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Abstract. Technical flood protection is a necessary part
of integrated strategies to protect riverine settlements from
extreme floods. Many technical flood protection measures,
such as dikes and protection walls, are costly to adapt af-
ter their initial construction. This poses a challenge to de-
cision makers as there is large uncertainty in how the re-
quired protection level will change during the measure life-
time, which is typically many decades long. Flood protec-
tion requirements should account for multiple future uncer-
tain factors: socioeconomic, e.g., whether the population and
with it the damage potential grows or falls; technological,
e.g., possible advancements in flood protection; and climatic,
e.g., whether extreme discharge will become more frequent
or not. This paper focuses on climatic uncertainty. Specif-
ically, we devise methodology to account for uncertainty
associated with the use of discharge projections, ultimately
leading to planning implications. For planning purposes, we
categorize uncertainties as either “visible”, if they can be
quantified from available catchment data, or “hidden”, if they
cannot be quantified from catchment data and must be es-
timated, e.g., from the literature. It is vital to consider the
“hidden uncertainty”, since in practical applications only a
limited amount of information (e.g., a finite projection en-
semble) is available. We use a Bayesian approach to quan-
tify the “visible uncertainties” and combine them with an
estimate of the hidden uncertainties to learn a joint prob-
ability distribution of the parameters of extreme discharge.
The methodology is integrated into an optimization frame-
work and applied to a pre-alpine case study to give a quanti-
tative, cost-optimal recommendation on the required amount
of flood protection. The results show that hidden uncertainty
ought to be considered in planning, but the larger the uncer-
tainty already present, the smaller the impact of adding more.

The recommended planning is robust to moderate changes in
uncertainty as well as in trend. In contrast, planning without
consideration of bias and dependencies in and between un-
certainty components leads to strongly suboptimal planning
recommendations.

1 Introduction

The frequency of large fluvial flood events is expected to
increase in Europe due to climate change (Alfieri et al.,
2015). Therefore, planning authorities increasingly incorpo-
rate discharge projections into the assessment of future flood
protection needs, rather than considering past observations
alone. However, projections differ widely in terms of the
level and trend of extreme discharge that they forecast. Fu-
ture discharge extremes therefore should be modeled prob-
abilistically for flood protection planning (Aghakouchak et
al., 2013). This raises two main questions: (1) how does one
quantify a relevant uncertainty spectrum and (2) how is this
then further used to identify a protection strategy?

Recent studies have aimed at quantifying individual un-
certainties in (extreme) discharge (Bosshard et al., 2013;
Hawkins and Sutton, 2011; Sunyer, 2014). Sunyer (2014) has
pointed out the usefulness of finding a methodology to com-
bine uncertainties for flood protection planning. In the first
part of this paper we present such a methodology for deriving
a probabilistic model of extreme discharge; it is a pragmatic
approach to handling the limited available data in practical
problems. We quantitatively incorporate climate uncertainty
from multiple information sources as well as an estimate of
the “hidden uncertainty” into learning the probability distri-
bution of parameters of extreme discharge. The term hidden
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Figure 1. Process of finding the recommended planning margin from projections and hidden uncertainty estimate.

uncertainty refers to uncertainty components that cannot be
quantified from the given projections and data. For example,
if the same hydrological model has been used for all projec-
tions, then the hydrological model uncertainty is “hidden”,
since one effectively has only a single sample of hydrologi-
cal model output. It is vital to consider the hidden uncertainty
since in practical applications only a limited amount of infor-
mation and models is available and hidden uncertainty will
always be present.

Once established, the question is then how to deal with
the uncertainty in flood risk estimates when conducting flood
protection planning. Multiple approaches have been pro-
posed (Hallegatte, 2009; Kwakkel et al., 2010), including the
addition of a planning margin to the initial design. The plan-
ning margin is the protection capacity implemented in excess
of the capacity that would be selected without taking into ac-
count the uncertainties. Such reserves are used in practice;
for example, in Bavaria, a planning margin of 15 % is ap-
plied to the design of new protection measures to account
for climate change (Pohl, 2013; Wiedemann and Slowacek,
2013). Planning margins are typically implemented based on
rule-of-thumb estimates rather than a rigorous quantitative
analysis (KLIWA, 2005, 2006; De Kok et al., 2008).

We have previously proposed a fully quantitative Bayesian
decision-making framework for flood protection (Dittes et
al., 2018). Bayesian techniques are a natural way to model
discharge probabilistically (Coles et al., 2003; Tebaldi et al.,
2004). They also make it easy to combine several sources of
information (Viglione et al., 2013). Furthermore, Bayesian
methods support updating the discharge distribution in the
future, when new information becomes available (Graf et al.,
2007). Our framework probabilistically updates the distribu-
tion of extreme discharge with hypothetical observations of
future discharge, which are modeled probabilistically. This
is an instance of a sequential (or “preposterior”) decision
analysis (Benjamin and Cornell, 1970; Davis et al., 1972;
Kochendorfer, 2015; Raiffa and Schlaifer, 1961). This en-
ables a sequential planning process, where it is taken into
consideration that the measure design may be revised in the
future. Furthermore, it naturally takes into account the uncer-
tainty in the parameters of extreme discharge. The output of
the framework is a cost-optimal capacity recommendation of
flood protection measures, given a fixed protection criterion

(such as the 100-year flood). To protect for the 100-year flood
is common European practice (Central European Flood Risk
Assessment and Management in CENTROPE, 2013) and is
also the requirement in the case study.

In this paper, we show how to incorporate into the flood
planning process the “visible uncertainty” from an ensem-
ble of climate projections as well as hidden uncertainties that
cannot be quantified from the ensemble itself but may be es-
timated from the literature. In the process of combining these
uncertainties, we account for uncertainty and bias in projec-
tions as well as for dependencies among different projec-
tions. We provide reasoned estimates of climatic uncertain-
ties for a pre-alpine catchment, followed by an application
of the previously proposed Bayesian decision framework,
sensitivity and robustness analysis. The process is shown in
Fig. 1: (1) projections of annual maximum discharges (see
Sect. 2.2) and (2) an estimate of the shares of various uncer-
tainties that are not covered by the projection ensemble (see
Sect. 2.5) form the inputs to the analysis. (3) For each projec-
tion individually, a likelihood function of annual maximum
discharge is computed. This is done such that bias is inte-
grated out and projections later on the horizon are assigned
diminishing weights, making use of the hidden uncertainty
shares (see Sect. 3.2). (4) The likelihoods of individual pro-
jections are combined using the method of effective projec-
tions (Pennell and Reichler, 2011; Sunyer et al., 2013b) in or-
der to account for dependencies among them (see Sect. 3.3).
(5) The Bayesian decision framework of Dittes et al. (2018)
is used to obtain (6) a protection recommendation based on
the likelihood of extreme discharge. The qualitative basis of
the framework is outlined in Sect. 3.4.

It is stressed that this paper focusses on the engineering as-
pect of planning flood protection under climate change. We
aim to demonstrate how different sources of uncertainty can
be combined probabilistically to make decisions, taking into
account future developments. This is to aid decision making
under climate uncertainty, when there are limited data and
models available. Some authors advocate not using a proba-
bilistic approach when the uncertainty is very large. This is
because of the potential of surprises under large uncertainty
(Hall and Solomatine, 2008; Merz et al., 2015; Paté-Cornell,
2011). Instead, they recommend an approach focussed on ro-
bustness: the ability of the protection system to work well
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under a wide range of scenarios. We consider our approach
to be complementary: rather than prescribing a protection
system for the study site, it gives a recommendation for the
optimal protection capacity. Expert judgement remains cen-
tral for identifying robust protection systems to provide the
recommended protection, e.g., by implementing a protection
system that consists of several different, possibly spatially
distributed, measures. Such an approach leads to more robust
protection in which floods in excess of the design flood do not
quickly lead to very high damages or even failure (Blöschl et
al., 2013b; Custer and Nishijima, 2013).

The paper is structured as follows: in Sect. 2, we introduce
the pre-alpine case study catchment together with the avail-
able data and relevant uncertainties, concluding in an esti-
mate of the hidden uncertainties. In Sect. 3, we show how to
combine the different sources of uncertainty to use in the de-
cision framework of Dittes et al. (2018). The resulting recom-
mendations are presented and discussed in Sect. 4, together
with the sensitivity analysis. Finally, a discussion is given in
Sect. 5 and conclusions in Sect. 6.

2 Uncertainty in extreme discharge in a pre-alpine case
study catchment

In this section, we introduce individual components of un-
certainty in estimates of extreme future discharge. This is
done on the example of a pre-alpine catchment with a short
historic record and a limited set of available climate projec-
tions, which do not exhaustively cover the spectrum of cli-
mate uncertainties. The resulting problem of planning under
uncertainty is typical in practice. We introduce the case study
catchment in Sect. 2.1, followed by the available discharge
projections in Sect. 2.2. We then move on to describe cli-
matic uncertainties in Sect. 2.3 and 2.4 and give an estimate
of their magnitude for our analysis in Sect. 2.5. We end by in-
troducing the mathematical modeling of uncertainties and the
respective uncertainty of model parametrization in Sect. 2.6.

2.1 The Mangfall catchment in Rosenheim

Our case study site is the river Mangfall at gauge Rosen-
heim, shortly before it flows into the Inn river. Rosenheim
is a city in Bavaria that has suffered severe flood losses
from Mangfall flooding in the past (Wasserwirtschaftsamt
Rosenheim, 2014). With an area of 1102 km2, the Mang-
fall is a medium-sized catchment exhibiting a highly hetero-
geneous topography. Elevations within the catchment range
from 443 to 1988 m a.s.l. with a mean value of approxi-
mately 1000 m a.s.l., indicating the pre-alpine nature of the
river basin. Southern sub-catchments in the Mangfall moun-
tains are steep and rocky, resulting in a rapid runoff response.
On the contrary, northern regions in the Alpine foothills
show a more moderate discharge behavior due to gentle
slopes. Thus, the discharge pattern of the Mangfall combines
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Figure 2. Digital elevation model of the pre-alpine Mangfall catch-
ment with its river network. The catchment is characterized by its
highly heterogeneous topography leading to different discharge be-
havior between the northern and southern regions of the river basin
(Geobasisdaten© Bayerische Vermessungsverwaltung).

both characteristics of mountainous and lowland areas (Kun-
stmann and Stadler, 2005; RMD Consult, 2016; Magdali,
2015).

Precipitation in the catchment is strongly affected by
the adjacent Alpine arch leading to annual mean amounts
of 1800 mm in mountainous and 1000 mm in low-altitude
zones. The watershed receives most precipitation in July, of-
ten in form of convective, high-intensity precipitation (Mag-
dali, 2015; Deutscher Wetterdienst, 2018). Therefore, this
study focusses on the uncertainty analysis for summer dis-
charge, since it poses the greatest threat to the city of Rosen-
heim. Planning authorities give the 100-year design dis-
charge at the Rosenheim gauge as 480 m3 s−1 (RMD Con-
sult, 2016). Figure 2 shows the topography of the Mangfall
catchment alongside its river network. The available historic
record at the Mangfall gauge in Rosenheim is reproduced in
Supplement S1.

2.2 Available ensemble of discharge projections

Table 1 lists the projections available at the case study
gauge. Several projections have identical modeling chains
and differ only in the model run; 6 of the 10 regional cli-
mate models (RCMs) are nested in the same global climate
model (GCM), ECHAM5; and all GCM–RCMs are based on
the same IPCC SRES (Special Report on Emissions Scenar-
ios) emission scenario, A1B. Furthermore, all climate mod-
els are coupled to the same hydrological model (WaSiM)
and same downscaling technique (quantile mapping). The
ensemble is limited in that it does not cover a wide range
of modeling uncertainties, and it is imperfect in that the pro-
jections of the ensemble are not independent. Such a set of
available projections is quite typical of what is encountered
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Table 1. RCMs used in this study, driving GCMs, source of the RCMs, downscaling and hydrological model. R1–R3 denote distinct model
runs.

Name GCM RCM Source Downscaling Hydrological
model

CLM1 ECHAM5 R1 CLM consort. Consortium Quantile mapping
CLM2 ECHAM5 R2 CLM consort. Consortium (German federal
CCLM HadCM3Q0 CCLM ETH institute of

hydrology BfG),
SCALMET
(Willems and
Stricker, 2011) WaSiM

REMO1 ECHAM5 R1 REMO MPI Quantile mapping v8.06.02, Inn,
REMO2 ECHAM5 R2 REMO MPI (Bavarian daily, 1 km2

REMO3 ECHAM5 R3 REMO MPI environmental
RACMO ECHAM5 R3 RACMO2 KNMI agency LfU),
HadRM HadCM3Q3 HadRM3Q3 Hadley Center SCALMET
HadGM HadCM3Q3 RCA3 SMHI (Schmid et al.,
BCM BCM RCA3 SMHI 2014)

in flood protection planning. The projections are reproduced
in Supplement S2.

2.3 Internal variability

The term “internal variability” describes the irreducible un-
certainty component in extreme discharge: even with per-
fect knowledge, it cannot be predicted deterministically what
the annual maximum discharge of a year will be, and thus
how the design flood estimate will change. This is because
discharge realizations occur spontaneously, due to interac-
tions of components within the climate system (IPCC, 2013).
In the available projections, the absolute amount of internal
variability did not change in time significantly and is thus
modeled as stationary. In projections of future discharge,
however, the relative importance of internal variability de-
creases with time as climatic uncertainties increase with in-
creasing projection horizon. In a small pre-alpine catchment,
such as considered in our case studies, the internal variabil-
ity is large and dominates the uncertainty spectrum, poten-
tially masking existing trend signals in heavy precipitation
(and thus extreme discharge) for the entire projection horizon
up to the year 2100 (Maraun, 2013). Alternative terms for the
internal variability are “inherent randomness” or “noise”.

2.4 Uncertainties in the climate modeling chain

Discharge projections are the result of a complex multi-
step climate modeling process. In the literature, this is of-
ten termed the climate modeling “chain”, which, as new un-
certainties are introduced at each modeling step, leads to
the “uncertainty cascade” (Mitchell and Hulme, 1999; Fo-
ley, 2010). It is worth pointing out that the uncertainty cas-
cade does not necessarily lead to an increase in uncertainty
at each step, as the modeling steps depend on each other in

a nonlinear fashion. Just as uncertainties can add up, it is
conceivable that they may not be relevant for future steps
in the modeling chain (Refsgaard et al., 2013). In the fol-
lowing, we briefly introduce the individual modeling steps
required to obtain projections of (extreme) discharge. The
uncertainty from the interaction of consecutive steps in the
modeling chain is called “interaction uncertainty” (Bosshard
et al., 2013). The uncertainties in the climate modeling chain
are in principle epistemic, yet it is debatable whether they
can and will be reduced in the foreseeable future (Hawkins
and Sutton, 2009).

The forcing of the climate through greenhouse gas emis-
sions (GHGs) is the first element in the climate modeling
chain. The future socioeconomic, political and technolog-
ical development determines the amount of GHGs emit-
ted. The SRES scenarios – first introduced by the IPCC
in 2000 (IPCC, 2000) – were recently substituted by rep-
resentative concentration pathways (RCPs), which directly
refer to the amount of GHGs emitted rather than complex
scenarios (Moss et al., 2010). For our case study, only projec-
tions based on SRES scenario A1B, a widely used scenario
with moderate socioeconomic and technological changes, are
available. Thus, we have to take into account the uncertainty
of what the projection results might have been under other
forcing scenarios. However, in Europe, forcing uncertainty
only becomes relevant in the far future and is of particularly
low significance for local extreme precipitation (Hawkins
and Sutton, 2011; Maraun, 2013; Tebaldi et al., 2015).

For climate change impact studies, it is customary to use
ensembles of multiple combinations of global and regional
climate models (GCMs–RCMs) (Huang et al., 2014; Muerth
et al., 2012; Rajczak et al., 2013). The differences in GCM–
RCM output when driven by the same emission forcing
are termed “model response uncertainty” or “model spread”
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(IPCC, 2013). Multi-model ensembles (MMEs) such as the
one available for the case study reproduce part of this spread.
They do not reproduce it completely because they consist of
a finite number of possibly biased and dependent models that
typically have to be chosen based on availability rather than
on statistical considerations (Knutti et al., 2013; Tebaldi and
Knutti, 2007). To mitigate this problem, some researchers as-
sign weights to individual models, but there is an ongoing de-
bate about this: some researchers are making a general case
for the benefits of weighting (Ylhäisi et al., 2015) or its draw-
backs (Aghakouchak et al., 2013), some are detailing when
it may make sense on the basis of model performance (Ref-
sgaard et al., 2014; Rodwell and Palmer, 2007) or geneal-
ogy (Masson and Knutti, 2011), but all approaches are dis-
puted. The relative importance of model response increases
with projection lead time and is particularly significant for
extreme summer precipitation (Bosshard et al., 2013). Since
flooding in the case study catchment is dominated by extreme
summer precipitation, we expect model response to form the
second most important uncertainty contribution (after inter-
nal variability).

The available projections underwent statistical downscal-
ing using quantile mapping, which is often recommended for
extreme events (Bosshard et al., 2011; Dobler et al., 2012;
Hall et al., 2014; Themeßl et al., 2010). Statistical downscal-
ing is frequently used to align GCM–RCM outputs with his-
toric records, but its use is still controversial (Chen et al.,
2015; Ehret et al., 2012; Huang et al., 2014; Maurer and
Pierce, 2014). The uncertainty contribution of the downscal-
ing is likely to be large (Hundecha et al., 2016; Sunyer et
al., 2015b). It would be beneficial to use not one but several
downscaling techniques, similarly to how one uses an ensem-
ble of GCM–RCMs (Arnbjerg-Nielsen et al., 2013; Sunyer et
al., 2015a), as well as several calibration datasets (Sunyer et
al., 2013a).

Up to and including statistical downscaling, the climate
modeling chain produces not discharge but various other cli-
matic variables that are translated to discharge in a specific
catchment through a hydrological model. Catchment param-
eters (such as surface roughness) are typically found in an
elaborate calibration procedure (Labarthe et al., 2014; Li et
al., 2012). The parameters are usually assumed to be sta-
tionary, but they might in fact be non-stationary (Merz et
al., 2011). Furthermore, the calibration might mask model
errors by tuning the catchment parameters to balance them.
Thus, the parameter estimates strongly depend on the cali-
bration period (Brigode et al., 2013). Several approaches ex-
ist to quantify the uncertainty stemming from the hydrolog-
ical model (Götzinger and Bárdossy, 2008; Velázquez et al.,
2013). Overall, however, the error from the choice of hydro-
logical model is small, in particular for high-flow indicators
(Velázquez et al., 2013). It is likely smaller than or compara-
ble to forcing uncertainty (Wilby, 2005).

2.5 Estimate of climatic uncertainty shares in extreme
discharge for case study

In this section, we estimate the relative contribution of cli-
matic uncertainties, using internal variability as a reference.
Note that this is done as a rough estimate, since uncertainty
quantification is not the focus of this paper. As will be-
come clear in Sects. 4.2 and 5; an exact quantification is also
not necessary for the proposed decision-making process. To
summarize the previous two sections, the following qualita-
tive statements can be made about the contribution of rel-
evant sources of uncertainty in the considered midsize pre-
alpine catchments with floods driven by summer precipita-
tion:

– internal variability is dominant throughout most of the
coming century;

– model response is the second largest source of uncer-
tainty, growing with lead time;

– the impact of downscaling is also considerable, again
particularly later in the projection horizon;

– the role of forcing uncertainty and hydrological model
is minor; the former becomes relevant only very late in
the projection horizon;

– uncertainty from interaction of the individual compo-
nents may be of some significance.

A methodology to quantify the size of the internal variability,
model response and forcing uncertainty in mean precipita-
tion and corresponding results for different regions and sea-
sons has been presented in Hawkins and Sutton (2009, 2011).
We base our estimate of these components on equivalent re-
sults for summer precipitation in Europe obtained from Ed
Hawkins (email communication, 17 February 2017). We con-
sider precipitation results to be transferable to discharge in
the given catchment since extreme summer precipitation has
in the past been the dominant trigger of high discharge in the
Mangfall. A comparison of uncertainty shares for mean ver-
sus extreme discharge is available in Bosshard et al. (2013)
and is used to adapt the results. Quantitative estimates of the
shares of model response, downscaling, hydrological model
and interactions for a different pre-alpine catchment are also
provided in Bosshard et al. (2013). We combine the quanti-
tative results with the catchment-specific qualitative knowl-
edge to produce the estimate. The uncertainty spectrum is
shifted towards the later projection horizon to account for
the longer dominance of internal variability in a pre-alpine
catchment with small-scale, extreme summer precipitation
as the flood-triggering process. This results in a near-term
contribution of the internal variability of at least 80 % of to-
tal uncertainty, as expected. The shift also reduces the un-
certainty share attributed to model response and emission
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Figure 3. (a) Share of different uncertainty components (variance) for extreme discharge in Rosenheim. (b) Resulting absolute uncertainties
for CCLM. Uncertainties that are “visible” in our case study are shaded yellow–orange and “hidden” ones blue–green.

forcing, which, following Ed Hawkins (email communica-
tion, 17 February 2017), explained over 90 % of total un-
certainty by the end of the century. The shares are adjusted
to better represent the particular modeling and topography:
the share of model response is set to peak at around 40 %.
For downscaling, shares of up to 25 % are expected. Uncer-
tainties stemming from interactions are anticipated to lie on
the order of 10 %. Contributions attributed to hydrological
modeling are set to remain below 5 % over the whole time
horizon. The results of the estimation are shown in Fig. 3.
Figure 3a shows the resulting relative uncertainty shares and
Fig. 3b the resulting absolute uncertainties for the projection
CCLM. Forcing, downscaling, hydrological model and inter-
action components are hidden uncertainties in the case study.
As will be shown in Sect. 3, the sum of hidden uncertainties
rather than individual components is used in the Bayesian
estimation. Thus, it does not matter if the share of any one
of these uncertainties has been slightly over- or underesti-
mated. The question of sensitivity will be discussed further
in Sect. 4. The estimated variance shares of the hidden un-
certainty components and internal variability with respect to
total uncertainty for Rosenheim are given in Supplement S3.

2.6 Parameter uncertainty

Statistical modeling of extreme discharge Q is commonly
based on fitting a suitable extreme value distribution to
the available data, e.g., a Gumbel or a generalized extreme
value (GEV) distribution. These are described by their prob-
ability density function (PDF), fQ|θ (q|θ), in which θ is the
set of parameters of the distribution function that are esti-
mated from the data. Estimating θ from finite data will result
in a probability distribution over θ , which describes parame-
ter uncertainty (Kennedy and O’Hagan, 2001).

The discharge q(T ) of a design flood associated with a re-
turn period T is defined as a function of θ as

1−FQ(t)|θ
(
q(T )|θ

)
=

1
T
↔ q(T ) := F−1

Q(t)|θ

(
1−

1
T
|θ

)
, (1)

where FQ(t)|θ is the cumulative distribution function (CDF)
and F−1

Q(t)|θ is the inverse CDF of the annual maximum dis-
charge Q(t). In a Bayesian setting, the posterior joint PDF
of the parameters θ can be estimated from N years of annual
maximum discharges q = [q1, . . . , qN ] (from historic record
or projections) as follows:

fθ |Q(t)(θ |q)∝ L(θ |q)fθ (θ), (2)

where fθ (θ) is the prior distribution of the parameters and
L(θ |q) is the likelihood describing the discharge data q. The
discharge maxima can be assumed to be independent be-
tween individual years (Coles, 2004). Neglecting measure-
ment error, the likelihood function in Eq. (2) can hence be
formulated as

L(θ |q)=

N∏
t=1
fQ(t)|θ (qt |θ) . (3)

With increasing number of records of annual maximum dis-
charges qt , the uncertainty in the parameters θ is reduced.

The Bayesian method requires the selection of a prior dis-
tribution fθ (θ) in Eq. (2). For the application to flood pro-
tection planning, one may wish to select a prior distribution
that is only weakly informative in q(T ). We propose to use
the following distribution for this purpose (dropping the time
dependence t for readability):
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fθ (θ)∝
1

fQ(T )
(
q(T )

) = 1

fQ(T )

(
F−1
Q(T )|θ

(
1− 1

T
|θ
)) , (4)

where fQ(T )(q
(T )) is the PDF of q(T ) based on a prior dis-

tribution that is uniform in θ and Eq. (1) has been applied in
the equality.

3 Combining uncertainties for flood protection
planning

In this section, we propose an approach for combining dif-
ferent uncertainty components when using projections to
estimate the parameters θ of the time-variant distribution
fQ(t)|2(q|θ) of annual maximum discharge Q(t) in year t
(see Sect. 2.6). This distribution is first estimated for each
projection of extreme discharges individually. For projection,
we increase the distribution spread in a time-dependent man-
ner using the estimate of hidden uncertainty from Sect. 2.5.
Since the uncertainty increases with time, projections late on
the horizon are naturally assigned less information value. We
then combine the distributions from different projections.

In Sect. 3.1, we categorize uncertainties in such a way that
it is conducive for our application. We then combine these
uncertainties within a Bayesian approach. In Sect. 3.2, we
show how the likelihood L(θ |q) for the joint parameter PDF
is estimated for any individual projection, taking into account
uncertainty estimates from the literature. In Sect. 3.3, we
show how to combine the likelihoods of the projection en-
semble. Finally, we give a summary of planning and decision
making under uncertainty in Sect. 3.4.

3.1 Uncertainty categorization

Different categorizations of uncertainty have been proposed
in the literature. In Sect. 2.3–2.6 for example, we have pre-
sented the uncertainties in extreme discharge by source. An-
other common way to categorize uncertainties is the distinc-
tion between aleatory (irreducible) and epistemic (reducible)
uncertainties (Der Kiureghian and Ditlevsen, 2009; Refs-
gaard et al., 2013). This categorization is useful in that it
underlines in which areas future research could lead to un-
certainty reduction. Other authors focus their categorization
on the different effects of uncertainties (Merz et al., 2015).

In the context of estimating flood extremes under climate
change with limited information, we distinguish between the
following:

– Visible uncertainty, which is known and can be quan-
tified. For an ensemble of discharge projections, this
would, for example, be the internal variability, the
model response uncertainty and parameter uncertainty.
Parameter uncertainty is also visible in that it is straight-
forward to quantify, but it is not a climatic uncertainty.

– Hidden uncertainty, which is the remaining uncertainty
and can, at best, be estimated. For example, in the pro-
jection ensemble of the case study, forcing uncertainty
is hidden since all projections are based on the same
emission scenario. In real planning situations, hidden
uncertainty is typically significant because of limited
and imperfect projections and data; it can therefore not
be neglected.

In the following sections, a methodology will be presented to
estimate the distribution of parameters of annual maximum
discharge using these uncertainties.

3.2 Accounting for uncertainty and bias in projections

When using discharge projections, it is important to account
for uncertainty and bias within them. As discussed in Sect. 2,
climatic uncertainties increase with the projection horizon
and thus the information value of a projection made late on
the horizon is smaller than that of an earlier one. For exam-
ple, a projection for the year 2100 is associated with higher
uncertainty than one that is made for the coming year and
should have less weight when estimating the parameters θ of
the distribution of annual maximum discharge from climate
projections. In the following, we develop a methodology that
accounts for this.

We introduce the standard deviation σ (u)i,t , in which the su-
perscript (u) describes which type of uncertainty is consid-
ered (internal or hidden), the subscript i denotes the projec-
tion and the subscript t the time dependence. The internal
variability in a projection, [σ (internal)

i ]
2, can be quantified fol-

lowing Hawkins and Sutton (2009). Note that the subscript t
is excluded here since internal variability is assumed to be in-
dependent of time. Relative variance shares of the individual
uncertainties, including hidden ones, can be estimated using
literature (Bosshard et al., 2013; Hawkins and Sutton, 2011)
and expert judgement, as was done in Sect. 2.5. The share of
an individual uncertainty component in the total variance is
here labeled η(u)t , with the indexing as for σ . The uncertainty
shares are assumed to be general for a given location, in-
dependent of the projection. Thus, the absolute value of the
hidden uncertainty can be found from the absolute internal
variability and the uncertainty variance shares of Sect. 2.5
(reproduced numerically in Supplement S3) as

σ
(hidden)
i,t = σ

(internal)
i

√√√√ η
(hidden)
t

η
(internal)
t

. (5)

For estimating the joint PDF of the parameters θ of
the annual maximum discharge distribution, we treat the
i= 1, . . . ,M discharge projections pi = [pi,t=1, . . . , pi,t=N ′ ]
as samples of the true future discharge τt with a bias 1i,t :
τt =pi,t −1i,t . We express the likelihood Li,t (θ |pi,t , 1i,t )
describing the annual maximum discharge of projection i in
year t as
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Li,t
(
θ |pi,t ,1i,t

)
= fQ(t)|2

(
pi,t −1i,t |θ

)
, (6)

where fQ(t)|2 is the PDF of the extreme value distribution
describingQ(t). The likelihood Li,t (θ |pi,t ,1i,t ) determines
the estimation of the PDF of parameters θ from projections,
similar to Eq. (2).

The bias1i,t is modeled as a normal random variable with
zero mean and standard deviation σ (hidden)

i,t :

1i,t = zσ
(hidden)
i,t = zσ

(internal)
i

√√√√ η
(hidden)
t

η
(internal)
t

, (7)

with z being a standard normal random variable. By model-
ing all 1i,t as a function of the same z, it is assumed that the
1i,t are fully dependent within one projection i. This treat-
ment is conservative, since it minimizes the amount of learn-
ing from projected discharges. Due to the large impact of the
projection on the bias, it is a better depiction of reality than
the assumption of independent 1i,t within one projection i.
From this follows the likelihood for a complete projection
time series pi as

Li
(
θ |pi

)
=

∞∫
−∞

[
N ′∏
t=1
fQ(t)|2

(
pi,t − zσ

(hidden)
i,t |θ

)]
ν(z)dz, (8)

where ν is the standard normal PDF. Internal variability is
included in Eq. (8) naturally via pi,t , as is parameter uncer-
tainty, which is a function of the length of projections. The
estimate of hidden uncertainty, as from Sect. 2.5, is included
via σ (hidden)

i,t . While we are focussing on climate uncertainty
here, in principle, any kind of additional uncertainty can be
incorporated via the hidden uncertainty parameter σ (hidden)

i,t in
Eq. (8). Model response uncertainty is included in the com-
bination of the likelihoods Li(θ |pi) from different projec-
tions i, as described in the following section.

3.3 Accounting for dependency among projections

Individual projections are not independent. Hence, one can-
not combine Li(θ |pi) into a joint likelihood L(θ |p) via a
simple product over projections pi . Dependence among mul-
tiple projections is due to common model biases, be it be-
cause they, for example, share code from the same institu-
tion or because our understanding of climate processes is not
perfect (Knutti et al., 2013; Tebaldi and Knutti, 2007). Con-
sequently, confidence in the prediction variance should not
increase linearly with the number of projections in an ensem-
ble. Instead, the ensemble should be seen as consisting of an
effective number I of quasi-independent projections (adding
independent pieces of knowledge) that is smaller than the en-
semble size M (Pennell and Reichler, 2011; Sunyer et al.,
2013b). We thus partition the ensemble into J sets of I pro-
jections, where J is the integer quotient of M

I
. For each of

these sets, the likelihood function can then be formulated as
the product of the likelihoods L(j)i (θ |pi) of the set members,
since they are assumed to contain independent information:

L(j)(θ |p)=

I∏
i=1
L
(j)
i

(
θ |pi

)
. (9)

Climatological rationale is applied to determine the division
of the ensemble into sets: in line with the concept of effective
projections, the projections in each set should be as distinct
as possible, adding a maximum of additional information.

Based on their genealogy, we partition the available pro-
jections (Table 1) as follows.

– When using two sets of five effective projections:

– Set 1: CLM1, CCLM, REMO2, HadGM, RACMO.

– Set 2: CLM2, REMO1, REMO3, HadRM, BCM.

– When using three sets of three effective projections
(dropping REMO3):

– Set 1: CLM1, REMO2, HadRM.

– Set 2: CLM2, REMO1, HadGM.

– Set 3: CCLM, RACMO, BCM.

The set likelihood L(j)(θ |p) from Eq. (9) is used to compute
the joint set posterior of parameters, f (j)2|Q(t)(θ |p), similar to
Eq. (2). The set posteriors are then averaged to result in an
overall posterior f2|Q(t)(θ |p) of learning from projections
under climate uncertainty. The averaging over posteriors ex-
presses that we place equal trust in distributions estimated
from the different sets.

3.4 Planning under uncertainty

Protection requirements (“criterions”) are based on the T -
year discharge q(T ) (see Eq. 1), most commonly the 100 year
discharge. Since the estimate of q(T ) – the peak of the PDF
– changes as new data become available, the capacity of
the flood protection system will be re-evaluated in the fu-
ture and possibly be adjusted. The probability that adjust-
ment becomes necessary is determined by the level of un-
certainty: the higher the uncertainty in the future extreme
discharges, the more likely it is that an adjustment of the
protection system will become necessary in the future. To
understand why this is, consider Fig. 4: after initial plan-
ning, new discharges are observed (lilac dots). If, as pictured
here, the observed discharges are higher than expected, the
design flood estimate q(T ) will increase. (We show the esti-
mate of q(1) to be able to display observations on the same
scale. Note that the 99th percentile of the shown PDF does
not correspond to q(100).) If the uncertainty is large at the
time of initial planning – as is the case here, visualized with
the blue, original PDF – then the additional information from
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Figure 4. Original and updated PDF based on a period of high new
observations of annual maximum discharge. Because the original
PDF is so broad, the period of extreme observations results in a
strongly shifted updated PDF, the peak of which (corresponding to
the estimate of q(1)) crosses the protection boundary level. Thus,
the protection system must be adjusted.

the new observation has a larger weight in predicting fu-
ture extreme discharges. The change in q(T ) is larger than
if the distribution of extreme discharges had been more in-
formative (i.e., more “certain”, less “spread out”). In prac-
tice, the protection will only be adjusted when a significant
change in q(T ) has occurred that cannot be compensated by
the freeboard and planning margin present (represented by
the protection level boundary from which onward adjustment
is needed). To avoid the need for frequent adjustments and
increase robustness, the optimization framework of Dittes et
al. (2018) thus recommends a higher planning margin when
the system is constructed under higher uncertainty initially,
as will become apparent in the results.

Because the – as yet uncertain – future discharge real-
izations determine future decisions, they have an impact on
the optimality of the initial decision. Therefore, it is sensi-
ble to model protection planning as sequential, with prob-
abilistic future discharge observations, updating of the dis-
charge PDF and corresponding decisions on adjustment in
regular time intervals. A Bayesian network approach do-
ing so for decisions on adapting infrastructure to a chang-
ing climate has been presented by Nishijima (2015) and a
POMDP (partially observable Markov decision process) ap-
proach applied to flood protection, using climate scenarios,
has been described by Špačková and Straub (2016). An al-
ternative sampling-based approach, which takes the full joint
parameter PDF into account, has been proposed by Dittes
et al. (2018). The planning horizon is divided into a num-
ber of time periods. After each period, the current protec-
tion level is re-evaluated and possibly adjusted based on the
annual maximum discharges that have been observed dur-

ing that period or – more precisely – based on the q(100) as
resulting from the updated distribution of annual maximum
discharges. To probabilistically model this future updating
(before these data are actually available), future realizations
of annual maximum discharge q are sampled from the dis-
charge distribution fQ(t)|2(q|θ) estimated initially. Optimal
decisions are then identified via backwards induction opti-
mization (Raiffa and Schlaifer, 1961), which works by first
determining the system that should be installed at the last
adjustment, conditional on the existing protection and dis-
charges observed by then. The obtained recommendation is
then used to find the system that should be installed at the
second to last adjustment and so forth until arriving at a
recommendation for the system that should be installed ini-
tially. We employ this optimization framework in the follow-
ing case study.

Note that, since there is often a discrepancy between the
level of observed past discharge at a specific gauge and the
corresponding regional climate projections, we take the com-
monly used approach (Fatichi et al., 2013; Pöhler et al., 2012)
of computing relative rather than absolute values from the
climate projections. Here, this means that we find a planning
margin γ based on the projection ensemble and uncertainty
estimates from the literature, which may then be applied to
the absolute protection (100-year flood) as estimated from
historic records.

4 Case study

We present the integration of the uncertainty quantification
of extreme discharge in the pre-alpine Mangfall gauge at
Rosenheim as shown in Sect. 2 with the uncertainty com-
bination methodology of Sect. 3 and the decision framework
of Dittes et al. (2018). Section 4.1 gives details of the imple-
mentation, followed by the protection recommendation and
sensitivity results in Sect. 4.2.

4.1 Implementation

We conduct our case study for the Mangfall river in Rosen-
heim, which has been introduced in Sect. 2.1. We consider
the designed flood protection systems to have a lifetime of
90 years and to be designed in such a way as to protect from
the 100-year flood, with design discharge q(100). The deci-
sion on the protection capacity will be revised every 30 years,
taking into account the discharge records that will be avail-
able at these points in time. When estimating climate param-
eters – especially trends – from a time step, 30 years is an
often used compromise between the desire to minimize sta-
tistical uncertainty and that to capture recent climate devel-
opments (IPCC, 2013; Kerkhoff et al., 2015; Laprise, 2014;
Pöhler et al., 2012). The protection requirement corresponds
to the maximal required protection during the time step in
question. As in Dittes et al. (2018), a square root function
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describes the cost of the construction/extension of the pro-
tection system and a discounting rate of 2 % annually is em-
ployed. In Dittes et al. (2018), we considered a measure of
flexibility which describes how costly it is to adapt measures
later in their lifetime. In this contribution, we give results for
the non-flexible case only, which implies that future adjust-
ments to the system are expensive. Introducing some flexibil-
ity into the protection system would lead to lower planning
margin results than those obtained here.

Following model plausibility testing on the projections
(MacKay, 1992), a GEV distribution is chosen to model the
annual maximum discharges. It is described by shape pa-
rameter k, scale parameter β > 0 and location parameter µ.
We employ a linear trend in the scale and location parame-
ters, which is common practice in the literature (Coles, 2004;
Delgado et al., 2010; Hanel and Buishand, 2011; Maraun,
2013). The scale is expressed as β =β0+β1t and the lo-
cation as µ=µ0+µ1t (Coles, 2004; Hanel and Buishand,
2011). Thus, θ = (kβ0µ0, β1µ1).

The joint PDF of parameters of annual maximum dis-
charge estimated from the climate projections is used as the
basis for future updating with discharge realizations. To ob-
tain this PDF, the climate projections are estimated on a prior
distribution that is weakly informative in the 100-year design
discharge of the first time step (years 1–30) as by Eq. (4).
Computationally, the prior distribution is constructed by uni-
form sampling of parameters over a large space, computing
the respective 100-year flood estimate for the first time step
for each sampled parameter vector, and performing rejection
sampling to obtain samples on the order of 6× 105 following
Eq. (4).

To find the optimal flood protection considering the full
sequential decision process, it is necessary to simulate future
discharge data, from which new flood estimates will be esti-
mated (see Sect. 3.4). For this purpose, we used 300 samples
of annual maximum discharge in the period 1–30 years and
70 samples of annual maximum discharge in the period 31–
60 years. Using fewer discharge samples in later periods is
computationally preferable and still comes with a high accu-
racy, as the absolute number of samples in the second period
overall is 300× 70= 21 000. This choice of number of sam-
ples leads to a relative error of less than 4 % in the protection
recommendation.

4.2 Protection recommendation and sensitivity

Figure 5 shows the 100-year discharge PDF (weighted mean)
from the initial parameter distribution for the first 30 years
of planning when estimated from the 39-year-long historic
record versus 10, 5, 3 and 1 effective projections of 90-year
length. Ten effective projections correspond to multiplying
all posteriors and one effective projection corresponds to av-
eraging all posteriors. For five and three effective projections,
we split the projections into sets as given in Sect. 3.3.
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Figure 5. The 100-year discharge PDF from initial parameter distri-
bution when estimated based on the historic record (dashed) versus
different numbers of effective projections, for years 1–30.

The PDFs shown in Fig. 5 are used as input to the op-
timization framework of Dittes et al. (2018) to obtain rec-
ommendations for the planning margin. Section 3.4 gave an
intuitive understanding of how these relate to the 100-year
PDF. The planning margin that is recommended when es-
timating based on the historic record only is 111.8 %, ver-
sus 81.9, 16.5, 12.5 and 2.6 % for 1, 3, 5 and 10 effective
projections, respectively. These results are summarized in
Table 2.

Using a similar ensemble of climate projections over Den-
mark, Sunyer et al. (2013b) established that an ensemble of
10 projections corresponds to 5 effective projections for 20-
year heavy summer precipitation. Despite some issues with
transferability – as will be discussed in Sect. 5 – we thus
use five effective projections and hence a planning reserve of
12.5 % as the recommended protection margin from the ex-
treme summer precipitation floods observed at the Mangfall
in Rosenheim.

To investigate the effect of hidden uncertainty on the pro-
tection recommendation, we repeated the optimization, once
using no hidden uncertainty and once doubling the hid-
den uncertainty variance shares estimated in Sect. 2.5 (re-
produced numerically in Supplement S3), with an effective
model number of five. The recommended planning margins
lay in the expected order, with the “no uncertainty” recom-
mendation the smallest at 8.1 % and the “double uncertainty”
recommendation the largest at 13.8 %. Finally, we studied the
effect of changing the trend in the projections of annual max-
imum discharge. Detrending the projected annual maxima
lead to a recommendation of 12.2 %. We then used the pro-
jected annual maxima with doubled trend: from the observed
average of 0.25 m3 s−1 per year (corresponding to an 11 %
rise in mean annual maximum discharge during the 90-year
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Table 2. Recommended planning margin when using the historic record versus differing numbers of effective projections for estimating the
initial parameter space.

Effective number of projections (or historic) historic 1 3 5 10

Recommended planning margin (%) 111.8 81.9 16.5 12.5 2.6

lifetime) to 0.5 m3 s−1 per year. The recommended planning
margin increased only very slightly, from 12.5 to 12.7 %. The
results are summarized in Table 3.

5 Discussion

It is apparent from the results that the number of effective
projections has a large impact on the recommended plan-
ning margin. Hence, we recommend that planners make use
of the concept of effective projections and partition ensem-
bles accordingly, rather than just average over all members
of a projection ensemble. Our assumption that five effec-
tive projections are applicable for the 10-member ensemble
at Rosenheim can be questioned. The transferability of the
corresponding results of Sunyer et al. (2013b) might be hin-
dered by the difference in considered location (a southern
German catchment versus an averaging over Denmark), en-
semble (some members differ) and extreme index (100-year
event versus 20-year event). From other results presented in
Sunyer et al. (2013b) using an alternative measure of pro-
jection dependence as well as higher extreme indices, we
believe that the 12.5 % recommendation given here is con-
servative and a slightly lower recommendation for the plan-
ning margin (based on a slightly higher number of effective
projections) may be applicable. However, the transferability
remains questionable for the location and ensemble and thus
the study ideally ought to be repeated for the given catchment
and ensemble, in particular with respect to the large impact
of the number of effective projections on the protection rec-
ommendation.

It is striking that the recommended planning margin from
the historic record alone is very large. A main reason is
that we use a GEV distribution with two trend parame-
ters (i.e., five parameters overall) to pick up climate sig-
nals in the projections. We are using the same distribu-
tion for the historic record for comparability. In reality, one
should not attempt to estimate such a high number of pa-
rameters from such a small set of data (38 annual maxima
in the historic record); instead, one would assume stationar-
ity or a fixed trend. We repeated the analysis for a station-
ary GEV (no trend parameters), resulting in a planning mar-
gin recommendation of 75.1 %. This is still high, confirming
that it is not recommendable to plan based on a short his-
toric record alone. Additional information should always be
used, e.g., climate projections (as in this study), tools from
runoff prediction in ungauged basins and climate analogues
(Arnbjerg-Nielsen et al., 2015; Blöschl et al., 2013a).

Table 3. Recommended planning margin (%) when using five ef-
fective projections and varying hidden uncertainty and trend.

Quantity\applied change None Reference Double

Hidden uncertainty 8.1
12.5

13.8
Trend in annual max. discharge 12.2 12.7

We turn to the sensitivity analysis. First, the trend: the
fact that signals that emerge late on the planning horizon
are masked by noise and rendered less relevant by discount-
ing explains why changing the trend signal leads to only in-
significant changes in recommended planning margin. This is
compounded by the fact that the trend signal is weak, which
is to be expected from the location of the case study catch-
ment (Madsen et al., 2014; Maraun, 2013) and is potentially
amplified by projections underestimating trends in extreme
precipitation (Haren et al., 2013). It should be added that not
all scientists are comfortable with linear trend projections in
extreme precipitation and discharge and that there is also an
argument to be made for cyclical components (Gregersen et
al., 2014) or “flood-rich” versus “flood-poor” periods (Hall
et al., 2014; Merz et al., 2014), though these may not be ap-
plicable to floods of large return periods such as studied here
(Merz et al., 2016). We assumed a linear trend in the case
study for simplicity, but the proposed methodology is gen-
eral. To use a different trend representation, one just has to
change the definition of θ (see Sect. 4.1) accordingly.

Finally, we discuss the impact of varying size of uncer-
tainty on planning. To investigate this, we evaluated the rec-
ommended planning margin when not adding any hidden un-
certainty, when using the estimated amount and when us-
ing double the estimated amount of hidden uncertainty (see
Sect. 4.2). The effect was small, in particular between adding
the estimate versus double the estimate of hidden uncertainty.
The share of hidden uncertainty is larger in the farther fu-
ture, where its effect is limited because of discounting. We
conclude that hidden uncertainty should be considered in de-
cision making, yet the sensitivity to its exact amount is low
and, when there is already a considerable level of uncertainty,
including more has little effect. This is why we do not engage
in detailed discussion on whether the size of the hidden un-
certainty has been gauged correctly and whether additional
uncertainty components should be included, despite this cer-
tainly being debatable (Grundmann, 2010; Refsgaard et al.,
2013; Seifert, 2012; Sunyer, 2014; Velázquez et al., 2013).
We believe that the low sensitivity of the protection recom-
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mendation to the size of the hidden uncertainty in the pre-
sented case study can be explained by the considerable visi-
ble uncertainty present: the capacity to project the future ex-
treme discharge is already extremely limited and can barely
be reduced by adding more uncertainty. While this may ap-
pear disheartening, it can also be a wake-up call to stop wait-
ing for (doubtful) uncertainty reductions in climate modeling
and start making (robust) decisions (Arnbjerg-Nielsen et al.,
2013; Curry and Webster, 2011; Hawkins and Sutton, 2011).

6 Conclusions

Estimates of future extreme discharge are fraught with sig-
nificant uncertainties that need to be accounted for in flood
protection planning. In particular, the following points must
be considered when estimating the parameters of future ex-
treme discharge distributions:

1. an estimate of the uncertainty that cannot be quantified
from the available data (the hidden uncertainty) must be
included, since projections and data at hand cover only
a limited range of the uncertainty spectrum (the visible
uncertainty);

2. the time development of the uncertainty, so as to give
less weight to projections far on the projection horizon;

3. dependency between projections, since projection en-
sembles often include several projections sharing code
or assumptions.

In the proposed methodology, we quantitatively include these
aspects in estimating the probabilistic distribution of flood
discharge. Both “visible” and hidden uncertainty are in-
cluded in a time-dependent Bayesian likelihood function.
Dependence between projections is accounted for by using
the concept of effective projection number. The uncertainty
analysis proposed in this paper was used with the optimiza-
tion framework of Dittes et al. (2018) to find protection rec-
ommendations for a pre-alpine case study catchment. The re-
sults show that when there is sizable visible uncertainty, the
protection recommendation is robust to further uncertainty
and moderate changes in trend. However, hidden uncertainty
should not be neglected in planning as this would lead to in-
sufficient protection recommendations.
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