
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Figure 4. The detected events of the first trace of the synthetic radargram analyzed in Sect. 3.2. The amplitude of a trace is searched for
extrema with a neighborhood search algorithm. For the subsequent evaluation, the amplitude of the detected events is normalized to the
maximal absolute amplitude of all events detected in the trace. The direct signal and the trailing signal of the dewow filter with normalized
travel times < 0.06 and > 0.89, respectively, are set to zero in a processing step (Sect. 2.3.1) and possible events close to these signals are
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dots indicates the sign of amplitude of the events. (a) The detected events (Fig. 4) are aggregated in clusters to minimize the number of
possible event combinations. The clusters are associated such that the summed absolute travel time difference of the mean travel time of
the events in the cluster is minimal. (b) The events in the clusters are associated according to consistent temporal order and amplitude sign.
Hence, if (t5,1, As,1) is associated with event (ty, 2, Ay 2), event (% 2, A 2) cannot be associated with event (ty 1, Am 1), if 1 < tm 2
or sign(Ag 2) # sign(Ap, 1). Solid (dashed) arrows indicate some of the accepted (declined) association combinations. The combination
with the maximal number of associations and minimal summed absolute travel time difference is used for evaluation. Thus, for example
(#5,1, As,1) is associated with (ty 2, A 2) and not with (fy, 3, A 3).

mented by the pyDOE package, https://github.com/tisimst/
pyDOE).

The most expensive operation of the forward simulation
is the calculation of the observation operator, which includes
the solution of Maxwell’s equations (Sect. 2.2.4) and the sub-
sequent event association (Sect. 2.3). Since time-lapse GPR
data are highly correlated in experiment time (e.g., Fig. 14b),
we equidistantly subsample the number of traces of the time-
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lapse GPR radargram and generate a data set with lower tem-
poral resolution. Those data are used to improve the dis-
tribution of the initial parameters (preconditioning). There-
fore, the drawn parameter sets are used to initialize the simu-
lated annealing algorithm (Sect. 2.4.2) which allows for a ro-
bust and fast parameter update. The resulting parameters then
serve as initial parameters for the Levenberg—Marquardt al-
gorithm (Sect. 2.4.3) which concludes the preconditioning
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Figure 6. We choose a sequentially coupled parameter estimation
procedure which (i) allows minimizing the computational cost and
(ii) facilitates the implementation of tagging (Sect. 2.4.1). There-
fore, Latin-hypercube-sampled parameter sets are preconditioned
with a data set with reduced number of traces (low-resolution data)
by sequentially coupling the simulated annealing algorithm and
the Levenberg—Marquardt algorithm. The preconditioned parame-
ter sets for each ensemble member serve as initial parameters for
the final parameter estimation based on high-resolution data. The
subsequent evaluation of the ensemble is based on the number of as-
sociated events M and the mean absolute error in travel time epa
(Sect. 3.1.2).

step. The resulting parameters of the preconditioning step
are used as the initial parameter sets for the more expensive
optimization of high-resolution data set with the Levenberg—
Marquardt algorithm. The details of the setup and the analy-
sis of the parameter estimation are given in Sect. 3.1.2.

2.4.1 Cost function

Assuming P parameters p, (1,...,7,..., P) and M associa-
tions (1,..., i, ..., M) of measured events (f;, m, A, m) With
simulated events (¢, s(p), Ay s(p)), the cost function S(p)
is given by

M 2 2
S(p) = % Z (tu,s(p) - tu,m) i (Au,s(p) - Au,m)

u=1 Ot OA,u

1 M
=52 (Rutrin) an
n=1

with the constant standard deviation of the measured normal-
ized travel times oy, = o and of the measured normalized
amplitudes oa,,, = 04. This leads to the standardized residu-
als in travel time r¢ ;, and amplitude ra .

Due to the oscillating nature of the GPR signal and due
to the applied GPR data evaluation (Sect. 2.3), the cost func-
tion is not necessarily convex and may even be discontinuous
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at some points, because the number of associated events M
may change during the minimization process. Hence, adding
and removing associations of events requires a compensation
to prevent the cost function from becoming discontinuous.
To this end, Buchner et al. (2012) introduced tagging. If the
number of measured events is smaller than the number of the
simulated events, the simulated events that are not associ-
ated are excluded. Alternatively, if there are more measured
events, measured events without a partner are tagged as part-
nerless. If a reflection event has been tagged and becomes
untagged after the parameter update, the contribution of the
event and its new partner to the cost function is added to the
previous cost. If an event has not been tagged and becomes
tagged after the parameter update, the contribution to the cost
function is subtracted from the previous cost.

2.4.2 Simulated annealing

We choose the simulated annealing algorithm (Press, 2007)
to start the minimization of the cost function (Eq. 11), be-
cause this algorithm is gradient-free and updates the param-
eters randomly. In addition, the implementation of tagging
(Sect. 2.4.1), which can be implemented easily for this al-
gorithm, no further regularization is required due to its ran-
dom parameter update. Hence, this algorithm is in particu-
lar suitable for initial iterations where the association of the
single events may lead to an inconsistent association of the
reflections. Once the reflections are associated consistently,
the Levenberg—Marquardt algorithm is typically more effi-
cient than the simulated annealing algorithm.

If the parameter update is drawn from the whole parameter
space, the simulated annealing algorithm is globally conver-
gent. However, this approach is typically inefficient. Hence,
we search the neighborhood for better parameters starting
from the Latin-hypercube-sampled initial parameters py o.
For each iteration i (1,..., 1), new parameters are proposed
randomly via

Pr,i+1 = Px,i+m - (prr,max - pn,min) *Up, (12)

with a mobility parameter m = 0.1, uniformly distributed
random number up ~U(—1,1), and the parameter limits
Pr.max and pr min. In order provide the control parameter 7',
which is an analog of temperature, we choose an exponential
cooling schedule

Ti+1:TO'Oli+1, (13)

with o = 0.85 and initial temperature Ty = 10> which is of
the order of the initial cost. According to Metropolis et al.
(1953), we draw an uniformly distributed random number
ug ~ U(0, 1); calculate the acceptance probability

S(Piy1) — S(Pi))

(14)
k-Ti

Pi-H = exXp (—

choosing parameter k = 1; and accept the proposed parame-
ter set if P41 > ugq or else draw a new parameter set.
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2.4.3 Levenberg—-Marquardt

The Levenberg—Marquardt algorithm is implemented as de-
scribed by Jaumann and Roth (2017). The application of
this gradient-based algorithm on GPR data requires the im-
plementation of tagging (Sect. 2.4.1) as well as additional
regularization of the optimization. This regularization can
be achieved by focussing in particular on the improvement
of the small residuals, because if the small residuals im-
prove, the larger residuals are likely to also improve in sub-
sequent iterations due to the temporal correlation of the time-
lapse data. Therefore, events with r¢ , > 100 or ra ;, > 100
are tagged. Tagged events are excluded from the optimiza-
tion by setting those entries in the Jacobian matrix (J, » =
0r,/0py) to zero. The event association may also change
during the perturbation of the parameters for the numeri-
cal assembly of the Jacobian matrix. This can lead to large
changes in the residuals, which in turn may lead to a dis-
turbed parameter update. Hence, corresponding entries of
large changes in the residual [ry, (Pperurbed) — 7 (P)| > 50 are
also set to zero together with entries of the Jacobian matrix
that are larger than 10*.

We choose ApMinitial =5 as the initial value for Ay and
apply the delayed gratification method by decreasing (in-
creasing) ApM by a factor of 2 (3) if the parameter update is
successful (not successful). This ensures that the algorithm
takes small steps such that the association and the Jacobian
matrix can adapt smoothly.

3 Application

In this section, the methods presented in the previous sec-
tion are applied to GPR data. First, the setup of the case
study, its implementation and the detailed setup of the pa-
rameter estimation procedure are explained (Sect. 3.1). Sub-
sequently, the suitability of the presented methods to esti-
mate the subsurface architecture and the corresponding soil
hydraulic material properties is first tested with synthetic data
(Sect. 3.2). Finally, the methods are applied to measurement
data (Sect. 3.3).

3.1 Setup of the case study
3.1.1 Implementation

In this work, the subsurface architecture of ASSESS is rep-
resented with layers. The position of these layers is param-
eterized and can be estimated. For illustration, the setup is
shown in Fig. 7. The Richards equation (Eq. 1) is solved nu-
merically with pe (muPhi, Ippisch et al., 2006), which uses
a cell-centered finite volume scheme with full upwinding in
space and an implicit Euler scheme in time. The nonlinear
equations are linearized by an inexact Newton method with
line search and the linear equations are solved with an al-
gebraic multigrid solver. We solve the Richards equation in
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Figure 7. For the simulation of the GPR signal, we assume a layered
subsurface architecture (Fig. 1). The transmitter of the antenna is
represented with an infinitesimal dipole (T) and the electric field is
read at the position of the receiver antenna (R). A perfectly matched
layer is used as boundary condition. The x component of the result-
ing electric field after Sns is shown. The markers for the material
interfaces are used consistently in this work. The position of the in-
terface of materials C and A (V) as well the position of the interface
of materials A and gravel (VI) are parameterized (dV and dVI) and
can be estimated.

1-D (z dimension) on a structured grid with a resolution of
~ (0.005 m. The simulated water content is converted to rela-
tive permittivity via the CRIM using the mean soil tempera-
ture Ty = 8.5°C (Sect. 2.2.4). Since Maxwell’s equations are
solved in 2-D, the simulated 1-D permittivity distribution is
extruded in the y dimension using the same spatial resolu-
tion. The total size of the represented subsurface architecture
is 1.0m x 1.9 m. Generally, the boundary condition is imple-
mented with a Neumann no-flow condition. However, during
the forcing phases, we prescribe the measured groundwater
table as a Dirichlet boundary condition at the position of the
groundwater well. We initialize the simulation with hydraulic
equilibrium based on the measured groundwater table posi-
tion.

To simulate the temporal propagation of the electromag-
netic signal, we solve Maxwell’s equations (Sect. 2.2.4) in 2-
D with the MIT electromagnetic equation propagation soft-
ware (MEEP, Oskooi et al., 2010). The transmitter antenna
is represented with an infinite dipole pointing in x dimen-
sion (Fig. 7). Thus, we neglect any effects from the real an-
tenna geometry (bow tie), cross coupling, or antenna shield-
ing. The antenna source current density J is given by the first
derivative of a Gaussian-shaped excitation function leading
to a Ricker wavelet with a center frequency of 400 MHz. The
receiver antenna is not represented explicitly. Instead, E, is
read directly at the position of the receiver antenna. We use
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Table 1. The fit range limits the parameter space available for pa-
rameter estimation and is in particular used by the simulated anneal-
ing algorithm to draw parameter updates (Sect. 2.4.2). The sample
range is used to generate an ensemble of initial parameter sets with
a Latin hypercube algorithm.

Material Parameter Fit range Sample range
min max min max
C hg (m) -0.25 —-0.05 -0.20 -0.10
A=) 1.0 5.0 2.0 4.0

Ks(ms~h 10741 10729  107% 1073
T (-) -1.0 2.0 0.0 1.0
s (-) 0.33 0.43 0.36 0.40
Or () 0.00 0.10 0.02 0.08
A hg (m) -0.30 —-0.10 -0.25 —0.15
A=) 1.0 5.0 2.0 4.0
Ks ms~ 1) 10751 10739 1075  107¢
T () -1.0 2.0 0.0 1.0
s (-) 0.36 0.46 0.39 0.43
Or () 0.00 0.10 0.02 0.08
Gravel s (-) 0.30 0.50 0.38 0.42
Architecture  dV (m) 0.90 1.10 0.95 1.05
a1 (m) 0.10 030  0.15 025

the antenna separation of the real GPR system (0.14m) in
the simulation. Perfectly matched layers of 0.15m thickness
serve as boundary condition. The electromagnetic fields in
the domain are zero initially.

We use one-tenth of the minimal wavelength Ay, min as the
upper limit for the spatial resolution Az:

€0

A i r,max
Az < DWmin _ VERY 0 007 m, (15)
10 10 fumax

with the speed of light in vacuum ¢y, maximal frequency
Smax =2 x 400MHz, and &; max = 31.25 corresponding to
05 max = 0.5. Hence, we choose the numerical resolution
Az =0.005m for the 2-D isotropic, structured, and rectan-
gular grid. The Courant number for the FDTD method is set
to 0.5.

To avoid multiple reflections at the air—soil boundary, we
set the relative permittivity above the soil to 3.5, which is typ-
ical for dry sand. This is justified, because the air wave and
the ground wave are not evaluated and the amplitude of the
detected events is normalized. The permittivity of the base-
ment below ASSESS is set to 23.0 based on previous simula-
tions. The electrical conductivity of the subsurface o is set to
0.003Sm~! (Sect. 2.2.4). All electromagnetic properties are
smoothed by MEEP according to Farjadpour et al. (2006).

The GPR data are evaluated according to Sect. 2.3. The
detection of the clusters is chosen to be identical for the sim-
ulated and the measured data. The characteristic shape of the
time-lapse radargram allows separating the clusters at a spe-
cific normalized travel time (#sp1ir = 0.5) for all traces. Hence,
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Figure 8. The general setup of the optimization is sketched with this
figure. The available hydraulic potential /1y is measured at the po-
sition of the groundwater well x, times 7g. These measurements are
used as a boundary condition for the Richards equation (Sect. 2.2.1).
Estimates for the soil temperature 75 and the electrical conductivity
o are derived from TDR-related measurements. The actual signal of
the GPR system is proportional to the x component of the electric
field Ex and measured discretely at experiment time #z and sig-
nal travel time #;. This signal is processed (Sect. 2.3.1) and used
for event detection (Sect. 2.3.2). Based on the detected events in the
measurement data, other events can be either added or deleted in the
subsequent event selection step (Sect. 2.3.3). The simulated water
content distribution is converted to relative permittivity distribution
with the CRIM and used to solve Maxwell’s equations (Sects. 2.2.4
and 3.1.1). After the processing step and the event detection, the
simulated events are assigned to measured events (Sect. 2.3.4). The
resulting mapping of the events is used to calculate the cost in the
optimization step (Sect. 2.4). Dashed arrows indicate initial process-
ing steps, whereas solid arrows indicate iterative steps required for
the optimization.

all events with a travel time ¢ < #g;; are in cluster 1 and the
others are in cluster 2.

3.1.2 Setup of the parameter estimation

The general setup of the optimization is explained with
Fig. 8. This setup is used in a sequential approach (Fig. 6)
with a preconditioning step for which we subsampled the
number of the traces of the time-lapse GPR data to gener-
ate a data set with decreased temporal resolution. The data
set with high (low) resolution includes 86 (9) traces corre-
sponding to one trace per 15 (150) min. Hence, both data sets
subsample the actually measured number of traces (one trace
per =~ 30s) equidistantly in time. Within the sample range
given in Table 1, 60 initial parameter sets are drawn with the
Latin hypercube algorithm and the data set with low tempo-
ral resolution is used to improve these parameter sets running
200 iterations of the simulated annealing algorithm. The pa-
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rameter fit range given in Table 1 determines the parameter
update via pr max and pr max according to Eq. (12). After the
application of the simulated annealing algorithm, maximally
15 iterations of the Levenberg—Marquardt algorithm are run.
This optimization completes the preconditioning step. The
resulting parameter sets serve as initial parameters for the
Levenberg—Marquardt algorithm which is applied to the data
with high temporal resolution.

In order to evaluate the performance of the ensemble
members, the mean absolute error in normalized travel time
eMA.ta 15 used since this statistical measure is independent of
the number of associated events. The number of associated
events is accounted for by evaluating only those 10 mem-
bers with minimal epa ; that associated at least 85 % of the
measured events. Each of these members has locally optimal
parameters. However, the exact position of these local min-
ima typically depends on the initial parameters and the ran-
dom numbers drawn in the simulated annealing algorithm.
There is also no guarantee that the global optimum was found
by one of the ensemble members. However, the distribution
of these 10 best ensemble members contains valuable infor-
mation about the shape of the cost function. To account for
this information, we (i) analyze the mean parameter set of
the best members and (ii) use the standard deviation to in-
dicate the uncertainty of these parameters. Notice that the
mean parameter set is not necessarily optimal. However, if
uncertainty of the resulting parameters is small, the mean pa-
rameter set is typically more reliable than the parameter set
of the best ensemble member.

The standard deviations of the measured data, oy ~ 6 x
10~* and oA~ 5 x 1073 for normalized travel times and
amplitudes, respectively, are used to standardize the resid-
uals of the cost function (Eq. 11). These standard deviations
were calculated from travel time and amplitude data acquired
by picking different reflections with approximately constant
travel time. In order to perturb the travel time and ampli-
tude of the selected events of the synthetic measurement data
(Sect. 3.2), a realization of white Gaussian noise with the
standard deviation of the measured data is added.

3.2 Synthetic data

In this section, the synthetic data generated along the lines
given in Sect. 3.1 are first analyzed qualitatively (Sect. 3.2.1).
Afterwards, these data are used to estimate a layered subsur-
face architecture and the corresponding soil hydraulic mate-
rial properties using the methods proposed in Sect. 2. The
results of this inversion are discussed in Sect. 3.2.2.

3.2.1 Phenomenology
The phenomenology of the transition zone reflection for
characteristic times during imbibition, equilibration, and

drainage was discussed by Klenk et al. (2015) for typical
coarse sand. Here, we focus on the temporal development
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Table 2. The mean and the standard deviation are calculated us-
ing the resulting parameters from the 10 best ensemble members
(Sect. 3.1.2) estimated from synthetic data. The corresponding ma-
terial functions are given in Fig. 10. Notice that the true parameter
set lies within the standard deviation of the mean parameter set.

Material Parameter Truth Mean results
C ho (m) —0.15 —0.13£0.02
A=) 3.5 3.2+0.3
K (ms’l) 1073.5 1073.4:t042
() 0.5 0.6+0.2
05 (-) 0.38 0.38 +£0.01
6r (-) 0.03 0.027 +0.006
A ho (m) —0.20 —0.199 +0.008
A=) 2.5 2.84+0.7
K (msfl) 1074.5 1074.47:t0.05
(=) 0.5 04+0.5
05 (-) 0.41 0.414+0.02
Or (-) 0.05 0.06 +0.02
Gravel Os (-) 0.40 0.40£0.03
Architecture  dV (m) 1.00 0.99+0.02
avl (m) 0.20 0.20+0.01

of this reflection during imbibition and equilibration. To this
end, the water content distribution of the 1-D profile located
at 17.05m of the ASSESS site (Fig. 1) was simulated using
typical parameters for coarse-textured sandy soils. These pa-
rameters are given together with the estimated parameters in
Table 2. The groundwater table measured in the well (Fig. 2)
is used as the Dirichlet boundary condition at the bottom
boundary. The resulting simulation is visualized over time
and over water content in Fig. 9.

Initialized with static hydraulic equilibrium, the simula-
tion starts with an initial drainage step where the groundwa-
ter table is lowered. Hence, the material at the upper end of
the capillary fringe with high initial water content is desatu-
rated. After the subsequent equilibration step, the groundwa-
ter table is raised during the subsequent imbibition step. The
Brooks—Corey parameterization (Eq. 2) features a sharp kink
where air enters the material at the upper end of the capillary
fringe. Furthermore, the imbibition introduces an additional
kink in the water content distribution (marker (2) in Fig. 9b),
because the relaxation time from hydraulic non-equilibrium
is much shorter for high water contents compared to the re-
laxation time for low water contents. This is due to the non-
linear dependency of the hydraulic conductivity (Eq. 3) on
the water content leading to the differences in hydraulic con-
ductivity of several orders of magnitude. Hence, the width of
the transition zone is decreased during the imbibition phase.

During the equilibration step after the first imbibition, the
additional kink smoothes. Thus, the water content increases
in the material with low water content (3) and decreases in
the material at the upper end of the capillary fringe (4). This
smoothing depends on both the soil water characteristic and
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Figure 9. The true synthetic data are simulated with hydraulic parameters that represent coarse-textured sandy soils (Table 2). (a) and (b)
show different representations of the simulated water content. In (b) the initial water content distribution is marked with a black dashed line.
(c) shows the simulation of the GPR signal. The imbibition leads to a characteristic transition zone reflection (marker (2)). The temporal
evolution of this reflection is sensitive to the initial water content distribution, the soil water characteristic, and the hydraulic conductivity
function. The data shown are processed according to Sect. 2.3 except for the normalization. In contrast to the data that are evaluated, the
shown radargram is normalized to the maximum absolute amplitude of all traces, facilitating the visual comparison of the traces. The markers

are defined in Fig. 14.

the hydraulic conductivity function. Sharpening and smooth-
ing of the transition zone are repeated consistently for the
other subsequent imbibition and equilibration phases (5-8).
According to the CRIM (Sect. 2.2.4), the relative permit-
tivity distribution has the same shape as the water content
distribution. Hence, kinks in the water content distribution
directly induce partial reflections of the GPR signal (Fig. 9c).
Shortly after starting the imbibition, the amplitude of the re-
flection at the additional kink (2) increases. After passing the
material interface (V), the spatial distance of the kinks in-
creases such that the two resulting reflection wavelets (3) and
(4) are separable. Note that, since the water content changes
continuously, the signal in-between these wavelets is a super-
position of infinitesimal reflections which also contain infor-
mation about the form of the transition zone. Additionally,
the reflection (3) scans the initial water content distribution,
which in steady state corresponds to the soil water charac-
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teristic. With progressing equilibration, the amplitude of re-
flection (3) decreases as the transition zone smoothes. The
GPR signal of the subsequent imbibition and equilibration
phases (5-8) show similar behavior and emphasize the rel-
atively long timescale for hydraulic equilibration of sandy
materials.

In summary, this numerical simulation confirms qualita-
tively (i) that the dynamics of the fluctuating groundwater
table are sensitive to both the soil water characteristic and
the hydraulic conductivity function and (ii) that the transi-
tion zone reflection leads to tractable reflections during the
imbibition step.

3.2.2 Results and discussion

After the inversion of the synthetic data, we find that the re-
sulting soil water characteristics for material A (Fig. 10a)
exhibit a similar curvature but are shifted. Both the param-
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Figure 10. The resulting material parameters estimated from synthetic data are shown for the 10 best ensemble members (Sect. 3.1.2) together
with the mean of these parameter sets and the true parameter set (Table 2). The plot range of the parameters is adjusted to the water content

range of the data.

eters ho and X influence the shape of the desaturated transi-
tion zone. Hence, merely evaluating the shape of the desatu-
rated part of the transition zone is not necessarily sufficient
to uniquely identify both parameters leading to large correla-
tion coefficients. However, parameter /o additionally deter-
mines the extent of the capillary fringe. If the evaluation is
also sensitive to the extent of the capillary fringe, &g can be
uniquely identified, which significantly decreases the corre-
lation between kg and A. Hence, we conclude that the strong
correlation of the parameters hoC and AC (—0.7, Fig. 11) in-
dicates that the evaluation is more sensitive to the shape of
the desaturated part of the transition zone than to the extent
of the capillary fringe.

Since the architecture is a layered structure where material
C is located above material A (Fig. 7), the water content in
material C contributes to the travel time of the other reflec-
tions. This introduces correlations of #2 with all the param-
eters associated with the soil water characteristic of material
C. A high correlation of parameters indicates that the prob-
lem is not well-posed. This typically increases the number of
local minima and thus the uncertainty of the parameters.

The saturated hydraulic conductivity of material
A (Fig. 10b) is approximately 1 order of magnitude
smaller than the saturated hydraulic conductivity of ma-
terial C (Table 2). Since the 1-D architecture is forced at
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Figure 11. The correlation coefficients for the mean parameter set
show in particular that the porosity of the gravel layer (QSG) as well
as the position of the material layers (dV and d V1) can be reliably
estimated from single-offset GPR when evaluating both the signal
travel time and amplitude.
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Figure 12. This figure shows (a) the water content distribution simulated with the resulting mean parameter set and (b) the difference to the
true water content distribution (Fig. 9). The mean absolute deviation of the volumetric water content is 0.004. The overall balance of the
volumetric water content can be characterized by calculating the mean of the summed difference per grid cell over all measurement times
which yields —0.003. Hence, the mean parameter set generally underestimates the water content in the profile. The constant deviations above
as well as below the groundwater table and in the gravel layer are due to small deviations in the estimated parameters 6°, 6, 62, and 6.
Still, the standard deviation of the estimated parameters contains the true parameter values (Table 2).

the lower boundary, the hydraulic conductivity of material
A limits the water flux into material C. Hence, the data are
not sensitive to K? Consequently, the uncertainty of the
hydraulic conductivity in material C decreases for low water
contents as the reflection at the additional kink (markers 3
and 5 in Fig. 9) is sensitive to the hydraulic conductivity. The
hydraulic conductivity function (Eq. 3) is not unique if Ky is
not fixed. This leads to a strong correlation of the parameters
KSC and 7€ (0.6, Fig. 11). Note that the uncertainty of
the saturated hydraulic conductivity of material A also
influences the uncertainty of the hydraulic conductivity of
material C.

The uncertainty of the soil water characteristic of mate-
rial A (Fig. 10c) is largest for low water contents, because
there are only few data points available. In particular, this in-
creases the uncertainty of A* (40.7, Table 2). The material
properties of the unsaturated material A are only monitored
during the first &~ 5h of the experiment and are independent
of the largest part of the other data. This regularizes the op-
timization leading to fewer local minima. Similar to material
C, the parameters hOA and A2 are strongly correlated (—0.6).
Yet, the uncertainty of hg is relatively small (£0.008, Ta-
ble 2) mainly because it is essentially uncorrelated to other
parameters. In contrast, the parameter 9;’* is correlated to the
parameters K, AC, QSC, and Hrc, because wrong parameters
for material C introduce changes in the total water content
which can be partially balanced out by adjusting QSA.

The uncertainty of the saturated hydraulic conductivity
of material A (Fig. 10d) is comparably small, because the
largest fraction of the data are influenced by this parameter.
Hence, the parameters 7 and K ;“ are only very weakly cor-
related.

Hydrol. Earth Syst. Sci., 22, 2551-2573, 2018

The correlation coefficients (Fig. 11) also show that both
the permittivity and the thickness of the gravel layer can be
estimated reliably with the presented evaluation method us-
ing travel time and amplitude information of a single-offset
time-lapse radargram. Evaluation methods that merely ex-
ploit the signal travel time (e.g., Gerhards et al., 2008) require
a multichannel approach to achieve this goal.

In order to further investigate the quality of the mean pa-
rameter set, we simulated the resulting water content distri-
bution (Fig. 12a) and subtracted the true water content distri-
bution (Fig. 12b). Due to the narrow pore size distribution of
the sandy material, small deviations in the parameters /g and
A lead to large differences in the volumetric water content
above the capillary fringe (= £0.04). Combined with devia-
tions in the position of the material interface, the largest dif-
ferences in volumetric water content reach up to 0.17. Still,
the mean absolute deviation of the volumetric water content
is 0.004.

The remaining deviations in soil water content after the
parameter estimation cause residuals in the GPR signal
(Fig. 13). These residuals are most evident for the reflection
at the gravel layer (VI). The bias of its travel time shows that
the total water content above the gravel layer is underesti-
mated with the mean parameter set. This bias is essentially
balanced out with the properties of the gravel layer. How-
ever, the reflection originating from the basement of ASSESS
(VID) reveals residuals that decrease as soon as the ground-
water table is above the initial groundwater table. This in-
dicates (i) deviations in the initial water content distribution
and (ii) that the hydraulics during the initial drainage phase
is not correctly represented.

www.hydrol-earth-syst-sci.net/22/2551/2018/
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Figure 13. The evaluation of the synthetic GPR data is separated into three parts (a) shows the selected events (Sect. 2.3.3) which are
evaluated with the optimization. The data shown are processed according to Sect. 2.3 except for the normalization. In contrast to the data that
are evaluated, the shown radargram is normalized to its maximum absolute amplitude, facilitating the visual comparison of the traces. (b)
shows resulting differences in travel time and amplitude of the mean parameter set. The differences in amplitude are given in arbitrary units
which are consistently used in this study. For the synthetic data, these differences are practically invisible. For the measured data, however,
they are more clearly recognizable (Fig. 13). (c) shows standardized residuals (Eq. 11), essentially zooming into the small differences given
in (b). Note that outliers are set onto the boundary. The markers are defined in Fig. 14.

Similar to the analysis of the deviation in water content
(Fig. 12), the largest residuals in the unsaturated part of the
domain are found where the groundwater table is crossing the
interface of materials A and C. This indicates that the inter-
ference of those reflections still contains information which
could not be exploited in the parameter estimation procedure.
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3.3 Measured data

In this section, the measured data (Sect. 2.2.4) are exam-
ined first qualitatively (Sect. 3.3.1). Afterwards, these data
are used to estimate the subsurface architecture and the cor-
responding soil hydraulic material properties using the meth-
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Figure 14. (a) A single-offset measurement of the hydraulic state of ASSESS (Fig. 1) at the beginning of the experiment is shown. For this
measurement, the antenna was moved over the site at one point in time. The temporal evolution of the subsequent hydraulic dynamics was
monitored with a stationary antenna at the position indicated with the vertical black line. The resulting time-lapse measurement data are
shown in (b). Both radargrams are measured with internal channels with an antenna separation of 0.14 m. Except for the normalization, the
data are processed according to Sect. 2.3. In contrast to the quantitative evaluation, the radargrams are normalized to their maximal absolute
amplitude, facilitating the visual comparison of the traces. The markers — uppercase Roman numeral markers for material interfaces (I, 11,
IIL, IV, V, VI, and VII), lowercase Roman numeral markers for compaction interfaces (i, ii, iii, iv, and v), and markers with Arabic numerals
for reflections originating from the water content distribution — are used consistently in this paper and are further explained in the text.

ods proposed in Sect. 2. The results of this inversion are dis-
cussed in Sect. 3.3.2.

3.3.1 Phenomenology

Before starting the experiment, a single-offset measurement
was acquired to analyze the initial state of ASSESS revealing
material interfaces as well as compaction interfaces (Fig. 14).
Typically, it is difficult to associate the reflections based on
an individual radargram. In particular, the reflection of the
compaction interface (iv) close to the reflection of the initial
position of the groundwater table (1) is difficult to distinguish
from reflections originating from material interfaces.
ASSESS is confined by walls at all four sides. Reflections
from confining walls are most visible around 1 m (W) but in-
fluence the signal for more than 2m. The walls parallel to

Hydrol. Earth Syst. Sci., 22, 2551-2573, 2018

the measurement direction are approximately 4 m apart from
each other. Thus, it is assumed that the measurement is also
influenced by reflections originating from those walls. The
reflection of the edge of the L-element (L) is particularly
prominent.

As an aside, closer scrutiny of the radargrams reveals that
the single-offset and the time-lapse data were measured with
different but structurally identical antennas. Thus, in partic-
ular the measured GPR signals of the direct wave and the
ground wave are slightly different.

The time-lapse GPR measurement was recorded at
17.05 m (Fig. 14b). As the groundwater table is raised, the re-
flection originating from the groundwater table (2) separates
from the reflection of the compaction interface (iv). After
passing the material interface, the reflection of the ground-
water table (2) splits in two separate reflections, (3) and (4).

www.hydrol-earth-syst-sci.net/22/2551/2018/
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This is due to the dependency of the hydraulic conductivity
on the water content and was also identified for the synthetic
data (Sect. 3.2.1). Since the transition zone is smoothing dur-
ing the equilibration phase, the amplitude of reflection (3)
decreases and the distance of the reflections (3) and (4) in-
creases. During the subsequent imbibition step, the reflec-
tions are separated.

Corresponding to the analysis of the synthetic data
(Sect. 3.2.1), the effects of the smoothing water content dis-
tribution are most clearly visible during the equilibration
phase at the reflections (5) and (6). However, the associated
measured signals interfere with the direct wave, the ground
wave, and the reflection from the compaction interface (i)
which makes the identification of these effects difficult. The
reflections (7) and (8) measured during the final imbibition
phase confirm the previous observations.

Together with the water content distribution, the time-
lapse GPR data also contain information about the subsurface
architecture. However, separating signal contribution from
the subsurface architecture and the hydraulic dynamics is not
always possible. Here, this is most prominent for the reflec-
tion of the material interface (V). Initially, the amplitude of
this reflection is large, because the water content in material
C is near the residual water content, whereas the water con-
tent in material A is significantly higher at the material inter-
face. As soon as both materials are water saturated, the am-
plitude of the material interface reflection (V) is low since the
effective porosities of the two materials are similar. Thus, the
amplitude of the reflected signal originating from the mate-
rial interfaces may change depending on the hydraulic state.
Additional information about the subsurface architecture can
be inferred from the reflection at the material interface be-
tween material A and the gravel layer (VI) and from the re-
flection at the material interface of the gravel layer and the
concrete basement (VII). These reflections are in particular
suitable to analyze the total change of water content over
time.

In summary, we note that the characteristic properties of
the transition zone reflection during the imbibition and equi-
libration steps that were identified in the simulation (Fig. 9)
can also be identified in the measured data (Fig. 14).

3.3.2 Results and discussion

Since the GPR measurements cover only a small portion of
the subsurface architecture of ASSESS, the hydraulic rep-
resentation is restricted to 1-D (Sect. 3.1.1). Hence, 2-D ef-
fects such as lateral flow are neglected. This has to be consid-
ered during the event selection of measured data (Sect. 2.3.3).
Therefore, the focus of this study is on evaluation of the im-
bibition phase of the experiment, because the effect of lateral
flow in fluctuating groundwater table experiments is largest
during drainage and close to the capillary fringe (Jaumann
and Roth, 2017).
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Table 3. The mean and the standard deviation are calculated us-
ing the resulting parameters from the 10 best ensemble members
(Sect. 3.1.2) estimated from measured data. The corresponding ma-
terial functions are shown in Fig. 15. The reference parameters for
the materials A and C are determined from TDR data acquired dur-
ing the same experiment (Jaumann and Roth, 2017). Note that the
standard deviations for these reference parameters are determined
from a single Levenberg—Marquardt run and thus are only represen-
tative for one local minimum. Also, these standard deviations are
given with the understanding that they are specific to the applied al-
gorithm and will change for different algorithm parameters. Hence,
these standard deviations are in particular not suitable to compare
the precision of the TDR and GPR evaluation. For the TDR eval-
uation, the porosity of the materials is assumed to be known from
core samples. The reference parameters for the subsurface architec-
ture are calculated from ground truth measurements acquired dur-
ing the construction of ASSESS. The corresponding standard devi-
ations are given according to Buchner et al. (2012).

Material Parameter Reference Mean results
C ho (m) —0.1594+0.004 —0.13+0.03
) 3.28+0.02 3.3+0.7
Ks (ms—1) 10—3:7040.02 10—3.6%0.3
7 (=) 0.74 £0.06 14404
s () 0.38 0.38+0.01
6 () 0.026£0.002  0.071 £0.005
A hg (m) —0.1844+0.005 —0.20+0.03
) 1.9440.07 2.1+£0.7
Ks (ms—l)  10~4:2120.004 10—4-5£0.1
7 (=) 0.33 £0.07 0.4+1.0
s () 0.41 0.40 +0.01
6 (5 0.025 +£0.004 0.07 £0.03
Gravel s (=) 0.41+0.02
Architecture dV (m) 0.99 +0.05 0.97 +£0.02
dVT (m) 0.134+0.05 0.17+£0.02

Investigating the resulting material properties of the in-
version (Fig. 15), the main findings, which were discussed
previously for the mean parameters for the synthetic data
(Sect. 3.2.2), can also be identified for the measured data.
These findings comprise (i) the shift in the soil water char-
acteristic of material C, (ii) the large uncertainty of the satu-
rated hydraulic conductivity of material C, (iii) the high un-
certainty of the soil water characteristic of material A for low
water contents, and (iv) the high sensitivity on K. ;“.

Compared to the uncertainties based on synthetic data (Ta-
ble 2), the uncertainty of the resulting mean parameters (Ta-
ble 3) mostly increased. Except for four parameters, the pa-
rameters estimated from TDR measurements (Jaumann and
Roth, 2017) are within 1 standard deviation of the mean pa-
rameter set. The deviations of the other four parameters are
clearly visible in Fig. 15 and will be analyzed in the follow-
ing.

The parameter 6‘rC estimated from the GPR data is approx-
imately a factor of 3 larger than the estimated value based
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Figure 15. The resulting material parameters estimated from measured data are shown for the 10 best ensemble members (Sect. 3.1.2)
together with the mean of these parameter sets (Table 3) and a reference parameter set determined from TDR data acquired during the
same experiment (Jaumann and Roth, 2017). The deviation from the reference parameters can be explained with representation errors in the
GPR analysis (e.g., neglecting compaction interfaces) and missing data (e.g., for low water contents in material A). The plot range of the
parameters is adjusted to the water content range of the corresponding data.

on the TDR data (Table 3). Essentially, there are three main
reasons for this. First, by evaluating the travel time of reflec-
tion (V), integrated water content is included in the inver-
sion. This also comprises the compaction interface (i) which
is not represented in the model. At the beginning of the ex-
periment, the amplitude of this reflection is comparable to
the amplitude of the reflection originating from the interface
of material A and C (V). Notice that the amplitude of the re-
flection (i) does not vanish, but merely decreases when the
material is saturated at the end of the experiment (Fig. 14).
This indicates that this reflection originates from changes in
both the small-scale texture of the material and the stored wa-
ter content at the beginning of the experiment. Hence, since
this compaction interface is not represented in the model, the
resulting Hrc is increased, coping for this representation error.
Second, a deviation in the position of the groundwater table
with reference to the antenna position at the surface can be
partially adapted by changing Grc. As the position of the sur-
face is subject to change over the years, the measurements
of the groundwater table are referenced to a fixed point at the
end of the groundwater well, leaving the exact position of the
surface relative to groundwater table uncertain. According to
Buchner et al. (2012), the accuracy of the ASSESS architec-
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ture when compared to GPR measurements is +0.05 m. The
estimation of an offset to the Dirichlet boundary could miti-
gate this problem, but would in any case increase the number
of local minima significantly making the optimization pro-
cess less stable. Third, analyzing the TDR data, we find that
an underestimation of AC is likely due to the lack of TDR
measurements at low hydraulic potential. Hence, the sensi-
tivity of the TDR data to 6C is low.

The resulting value for parameter € for the GPR evalu-
ation is a factor of 2 larger compared to the evaluation of
the TDR data. This parameter adjusts the hydraulic conduc-
tivity for the unsaturated material and is mainly determined
with the reflections (3) and (5) originating from the addi-
tional kink during imbibition (Fig. 16). These reflections ex-
hibit a small amplitude for low water contents. However,
both reflections interfere with the rather prominent reflec-
tion originating from the compaction interface (i). Addition-
ally, the reflection (5) also interferes with parts of the direct
and the ground wave. Hence, the travel time of these reflec-
tions hardly changes, leading to an underestimation of the
hydraulic conductivity for low water contents resulting in an

overestimation of parameter €.

www.hydrol-earth-syst-sci.net/22/2551/2018/



S. Jaumann and K. Roth: Soil hydraulic properties from time-lapse GPR

Travel time [ns]

Event positive amplitude

2569

Event negative amplitude -

)
=
A4
£
= 30
S
S
~ 40
T Vg
50 = 52 SN e
\ Difference amplitude Difference travel time —— |
T T T T T T
(©
+
40 - — — .
- * -
o~ L. s’ N ’”.30 Sesvesniesian, .’ M
s 20 LN : . .
S R I o ¢ oy ” t geded
S . solt o N DR :‘ . z‘“..u.u Seseregoessoesey N 3“3.3
2 Sedeel [gges o gocdpadire ity ’.:“:; 3333133332232 3423334335341 54 2TEIODIRR TS 2004
I SN T sibi, sgdsedl 00 o3y iw‘*: ’i, 11 1318332235523 238 0009 3418
ERRURIERE HH THI TRR T e BT U T H e H T
’ L Ad *
2 OBIIRIRet 3¢ oa i;i*%i pel. il §.*!§c§;:t;” s1iies ;f‘*"§ i sl
S epitoat ttanisgiitnit e e et gdsstiataanastetlisageatiaty oo o0
5 RSS2 RSP LR ION *3::»6”“ s et e .
S 30, g e eevs] e A ¢ $ole e 0 evoe - oo
2 -20 Wl IRMNE L . R
.
7] : :0 . S . DTN PRI IR e
AR IS E 2 R A RSV LA PL AR PR PRAPY AL A IRTINL SN
. .
40 . . _ .
* Residual amplitude - Residual travel time  + |
o[ b I I I J I I I

2 4 6 8 10

12 14 16 18 20 22

Experiment time [h]

Figure 16. Analogous to Fig. 13 but for measured data. Since the measurement data acquired with a stationary antenna cannot spatially
resolve the lateral flow present in the initial drainage phase, the measured events of the hydraulic dynamics during the first 2h are neglected.

Similar to parameter 6°, the parameter 6/ estimated from
the GPR data is approximately a factor of 3 smaller than the
result from the TDR evaluation. However, this parameter can
only be approximated evaluating the GPR data, because they
lack events that are influenced by low water content.

The resulting value for parameter K. SA is smaller by a fac-
tor of 2 for the GPR evaluation than for the TDR evaluation.
This parameter limits the flux through the lower boundary,
because the domain is forced with a Dirichlet boundary con-
dition. Hence, the parameter can be used to cope with errors
in the boundary condition. Forcing ASSESS with a ground-
water well instantiates a 3-D flux (Jaumann and Roth, 2017).

www.hydrol-earth-syst-sci.net/22/2551/2018/

Since this 3-D flux is not represented, the hydraulic potential
at the bottom and thus also the water flux are too large. This
is compensated by the parameter estimation with decreasing
KA.

Concerning the position of the material interfaces, we find
that the estimated interface position of material A and C @)
corresponds well to the ground truth measurements acquired
during the construction of the ASSESS site (Table 3). In con-
trast, the estimated position of the gravel layer (d¥") deviates
from the ground truth measurements. However, the estimates
are still within the uncertainty of the ground truth measure-
ments when compared to GPR measurements.

Hydrol. Earth Syst. Sci., 22, 2551-2573, 2018
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An analysis of the remaining residuals in travel time af-
ter the optimization (Fig. 16b) shows that deviations in the
width of the reflected wavelet contribute to the residuum sig-
nificantly, in particular for reflections (V), (VI), and (VII).
At the beginning of the experiment, the simulated wavelet
is too broad for reflection (V), whereas it is too narrow for
reflections (VI) and (VII). This is in particular noticeable for
the residuals for reflection (VI) which are the major contribu-
tion to the cost function. Of all the events in this wavelet, the
events with the longest travel time exhibit the largest residu-
als. The difference in the width of the reflected wavelet can
be explained with the roughness of the material interfaces
(Dagenbach et al., 2013). Due to the large grain size of the
gravel, the real material interface is rougher than its represen-
tation. This also explains the partly non-symmetric broaden-
ing of the measured compared to the simulated wavelet of
reflection (VI).

The measured reflection (6) interferes with the reflection
of the compaction interface, (i) leading to a compressed re-
flected wavelet in the measurement. Similarly, reflections (3)
and (5) also interfere with the compaction interface (i). Since
interferences cannot be correctly evaluated if not all contri-
butions are represented, this analysis shows that representing
compaction interfaces is relevant in ASSESS.

As a side remark, note that the error originating from as-
suming a constant soil temperature for the calculation of the
relative permittivity of water is relatively small regarding the
total residuum. However, it is worth noting that the corre-
sponding residuals easily exceed 1 standard deviation in sig-
nal travel time.

The distribution and the support of the measurement data
(i) differs between the TDR sensors and GPR measurements
(Fig. 1), (ii) relates directly to the applicability of the result-
ing parameters for the different evaluations, and (iii) influ-
ences the quantitative effect of different representation er-
rors. In the reference analysis, the TDR sensors are dis-
tributed over a 2-D slice of ASSESS measuring in all avail-
able materials (Fig. 1). Yet, their measurement volume is lim-
ited to the position of the sensors yielding the average per-
mittivity along the central TDR rod of each sensor. Hence,
these measurements are subject to representation errors such
as small-scale heterogeneity or uncertainty of the sensor po-
sition (Jaumann and Roth, 2017). In contrast, the GPR mea-
surements do not cover the whole ASSESS test site and their
support is dependent on the evaluated events of the wavelet.
This includes the whole depth average (travel time) and the
contrast (amplitude) of both the permittivity and electrical
conductivity. Hence, these measurement data are subject to
representation errors such as neglected compaction interfaces
and the roughness of the material interfaces. Hence, the pre-
vious analysis illustrates how GPR-determined parameters
can differ from TDR-determined ones, making joint evalu-
ation procedures both challenging and promising since they
open a window to the soils” multi-scale nature.
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4 Summary and conclusions

TDR measurements are a standard method that provides
measurement data for the estimation of soil hydraulic mate-
rial properties. However, this invasive measurement method
yields point-scale measurements and typically requires a lo-
cal measurement station. Hence, it is difficult to apply at
larger scales or to transfer the sensors to another field site.
In contrast, GPR is a noninvasive measurement method that
is traditionally used for subsurface characterization including
subsurface architecture and effective water content. The anal-
ysis of GPR measurements is much more challenging than
that of TDR and there is still a need for efficient quantitative
evaluation methods.

In this study, we propose a new heuristic semiautomatic
evaluation approach to identify, extract, and associate rele-
vant information from GPR data. Focussing the optimization
on this relevant information regularizes the parameter esti-
mation. The suitability of the proposed methods to accurately
identify the subsurface architecture and the soil hydraulic
material properties was analyzed for synthetic and measured
time-lapse GPR data.

The developed GPR data evaluation method first detects
the most important extrema of the signal (events) in the mea-
surement and in the simulation. Subsequently, the detected
measured events are associated with the detected simulated
events. All plausible combinations of simulated and mea-
sured events are analyzed to identify the optimal pair asso-
ciation of these events. To decrease the computational ef-
fort, the detected events are grouped in clusters. First, the
clusters are associated. Then follows the association of the
events contained in these clusters. In order to estimate the
subsurface architecture and the corresponding soil hydraulic
material properties, the difference in the signal travel time
and amplitude of the associated events is minimized with in-
version methods. Using events instead of the full GPR signal
regularizes the optimization.

Synthetic and measured single-offset time-lapse GPR data
are first analyzed qualitatively. It was confirmed that a fluc-
tuating groundwater table experiment introduces character-
istic transition zone reflections that are likely to provide
valuable information for the parameter estimation. Subse-
quently, the subsurface architecture and soil hydraulic ma-
terial properties are estimated based on the GPR data using
a global-local parameter estimation approach with precondi-
tioning. The preconditioning step starts from an ensemble of
60 Latin-hypercube-sampled initial parameters sets. They are
used to initialize a preconditioning step in which a simulated
annealing algorithm and a Levenberg—Marquardt algorithm
are sequentially coupled. In this step, these algorithms opti-
mize parameters based on a subsampled data set with a lim-
ited number of iterations. The resulting parameter sets are
then used to initialize the Levenberg—Marquardt algorithm
that operates on the full data set.
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Employing the presented approaches on synthetic data
shows that the true parameters are within 1 standard devia-
tion of the resulting mean parameter set based on the 10 best
ensemble members. This mean parameter set describes the
hydraulic dynamics with a mean absolute error in volumet-
ric water content of 0.004. Additionally, we found that the
parameter correlations are mostly specific to the experiment
type and the subsurface architecture. Using travel time and
amplitude information in the evaluation allowed to estimate
the effective permittivity and layer depth simultaneously with
a single GPR channel.

The resulting parameters for the measured data are mostly
consistent with results from reference TDR measurement
data. We discussed the deviations of the parameters and basi-
cally associated them with representation errors and the lack
of available measurement data. Relevant representation er-
rors in the GPR data analysis comprise in particular the ne-
glected (i) compaction interfaces and (ii) roughness of the
material interfaces.

The three major drawbacks of the presented approach
comprise (i) the computational effort which is required to
solve Richards’ and Maxwell’s equations, (ii) the limited
number of events that can be analyzed due to the pairwise
event association which investigates all plausible combina-
tions of simulated and measured events, and (iii) the fact that
the hyperparameters for the GPR evaluation algorithm have
to be determined a priori. The latter is difficult and requires
expert knowledge, especially as the shape of the radargram
is likely to change considerably during the optimization pro-
cedure.

Although, the proposed methods have been shown in 1-D,
going to 2-D and even to 3-D is first and foremost a matter
of computational effort with 2-D already demanding signif-
icant time on a large compute cluster. No concepts or meth-
ods beyond what we demonstrated in this paper are required,
however.

Previous work showed that the location of moderately
complicated layer interfaces and of the mean water content
between them can be obtained from multi-offset measure-
ments (Buchner et al., 2012). Together with the demonstra-
tion in this paper that the effective hydraulic material proper-
ties of layers can be estimated from single-offset time-lapse
measurements, we now have the methods to determine the
subsurface architecture and its hydraulic properties for mod-
erately complicated situations. This obviously demands quite
a significant experimental effort together with subsequent
massive computations, as spatially resolved time-lapse mea-
surements of the region of interest are required which then
have to be inverted.

Data availability. The underlying measurement data are available
at Jaumann (2017).

www.hydrol-earth-syst-sci.net/22/2551/2018/
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