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Abstract. High soil erosion and excessive sediment load are
serious problems in several Himalayan river basins. To ap-
ply mitigation procedures, precise estimation of soil erosion
and sediment yield with associated uncertainties are needed.
Here, the revised universal soil loss equation (RUSLE) and
the sediment delivery ratio (SDR) equations are used to
estimate the spatial pattern of soil erosion (SE) and sed-
iment yield (SY) in the Garra River basin, a small Hi-
malayan tributary of the River Ganga. A methodology is
proposed for quantifying and propagating uncertainties in
SE, SDR and SY estimates. Expressions for uncertainty
propagation are derived by first-order uncertainty analysis,
making the method viable even for large river basins. The
methodology is applied to investigate the relative impor-
tance of different RUSLE factors in estimating the mag-
nitude and uncertainties in SE over two distinct morpho-
climatic regimes of the Garra River basin, namely the up-
per mountainous region and the lower alluvial plains. Our
results suggest that average SE in the basin is very high
(23± 4.7 t ha−1 yr−1) with higher values in the upper moun-
tainous region (92± 15.2 t ha−1 yr−1) compared to the lower
alluvial plains (19.3± 4 t ha−1 yr−1). Furthermore, the topo-
graphic steepness (LS) and crop practice (CP) factors ex-
hibit higher uncertainties than other RUSLE factors. The an-
nual average SY is estimated at two locations in the basin
– Nanak Sagar Dam (NSD) for the period 1962–2008 and
Husepur gauging station (HGS) for 1987–2002. The SY at
NSD and HGS are estimated to be 6.9± 1.2× 105 t yr−1 and
6.7± 1.4× 106 t yr−1, respectively, and the estimated 90 %
interval contains the observed values of 6.4× 105 t yr−1 and

7.2× 106 t yr−1, respectively. The study demonstrated the
usefulness of the proposed methodology for quantifying un-
certainty in SE and SY estimates at ungauged basins.

1 Introduction

Soil erosion is a serious problem, which not only causes land
degradation and loss of agricultural productivity but also al-
ters geomorphic processes and sediment fluxes in a river
basin. Estimation of soil erosion (SE) and sediment yield
(SY) of a river basin are therefore essential for agricultural
planning and river management. SE and SY can be estimated
by either empirical models that are developed solely based on
experimental studies (variants of universal soil loss equations
e.g., USLE, RUSLE and MUSLE universal soil loss equa-
tions) or process-based models that are based on parameteri-
zation of physical processes, e.g., the Water Erosion Predic-
tion Project (WEPP); Chemicals, Runoff, and Erosion from
Agricultural Management Systems (CREAMS) and Agricul-
tural Nonpoint Source (AGNPS). While the process-based
models may be more reliable and appealing, the empirical
models are popular because they can be applied on basins
with no or limited data (Merritt et al., 2003).

The estimates of SE and SY alone are not sufficient for ef-
fectively addressing the soil erosion problem in a river basin.
One needs to quantify uncertainties in those estimates as
well. These uncertainties can stem from input data (measure-
ment errors, coarse spatial and temporal resolution, missing
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values), model (parameter, structural, and algorithmic or nu-
merical uncertainty), and stochastic nature of the soil ero-
sion process (Beven and Brazier, 2011; JCGM, 2008). Since
quantification of all the sources of uncertainties is difficult,
studies make assumptions about their relative importance and
mutual independence. Nevertheless, to the best of the au-
thors’ knowledge, no unified approach is available to quan-
tify uncertainty in SE and SY estimates for ungauged basins.
The following paragraphs briefly review the literature on the
uncertainty estimates of SE and SY and highlight the existing
gaps.

Arguably, the most popular empirical model for estimat-
ing SE is USLE (universal soil loss equation) and its variants
such as RUSLE (revised) and MUSLE (modified). Variations
in USLE are also used in distributed hydrological models
like the Evaluation of the Water Quality Model (EUTRO-
MOD), the Soil and Water Assessment Tool (SWAT) and the
Simulator for Water Resources in Rural Basins (SWRRB).
The USLE estimates sheet and rill erosion but does not ac-
count for gully or channel erosion in a basin. Developed in
the 1960s with more than 10 000 plots per year data from
the USA, the method was designed for estimating long-term
SE at a plot-scale, but it is now frequently used for estimat-
ing erosion at a basin-scale, albeit with some modifications.
This study uses the RUSLE model that estimates SE by con-
sidering five factors, namely rainfall and runoff erosivity (R
factor), soil erodibility (K factor), topography (LS factor),
cover and management (C factor), and support practice (P
factor).

The studies on uncertainty analysis of the RUSLE can be
divided into three groups:

– Studies that have quantified uncertainties in individual
factors of the RUSLE. For example, Wang et al. (2002b)
quantified spatial uncertainty in the R factor by us-
ing geostatistics. Catari et al. (2011) assessed uncer-
tainty in the R factor by comparing traditional meth-
ods with at-site measurements. Torri et al. (1997), Wang
et al. (2001) and Parysow et al. (2003) investigated un-
certainty in the K factor by using geostatistical meth-
ods. Gertner et al. (2002), Wang et al. (2002a), Wu et
al. (2005) and Mondal et al. (2016) estimated uncer-
tainty in the LS factor based on at-site measurements
and cell variation in the digital elevation model (DEM).

– Studies that have used backward or inverse uncertainty
propagation in which modeled and observed values of
SE are compared to evaluate model biases, check a
model’s suitability for a basin, and estimate model pa-
rameters (Risse et al., 1993; Falk et al., 2010 and Car-
mona et al., 2017). The backward uncertainty analysis
requires observed values of SE, and hence not applica-
ble for ungauged basins.

– Studies that have used forward uncertainty propagation
in which uncertainties present in input data and/or the

model are propagated to quantify uncertainties in the SE
estimates. A few studies (Hession et al., 1996; Biese-
mans et al., 2000; Tetzlaff and Wendland, 2012; Tetzalf
et al., 2013) that are relevant for this work are summa-
rized below.

Hession et al. (1996) presented a two-phase Monte Carlo
methodology for forward propagation of uncertainty and
demonstrated its application at an experiential plot in Okla-
homa, USA. They divided uncertainty in USLE factors into
knowledge uncertainty and natural stochastic variability and
argued that the two types of uncertainties should be ana-
lyzed separately to draw useful conclusions. They considered
knowledge uncertainty for the R factor, stochastic variability
for theK and C factors, and treated LS and P factors as con-
stants. They also studied the effect of spatial discretization in
models and the assumption of independence of parameters
on uncertainty quantification. However, since information on
dependence of USLE factors was not available, they assumed
different levels of correlation among them.

Biesemans et al. (2000) applied a Monte Carlo error prop-
agation technique for estimating uncertainty in SE and SY
(referred to as off-site sediment accumulation) at a water-
shed in Belgium. Elevation data were assumed to have auto-
correlated errors, which were modeled using fractional Gaus-
sian noise to estimate uncertainty in the LS factor. Soil tex-
ture and its organic content were measured at 153 locations
in the watershed to estimate the K factor. The K factors so
obtained were interpolated using Kriging. The variance of
the Kriging surface was taken as a measure of K-factor un-
certainty. The C factor was assumed to have a uniform distri-
bution with minimum and maximum values estimated based
on a USLE table and by appropriately weighing the C factor
for each crop by the erosivity value in its growing season.
R and P factors were assumed constant. The result showed
that the observed value of SE lies within one standard error
of the estimated mean value, prompting authors to conclude
that RUSLE is a suitable model for their study watershed and
that the RUSLE model should use probability distribution of
input factors rather than their fixed values.

Tetzlaff and Wendland (2012) and Tetzalf et al. (2013) per-
formed forward uncertainty analysis on the ABAG model (an
adaptation of USLE to German conditions) by using Gaus-
sian error propagation and Monte Carlo simulations. ABAG
was a part of the MEPhos model that was applied to deter-
mine SY for the state of Hesse in Germany (21 115 km2).
However, because of high computational cost, the uncer-
tainty analysis for SE using ABAG was performed for a rela-
tively small catchment of the river Gersprenz (485 km2). The
uncertainty in the LS factor was estimated as standard devi-
ation of 1000 LS factors derived from 1000 simulated DEM
surfaces obtained by adding random Gaussian error to the
original DEM. Uncertainties for the other USLE factors were
assumed (R uncertainty of 10 %, C of 23 % and K of 10 %)
based on auxiliary information, and the P factor was treated
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as constant. The authors calculated that the uncertainty in
USLE factors resulted in 34 % uncertainty in the mean an-
nual soil loss estimates.

Not all of the sediment eroded in a basin is delivered out
of it; a significant portion of the eroded material gets de-
posited at intermediate locations. Sediment yield (SY) de-
notes the total sediment outflow from a basin over a spec-
ified duration. It is usually measured by either stream flow
sediment sampling or a reservoir sedimentation survey. By
definition, SY includes both bed load and suspended load.
However, since streamflow sediment sampling is often re-
stricted to suspended load, the SY estimates from streamflow
sampling are usually adjusted upward by some empirical pro-
cedure (e.g., Table 3.2 of Vanoni, 1975).

Reviews on SY modeling suggest that unlike SE modeling,
no universal relationships are available that can be applied to
every situation, rather a region-specific relationship is con-
sidered to be the best method for predicting SY (Ludwig and
Probst, 1998; De Vente et al., 2011). The most common ap-
proach to predict SY is to estimate it as a product of gross SE
and sediment delivery ratio (SDR; Walling, 1983; Richards,
1993), where SDR is defined as the ratio of SY at a predic-
tion location to the gross or total SE of a basin whose out-
let is the prediction location. Precise estimate of SDR is not
available, but it is primarily related to the drainage basin area
(USDA, 1972; De Vente et al., 2007). According to Boyce
(1975), SDR generally decreases with increasing basin area
because with an increase in basin size mean slope decreases
and sediment storage locations between source areas and the
basin outlet increases. The most favored method for long-
term SY estimation is the USLE-SDR method where gross
SE is estimated by the USLE model (e.g., Ebisemiju, 1990;
Walling, 1993; Van et al., 2001; Amore et al., 2004; Bhat-
tarai and Dutta, 2007; Boomer et al., 2008). This study uses
the RUSLE-SDR model for predicting SY, in which SDR is
obtained as a function of basin area based on the equation
developed for north Indian river basins by Sharda and Ojasvi
(2016).

Only a few studies have reported uncertainty in SY esti-
mates by using the USLE-SDR approach. Ferro and Porto
(2000) and Stefano and Ferro (2007) quantified uncertainty
in the estimates of SY for river basins in Italy using a USLE-
SDR-based model termed the sediment delivery distributed
(SEDD) model. The model could predict SY at event and an-
nual scales, but requires observed data for its calibration and
hence not suitable for ungauged basins. Catari (2010) used
the RUSLE-SDR model to investigate uncertainty in the es-
timates of SY for the upper Llobregat River basin in Spain.
The uncertainties in individual RUSLE factors and SDR are
first quantified and then added in quadrature to estimate un-
certainty in SY. The LS and C factors were found to have the
major influence on SY uncertainty.

The literature review on SE and SY estimation described
in the foregoing paragraphs suggest that (i) very few stud-
ies have computed uncertainties in SE and SY for ungauged

basins. Most of the existing studies are either restricted to the
plot-scale or are carried out for basins with measured data;
(ii) while the importance of sediment erosion in Himalayan
basins is well known (Galy and France-Lanord, 2001; Ra-
haman et al., 2009), no studies are available that have quanti-
fied uncertainties in SE and SY estimates for these basins and
(iii) the presence of storage structures, like dams and reser-
voirs, complicates the estimation of SY downstream of the
structure. Although some simplified methods exist to account
for control structures in SY estimation (Sharda and Ojasvi,
2016), their effects on the uncertainty quantification have not
been explored.

The aim of this study is to develop a methodology for
determining uncertainties in SE and SY estimates of un-
gauged basins. The Garra River, a Himalayan tributary of
the River Ganga, was selected for demonstration of the de-
veloped methodology and for investigating the role of uncer-
tainties in input parameters and SE and SY estimates. The
specific objectives of this study are the following:

i. To estimate spatially distributed SE for the Garra River
basin using the RUSLE model.

ii. To quantify uncertainty in the SE estimate by account-
ing for uncertainties in different RUSLE factors.

iii. To study the relative importance of different RUSLE
factors in governing erosion and its uncertainty over
mountainous and alluvial plain regions of the basin.

iv. To estimate SDR and its uncertainty for the Garra River
basin.

v. To evaluate SY and its uncertainty for the basin by com-
bining SE and SDR estimates.

The remainder of the paper is organized into four sections.
Section 2 describes the study area and data used. Section 3
presents the methodology for estimating SE, SDR and SY,
and for quantifying uncertainties in these estimates. Section 4
describes the results obtained, and Sect. 5 lists the limitations
of the proposed methodology. Finally, Sect. 6 summarizes
the major finding of this work and presents a set of conclud-
ing remarks.

2 Study area and data used

The study basin is the Garra or Deoha River, a Himalayan
tributary of the River Ganga. This river originates near Hald-
wani in Uttarakhand from a lake (29◦12′16′′ N, 79◦45′30′′ E)
fed by glacier melt (Roy and Sinha, 2007), and meets the
River Ganga near Kannauj in Uttar Pradesh (27◦08′30′′ N,
79◦56′40′′ E). The study basin is located between 27◦09′

and 29◦18′ N latitude and between 79◦38′ and 80◦09′ E lon-
gitude, covering a total area of around 7000 km2 (Fig. 1).
The Garra basin has two distinct morphoclimatic regimes,
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Figure 1. LANDSAT image (1999–2000) in false color composite showing the Garra River basin. The major neighboring rivers (Ganga and
Ramganga), location of major cities, the gauging station (Husepur) and the major water structure (Nanak Sagar Dam) are also shown.

an upper mountainous region (part of Himalayan foothills)
and lower alluvial plains (part of the upper Indo-Gangetic
Plain). The upper mountainous region of the basin has a high
average annual rainfall of 1500 mm, and the lower alluvial
part has a comparatively lower average annual rainfall of
1050 mm (Fig. 2d).

The only gauging station in the basin is at Husepur
(27◦16′30′′ N, 79◦57′0.64′′ E) near Hardoi, Uttar Pradesh,
which was operated by the Central Water Commission

(CWC) from 1987 to 2002. The discharge and suspended
sediment load records for 16 years (1987–2002) are available
at this station. Topography, land use land cover (LULC), soil
and rainfall datasets are obtained from different data source
agencies listed in Table 1. Table 1 also provides the spa-
tial and temporal resolutions, and temporal extent of these
datasets.

The Garra River has a major intervention in the form of
Nanak Sagar reservoir (28◦57′10′′ N, 79◦50′30′′ E; capacity
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Table 1. Data used in the study and their specifications.

Serial number Input Data Name and agency Specifications Reference

1 digital elevation SRTM (Shuttle Radar 90 m spatial resolution; year Jarvis et al. (2008)
model (DEM) Topography Mission) 2001; database version 4.1

2 land use and land National Remote 1 : 50 000 scale; year 2005 NRSC (2006)
cover Sensing Center

3 soil (NRSC) 56 m spatial resolution; National Bureau
year 2005 of Soil Survey (NBSS)

4 annual average India Meteorology 0.25◦ spatial resolution; daily Rajeevan and Bhate
rainfall Department (IMD) gridded rainfall data set (2009)

from 1901 to 2013

210 Mm3) created by a dam of the same name built in 1962.
The reservoir’s average sedimentation rate data for the period
1962–2008 (47 years) measured by storage capacity survey
are available from a report (CWC, 2015).

3 Methodology

This section describes the methods used for computing SE
and SY, and their associated uncertainties. Following the
guidelines given by the Joint Committee for Guides in Mete-
orology (JCGM, 2008), the uncertainties are expressed using
standard deviation and reported as percentage of the mean
value (coefficient of variation, CV). To combine uncertain-
ties, the general principle of adding uncertainties in quadra-
ture is used (Taylor, 1982). The principle assumes that the
individual uncertainties are independent.

3.1 Estimation of soil erosion (SE)

SE is estimated by the revised universal soil loss equation
(RUSLE), which is an empirical model for predicting the
long-term average rate of SE based on crop system, man-
agement techniques and erosion control practices (Renard et
al., 1991; Kinnell, 2008). The SE is expressed as a function
of five input factors (Eq. 1): rainfall and runoff erosivity (R),
soil erodibility (K), slope length and steepness (L and S),
cover management (C), and support practice (P ) (see Ta-
ble 2 for their units). These input factors vary considerably
from storm to storm, but their effects on the estimation of
SE tend to be averaged over extended periods (Wischmeier
and Smith, 1978). The methodology for determining the in-
put factors and their uncertainties at each evaluation cell is
described below.

SE= R K L S C P (1)

3.1.1 Rainfall and runoff erosivity factor (R)

The R factor quantifies the raindrop impact and gives infor-
mation about the amount and rate of runoff likely to be as-
sociated with the rain. The R factor can be obtained by es-
timating rainfall kinetic energy from rainfall intensity data
(Wischmeier and Smith, 1978). As rainfall intensity data are
not easily available, empirical equations have been proposed
to calculate the R factor from the readily available average
annual rainfall data (denoted by r). In this study, we se-
lected the equation proposed by Babu et al. (1978) using
the rainfall data from various meteorological stations in India
(Eq. 1 in Table 2). Originally, this equation was proposed in
“m t cm ha−1 hr−1 year−1” unit by Babu et al. (1978), which
needs a multiplication factor of “9.8; to convert into the
“MJ mm ha−1 hr−1 year−1” unit (Foster et al., 1981). The un-
certainty in the estimate of the R factor arises from model
error in the equation of Babu et al. and variability in the ob-
served average annual rainfall (δr). Since model error for the
equation of Babu et al. is not available, the uncertainty in R
(δR) is estimated solely based on observed rainfall variability
(Table 2b).

3.1.2 Soil erodibility factor (K)

The K factor represents the susceptibility of soil to erosion
due to rainfall and runoff. The K factor is usually obtained
from one of the many empirical equations (Wischmeier and
Smith, 1978; Declercq and Poesen, 1991; Van der Knijff et
al., 2000) that relate it to soil properties like organic mat-
ter percentage, soil texture and soil permeability. However,
stoniness can also be an important factor to consider while
evaluating the K factor (Panagos et al., 2014). The Garra
basin has primarily three kinds of soil textures: loam, sand
and sandy loam (Fig. 2c) with a negligible amount of gravels.
Hence, stoniness is not accounted for in the estimates of the
K factor. Therefore, the equation proposed by Wischmeier
and Smith (1978, Table 2c) is used for estimating the K fac-
tor because all the required input parameters for this equation
are available for the study basin. The uncertainty in the K
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Table 2. Equations and their references for estimating RUSLE factors, sediment erosion and sediment delivery ratio (SDR). Expressions are
also given for quantifying and propagating uncertainty based on first-order analysis.

Factor Estimation of factor Estimation of uncertainty

R (a) R = (79+ 0.363× r)× 9.8

(Babu et al., 1978)

(b) δR = 3.558× δr

K (c) 100K = 2.1× 10−4
× (12-OM)×

M1.14
+ 3.25× (sc−2)+2.5× (p− 3)

(Wischmeier and Smith, 1978)

δK = Calculated–Measured= 0.0026
(65 % confidence interval)

(Wischmeier and Smith, 1978)

L (d) L= (λi−1+D)
m+1
−(λi−1)

m+1

D(22.13)m

(Wischmeier and Smith, 1978;
Desmet and Govers, 1996)

(e) δL
L
=

√
( m1x δ1x)

2 + (ln(m+ 1)δm)2

where, δm= 1m

2
√

6
(triangular distribution)

S (f) S = 10.8× sinθ + 0.03
for slope< 9 %;
S = 16.8× sinθ − 0.05
for slope< 9 %

(McCool et al., 1987)

(g) δS = 10.8× cosθ × δθ slope< 9 % ,
δS = 16.8× cosθ × δθ slope< 9%

(h) δθ =

√√√√√√
 δ1h

1x×

(
1+
(
1h
1x

)2
)


2

+

 −δ1x

1h×

(
1+
(
1x
1h

)2
)


2

C

Reference tables (Morgan, 2009; FAO, 1978)
(i) δC = 1C

2
√

6
(triangular distribution)

P (j) δP = 1P

2
√

6
(triangular distribution)

(JCGM, 2008)

SDR (k) SDR= 1.42×A−0.132

(Sharda and Ojasvi, 2016)

(l) δSDRmodel =
√
(exp(se2)− 1)× exp(2ln(SDR)+ se2)

where, SE= standard error (0.048)
(m) δSDRinput data = 0.18×A−1.132

× δA

where δA= n× 21x× δ1x
(n) δSDR=

√
(δSDRmodel)2+ (δSDRinput data)2

C, the cover and management factor is the ratio of soil loss from an area with specified cover and management to that of an identical area in tilled continuous
fallow; 1C, difference between upper and lower limit of C factor; CV, the coefficient of variation; CS, the coefficient of skewness; 1h, maximum difference in
the elevation between the given cell and its neighbor cells (8 neighboring cells in D8 algorithm); δ1h, elevation error in DEM (3.17 m); K , the soil erodibility
factor, expressed in the units of t ha hr MJ−1 mm−1 ha−1; L, the slope length factor, is the ratio of soil loss from the field slope length to that from a 22.1 m
length under identical conditions; λ, field slope length in meters; δλ, uncertainty in field slope length; M , Particle-size parameter [% silt× (100 – % clay)]; m,
variable slope-length exponent (0.3–0.5); δm, uncertainty in variable slope-length exponent; n, number of cells contributing to one cell; OM, organic matter
content (%); P , the support practice factor, is the ratio of soil loss with a support practice like contouring, strip cropping, or terracing to that with straight-row
farming up and down the slope; p, permeability class (rapid= 1, moderate to rapid= 2, moderate= 3, slow to moderate= 4, slow= 5, very slow= 6); 1P ,
difference between the upper and lower limit of P factor; r , the average annual rainfall in mm; R, the rainfall runoff erosivity factor, expressed in the units of
MJ mm ha−1 h−1 yr−1; S, the slope steepness factor, is the ratio of soil loss from the field slope gradient to that from a 9 % slope under otherwise identical
conditions, sc, soil structure code (very fine granular= 1, fine granular= 2, coarse granular= 3, blocky, platy or massive= 4); SE, the computed soil erosion per
unit area expressed in t ha−1 yr−1; SY, the sediment yield at a location in the basin, expressed in t yr−1; θ , slope of the terrain in degrees; 1x, distance between
the given cell and the neighboring cell having maximum elevation difference; δ1x, geolocation error in DEM (5.17 m)

factor can be due to uncertainty in the measurement of soil
properties and uncertainty in the model that relates soil prop-
erties to the K factor. Since the measurement uncertainties
of soil properties are not available for the study basin, only
the model uncertainties as given by Wischmeier and Smith
(1978) are considered (Table 2).

3.1.3 Slope-length factor (L) and slope steepness factor
(S)

The L and S factors represent the effect of topography on
SE. They are usually presented as a single factor (LS factor)
that represents the ratio of soil erosion for the given condi-
tions to the soil erosion from an experimental plot of slope
length 22.13 m and slope steepness 9 %. This study employs
the method proposed by Desmet and Govers (1996) for deter-
mining the L factor (Table 2d). The method calculates the L
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Figure 2. (a) Elevation (SRTM, 90 m), (b) LULC, (c) soil data from NRSC (2005) and (d) average annual rainfall (1962–2008).

factor by considering flow accumulation at each cell obtained
from the DEM. The S factor depends only on the local slope.
Many empirical equations are available for estimating the S
factor (Wischmeier and Smith, 1978; McCool et al., 1987;
Moore and Wilson, 1992; Nearing, 1997). Here, the equation
proposed by McCool et al. (1987) is adopted because of its
popularity and versatility (Table 2f).

Monte Carlo simulations are usually employed for quanti-
fying uncertainties in the LS factor (Biesemans et al, 2000;
Catari, 2010; and Tetzlaff et al., 2013). In this method, mul-
tiple realizations of the DEM are generated based on a pre-
specified error rate in the DEM elevation, and LS factor is
calculated for every realization. The variability in LS factors
over multiple realizations provides a measure of uncertainty
in the LS factor arising due to uncertainties in DEM. The
DEM errors are sometimes modeled as an auto-correlated
random field (Biesemans et al, 2000); however, in absence
of information about the spatial structure of the DEM errors,
they are either modeled as independent errors (Tetzlaff et al.,
2013) or some simplified assumptions are made on their spa-
tial structure using spatial filters (Catari, 2010). The assump-
tion of independent errors gives the worst-case scenario of
DEM uncertainty effects (Wechsler and Kroll, 2006). The
Monte Carlo simulations are effective for small-sized basins
but become tedious for large basins (Tetzlaff and Wendland,
2012). This study uses the information on geolocation error
(δ1x) and elevation error (δ1h) available for the DEM, and
applies first-order uncertainty analysis to estimate uncertain-

ties in L (δL) and S (δS) factors (Table 2e, g). The method
assumes that the DEM errors are uniform in space and are
independent.

The uncertainty in the L factor also depends on the uncer-
tainty in specifying the value of the variable slope exponent
(m). The m factor depends on the rill and inter-rill erosion ra-
tio (β). In this study, β is estimated by the equation proposed
by McCool et al. (1997). Here, the uncertainty in “m” is mod-
eled as a Type B (assumed probability distribution function
based on comparatively reliable information; JCGM, 2008)
standard uncertainty assuming a symmetric triangular distri-
bution (JCGM, 2008, pages 11 to 18) over the range of values
(0.05–0.25). The combined uncertainty in LS factor (δLS) is
obtained by adding δL and δS in quadrature.

3.1.4 Cover and management (C) and support practice
factor (P )

The C factor is the ratio of soil loss from a given land use
class to the corresponding loss from an experimental plot
having “clean-tilled and continuous fallow” land use condi-
tion. The P factor is the ratio of soil loss from a land with
given support practice to the corresponding loss from an ex-
perimental plot having an agricultural practice of “upslope
and downslope tillage.” The C and P factors for a cell are
obtained from reference tables (Morgan, 2009; FAO, 1978)
that provide a range for given land use and agricultural prac-
tices. Reference values of C and P factors for the classes of
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Table 3. The C factor for different land use land cover (LULC) classes along with their uncertainties.

LULC class C factor range Mean value Uncertainty

Forest 0.001–0.002 0.0015 13.61 %
Grassland 0.01–0.02 0.015 13.61 %
Urban 0.05–0.1 0.075 13.61 %
Plantation/Orchard 0.1–0.3 0.2 20.41 %
Crops (double and triple) 0.3–0.5 0.4 10.21 %
Crops (Kharif, Rabi and Zaid) 0.3–1 0.65 22 %
Wasteland 0.4–0.6 0.5 8.16 %
Water/Snow 0 0 0

Table 4. Different cropping practice (P ) factors for various crop-
ping practices along with their uncertainties.

Crop practice P -Factor range Mean value Uncertainty

Strip cropping 0.6–0.9 0.75 8.16 %
Terrace cropping 0.35–0.45 0.4 5.1 %
Other areas 1.0 1.0 0 %

land use and agricultural practices considered in this study
are given in Tables 3 and 4, respectively. Since the RUSLE is
not applicable for glacial erosion and channel processes, the
C factor for snow and water-covered cells is taken as zero.
The vegetation density obtained using remote sensing (Nor-
malized Difference Vegetation Index) can provide an alterna-
tive method to quantify the C factor and its uncertainty.

For an agriculturally dominated basin, the C factor varies
seasonally depending upon the cropping cycle. The season-
ality in the C factor is incorporated in RUSLE by taking a
weighted average ofC values during different seasons, where
weights are proportional to the R factor (Vanoni, 1975). The
study basin has two types of cropping patterns (1) a dou-
ble and triple cropping pattern in which crops are grown al-
most all year round and (2) a single cropping (Rabi, Kharif or
Zaid) system in which the crops are grown only for a season.
Since the farms with a single cropping pattern are fallow dur-
ing the non-growing season they are attributed with a wider
range ofC factors (0.3–1) compared to the farms with double
and triple cropping patterns (0.3–0.5).

During field visits, we observed that terrace cropping and
strip cropping are practiced in most of the upper mountainous
region and lower alluvial plains, respectively. For calculating
SE, it is assumed that the upper mountainous region has only
the terrace cropping practice and lower alluvial plains have
only strip cropping practices. The uncertainty in C (δC) and
P (δP ) factors are obtained by a Type B evaluation of stan-
dard uncertainty, assuming a symmetric triangular distribu-
tion over the range of values in a given class of land use and
agricultural practices (JCGM, 2008), presented in Table 2i, j.
The combined effect of land use and land cover is represented
by the CP factor, which is a product of C and P factors. The

uncertainty in CP factor (δCP ) is calculated by adding δC
and δP in quadrature.

Finally, assuming that uncertainties in individual factors
are independent, they are added in quadrature to calculate
relative uncertainty in the estimate of SE for each cell as

δSE
SE
=

√(
δR

R

)2

+

(
δK

K

)2

+

(
δLS
LS

)2

+

(
δCP
CP

)2

. (2)

3.2 Estimation of the sediment delivery ratio (SDR)

The SDR is defined as the ratio of SY at a prediction lo-
cation to the gross or total SE of a basin. It is estimated
by the empirical equation developed by Sharda and Ojasvi
(2016) based on reservoir sedimentation (CWC, 2015) and
soil erosion data (Sharda, 2009; NAAS, 2010) from 16 large
reservoir basins (basin area greater than 1000 km2) located
in north India (Eq. 3).

SDR= 1.817×A−0.132 (3)

For derivation of the above equation, soil erosion rates for
India were estimated by employing the RUSLE, but with
inconsistent unit system for R and K factors (Maji, 2007;
NAAS, 2010). After applying the correction, the SDR values
decrease by a factor of 1.28. The corrected equation is

SDR= 1.42×A−0.132 (4)

The equation was fitted by the ordinary least squares method
in the logarithmic domain. An expression for uncertainty
in SDR prediction (δ SDR) that accounts for model error
(δ SDRmodel) and uncertainty in the calculation of basin area
(δ SDRinput data) derived by using the first-order uncertainty
analysis is given in Table 2n.

3.3 Computation of sediment yield (SY)

The SY at a location is estimated by multiplying annual av-
erage gross SE and SDR of a drainage basin whose outlet
is the estimation point. The uncertainty in SY is computed
as the standard deviation of the SY distribution obtained by
1000 Monte Carlo simulations for which gross SE and SDR
are simulated using the following distributions:
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Figure 3. Approach to estimate soil erosion (SE) and sediment yield
(SY) with associated uncertainties.

The gross SE is the sum of average annual SE at all cells in
the basin. Assuming the weak form of the central limit the-
orem to be applicable (i.e., probability distribution of annual
average SE at all cells in the basin are non-independent and
non-identical), the gross erosion is considered to have a nor-
mal distribution with mean and variance equal to the sum of
means and variances of SE at individual cells, respectively.
A truncated version of the normal distribution in the range
[0, ∞) is used to avoid negative values of gross SE during
Monte Carlo simulations.

The SDR of the basin is assumed to follow a lognormal
distribution with mean and standard deviation given in Table
2k and n, respectively.

In addition to Monte Carlo simulations, uncertainty in SY
is also estimated by the first-order uncertainty analysis.

To account for the effect of a dam on SY, we used the
method proposed by Sharda and Ojasvi (2016) which as-
sumes that a sufficiently large dam on a river (termed termi-
nal dam) entraps all the sediment carried by the river into its
reservoir. Therefore, the gross SE at a location downstream
of a terminal dam is estimated from “free basin area” (total
basin area minus reservoir catchment area) instead of total
basin area. The SY is then calculated as the product of gross
SE from the free basin area and SDR of the entire basin.

In this study, annual average SY is estimated at two lo-
cations – the Nanak Sagar Dam for the period 1962–2008
and Husepur gauging station for the period 1987–2002. The
Nanak Sagar Dam, which lies upstream of the Husepur sta-
tion, is treated as a terminal dam.

The following steps are followed to estimate the values
and corresponding uncertainties in SE, SDR and SY (also
shown as a flow chart in Fig. 3):

– The Garra River basin boundary is derived from
SRTM data based on the D8 flow direction algorithm

(O’Callaghan and Mark, 1984). Hydrological correction
of DEM is done by filling of pits in topography (Tar-
boton et al., 1991). Flow accumulation, flow direction,
drainage network and local slope are calculated from
the corrected the DEM of the Garra River basin.

– The R, K , L, S, C and P factors and their uncertainties
are calculated by using the equations given in Table 2
and explained in the previous sections.

– Spatially distributed SE averaged over the study period
is estimated by applying the RUSLE. The uncertainties
in individual factors of RUSLE are propagated by first-
order uncertainty analysis (Table 2 and Eq. 2) to calcu-
late uncertainty in the estimated SE at each cell. Monte
Carlo simulations are used to predict the distribution of
SE.

– Mean and variance in gross SE for a basin is estimated
by summing up mean and variance in SE at all cells in
the basin.

– SDR for a basin is modeled as a lognormal distribution
with mean and standard deviation estimated in Table 2k
and n, respectively.

– SY at the Nanak Sagar Dam (NSD) and Husepur gaug-
ing station (HGS) are estimated by Mote Carlo simu-
lations. Hence 1000 values of gross SE (normal distri-
bution) and SDR (lognormal distribution) are generated
and multiplied with each other to simulate 1000 values
of SY. The uncertainty in the SY prediction interval is
reported as the standard deviation of the simulated SY
values.

– The estimated annual average SY at NSD (1962–2008)
and HGS (1987–2002) are compared with observed val-
ues to assess the suitability of the proposed methodol-
ogy.

4 Results and discussion

4.1 Soil erosion (SE)

First, the results of RUSLE factors are presented, which are
followed by the results of SE estimation. The results pre-
sented are the average value during the entire study period
(1962–2008).

4.1.1 R factor

The R factor (Fig. 4a) follows the same spatial pattern as av-
erage annual rainfall (Fig. 2d) – high in the upper mountain-
ous region where average annual rainfall exceeds 1000 mm.
The factor gradually reduces in the lower alluvial parts and
attains the minimum values near the basin outlet. The uncer-
tainty inR factor that stems from variability in annual rainfall
varies in a relatively narrow range of 3.4 to 6.7 % (Fig. 5a).
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Figure 4. (a) Rainfall runoff erosivity (R), (b) soil erodibility (K), (c) topographic steepness (LS), (d) crop practice (CP) factors and (e) soil
erosion estimation for the Garra River basin.

Figure 5. Percentage uncertainty in (a) rainfall erosivity, (b) soil erodibility, (c) topographic steepness, (d) crop and practice, and (e) soil
erosion uncertainty in percentage for the Garra River basin.

4.1.2 K factor

The soil map (Fig. 2c) shows the presence of sand and sandy
loam soil close to the main channel and in forested patches
of the basin; the rest of the basin is covered primarily with
loam. Typically, the loam is more susceptible to erosion than

sand and sandy loam, which is reflected in higher values of
the K factor (Fig. 4b). The upper mountainous region shows
highest values of K factor because the loam in this region
has a higher silt content (∼40 %) compared to loam in lower
alluvial plains (∼30 %). The magnitude of model uncertainty
in δK is constant for the basin, hence the percentage uncer-

Hydrol. Earth Syst. Sci., 22, 2471–2485, 2018 www.hydrol-earth-syst-sci.net/22/2471/2018/



S. Swarnkar et al.: Assessment of uncertainties in soil erosion 2481

tainty is lower for cells with largerK factor (upper mountain-
ous region) than for cells along the main channel that have a
low value of the K factor. The uncertainty varies from 5.4 to
9.6 % (Fig. 5b).

4.1.3 LS factor

The LS factor shows considerable variation, particularly in
the upper mountainous region where its value ranges from 5
to 22.3 (Fig. 4c). The larger values and higher variation in
the upper mountainous region can be attributed to the steeper
slopes (S factor) and its varying topography. The LS factor
is also relatively high for cells close to the stream mainly be-
cause of the large contributing area (L factor). For the rest of
the basin, the LS factor is small (< 1) and shows little vari-
ability. The uncertainty in LS factor also shows a consider-
able variation. The magnitude of uncertainty is significant for
cells near the channel and upper mountainous region. How-
ever, these cells have least percentage uncertainty (< 2 %)
because of the higher magnitude of the LS factor (Fig. 5c).
The percentage uncertainty in the rest of the basin varies be-
tween 2 and 12 % (Fig. 5c).

4.1.4 CP factor

The spatial map of CP factor (Fig. 4d) resembles distinct
land use land cover (LULC) features present in the basin.
The factor is 0 for snow and water covered cells. It attains
a low value (< 0.1) for forested cells (16 % of basin area),
intermediate values (0.2–0.3) for urban cells (0.4 % of basin
area) and highest values (> 0.4) for cropland cells (71 % of
basin area). The uncertainty in CP factor also varies accord-
ing to LULC type and crop practice class as shown in Tables
3 and 4. The percentage uncertainty varies from 8.2 to 13.6 %
(Fig. 5d).

4.1.5 Soil erosion (SE)

Finally, results of all the factors described in the preceding
subsection are combined by using Eqs. (1) and (2) to ob-
tain the SE map (Fig. 4e) and its uncertainty (5e), respec-
tively. Two distinct geomorphic settings in the basin – the
upper mountainous region and the lower alluvial plains –
show significant differences in SE. The factors governing the
rate of SE in these two settings are compared in Figs. 6 and
7. The SE is the highest in the upper mountainous region
(SE> 40 t ha−1 yr−1; severe category). For the cells near the
channels, the rate of erosion falls in the zone of very high (20
to 40 t ha−1 yr−1) and severe (> 40 t ha−1 yr−1) categories.
Other parts of the basin have a moderate (< 10 t ha−1 yr−1) to
high (10–20 t ha−1 yr−1) SE rate. The average rate of SE for
the entire Garra basin is 23 t ha−1 yr−1 (very high), whereas
for the upper mountainous region and lower alluvial plains
the values are 92 t ha−1 yr−1 (severe) and 19.3 t ha−1 yr−1

(high), respectively.

The upper mountainous region has higher values of R, K
and LS factors than the lower alluvial plains. A significant
portion of the alluvial plains has cultivated land where the
agricultural practices tend to make the soil more suscepti-
ble to sheet erosion during rainfall. Hence, the CP factor is
higher for the alluvial plains. Nevertheless, the higher ero-
sion rates in the mountainous region can be attributed mainly
to the higher values of LS factor due to steeper slopes.

The uncertainty map of SE rate (Fig. 5e) reflects the spa-
tial distribution of uncertainty in individual factors. The un-
certainty tends to be high for sandy loam and sandy soil
patches in the basin. The percentage uncertainty in the up-
per mountainous region is lower (16.5 %) than that for the
alluvial plains (20.5 %). However, uncertainties in the mag-
nitude of erosion rate are higher for the mountainous region
(15.2 t ha−1 yr−1) than for the alluvial plains (4 t ha−1 yr−1).
The magnitude and percentage uncertainty in RUSLE factors
and SE rate averaged over the entire basin is very similar to
that of the alluvial plains that constitute a major portion of
the basin (95 %; Fig. 6b).

Figure 6a shows the distribution of SE at two represen-
tative cells in the upper mountainous region and lower al-
luvial plains obtained by the Monte Carlo simulations. The
cell in the mountainous region has a higher value of SE and
its distribution has a wider spread compared to that of the
cell in the alluvial plains. Both distributions are positively
skewed, although the magnitude of the coefficient of skew-
ness is small (0.11 for mountainous regions and 0.13 for al-
luvial plains). Table 5 compares the uncertainties in RUSLE
factors and SE reported in the literature, and those obtained
in the present study. The reported uncertainties in SE have a
wide range that encompasses the uncertainty range estimated
in the present study. The backward uncertainly propagation
method uses observed data and thus represents true uncer-
tainty. The forward method gives an approximation of the
true uncertainty, and usually under-predicts the true value.

4.2 Sediment delivery ratio (SDR) and sediment yield
(SY)

The SDR and its uncertainty (reported as coefficient of vari-
ation in parenthesis) for the Nanak Sagar Dam (NSD) and
Husepur gauging station (HSG) are 0.63 (4.40 %) and 0.45
(4.81 %), respectively. For both locations, the SDR model
uncertainty component (δ SDRmodel) dominates total SDR
uncertainty (δSDRmodel > 0.95 δ SDR). The gross SE at the
NSD and HSG sties and its uncertainty are 10.9× 105 t yr−1

(16.63 %) and 14.9× 106 t yr−1 (20.65 %), respectively. The
SY and its uncertainty estimated by the first-order uncer-
tainty analysis at NSD and HSG sites are 6.9× 105 t yr−1

(17 %) and 6.7× 106 t yr−1 (21 %), respectively. Figure 8
shows the distribution of SY at the two sites obtained by
the Monte Carlo simulations. The distributions at both sites
are positively skewed. The standard deviations of the sim-
ulated SY at the two sites are almost equal to that ob-
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Figure 6. (a) Distribution of SE at their representative cells in the basin, namely upper mountainous part and lower alluvial part. (b) Upper
mountainous and alluvial plains parts of the basin. (c) Comparison between the different factors of RUSLE and SE for both region.

Table 5. Comparison of uncertainties in RUSLE factors and soil erosion (SE) reported in the literature and those obtained in the present
study. The present study employs forward uncertainty propagation for the Garra river basin.

Factor Reference Range of uncertainty Scale Method Present study

R Factor Catari (2010) 7–16 % basin forward 3.4–6.7 %
Catari et al. (2011) 8.9–10 % basin forward
Wang et al. (2002b) 30–40 % basin forward

K Factor Catari (2010) 5–90 % basin forward 5.4–9.6 %
Parysow et al. (2003) 25–35 % plot forward
Wang et al. (2001) 5–25 % basin backward

LS Factor Mondal et al. (2016) 3–12 % basin forward 2–12 %
Wang et al. (2002a) 0–15 % plot forward

CP Factor Hession et al. (1996) 10 % plot backward 8.2–13.6 %
Tetzlaf and Wendland (2012) 23 % basin backward
Tetzlaff et al. (2013) 23 % basin backward

Soil erosion Biesemans et al. (2000) 1.7 % basin forward 11–29 %
Catari (2010) 10–20 % basin forward
Hession et al. (1996) 40–50 % plot forward
Risse et al. (1993) 57–62 % plot backward
Tetzlaff et al. (2013) 34 % basin forward
Tetzlaf and Wendland (2012) 34 % basin forward

tained from the first-order uncertainty analysis. The SY at
NSD and HGS are estimated to be 6.9± 1.2× 105 t yr−1 and
6.7± 1.4× 106 t yr−1, respectively, and the estimated 90 %
interval contains the observed values of 6.4± 105 t yr−1 and
7.2× 106 t yr−1, respectively.

5 Limitations

This study presents a methodology for quantifying uncer-
tainty in the estimate of SE and SY for ungauged basins
based on the RUSLE-SDR approach. Uncertainties in SE
and SY arise from uncertainties in data, model and due to
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Figure 7. Comparison of RUSLE factors (R, K , LS and CP) and
SE rates (SE) for upper mountainous and lower alluvial plains in
the study basin.

the stochastic nature of the soil erosion process. Like most
of the previous studies (referred to in Sect. 1), the proposed
methodology accounts for only those sources of uncertainties
that are available or could be quantified easily. For example,
models or equations used for estimatingR and LS do not pro-
vide sufficient details to ascertain model uncertainties, hence
only data uncertainties are accounted for. On the other hand,
uncertainties in data needed for estimating K and CP factors
are not available. Hence, only model uncertainties are con-
sidered. Thus, the proposed methodology does not account
for certain sources of uncertainties leading to under estima-
tion of SE and SY prediction uncertainty. Further, the pro-
posed methodology assumes spatial independence of certain
RUSLE factors like R, L, S, C and P factors, resulting in
further underestimation of SE and SY prediction uncertainty.

We have demonstrated the proposed methodology by ap-
plying it to Garra River basin. The basin has data restrictions
that are typical of river basins in India. The spatial distribu-
tions of SE and SY for the study basin are obtained by using
land use land cover data for 2005, which may not be a true
representation of basin conditions during the study period
(1962–2008). Further, the study has used gridded daily rain-
fall data available at a spatial resolution of 0.25◦×0.25◦ ob-
tained by interpolating rain gauge observations. The coarser
spatial resolution of the data is not sufficient to capture the
spatial variability of rainfall in the basin. In addition, the
gridded rainfall data may have large interpolation errors,
which are not accounted for because they are not available
for the study basin.

In spite of many limitations, the proposed framework for
quantifying and propagating uncertainties in SE and SY ap-
pears promising, particularly for ungauged basins in which
sheet and rill erosion form the major component of total ero-
sion.

6 Summary and concluding remarks

The main objective of this work is to present a methodology
for quantifying uncertainties in the estimates of soil erosion
(SE) and sediment yield (SY) at ungauged basins. A system-
atic procedure is provided for evaluating and propagating un-
certainties in a RUSLE-SDR-based approach for SE and SY
prediction. Expressions for uncertainty propagation are de-
rived using first-order uncertainty analysis making the pro-
posed methodology viable even for large river basins. The
novelty of the work lies in presenting a unified framework
for quantifying uncertainties in SE and SY that is applicable
to ungauged basins with storage structures. The methodol-
ogy has been applied on the Garra River basin in India and
the major conclusions derived from this study are listed be-
low:

– The SE in the basin is very high (23± 4.7 t ha−1 yr−1)
with higher values in the upper mountainous region
(92± 15.2 t ha−1 yr−1) than in the lower alluvial plains
(19.3± 4 t ha−1 yr−1).

– The LS and CP factors govern the magnitude of soil ero-
sion and its uncertainty in the upper mountainous region
and lower alluvial plains, respectively.

– Sediment delivery ratio (SDR) values for Nanak Sagar
Dam (NSD) and Husepur gauging station (HSG) are es-
timated to be 0.63 and 0.45, respectively, with about 5 %
uncertainty in both the estimates.

– The SY at NSD and HSG are estimated to be
6.9× 105 t yr−1 (17 %) and 6.7× 106 t yr−1 (21 %), re-
spectively. The observed values at the two sites are
6.4× 105 t yr−1 and 7.2× 106 t yr−1, respectively, and
they lie within the estimated 90 % confidence interval.
The results suggest that the proposed approach could be
effective for sheet or rill erosion-dominated Himalayan
river basins like the Garra basin.

The uncertainty in SY derived from Monte Carlo simulations
and first-order uncertainty analysis are very similar. The dis-
tributions of SY at both sites are positively skewed, although
the magnitude of the coefficient of skewness is small. Not all
sources of uncertainties could be accounted for in the study
because of limited data availability. Hence, the estimated un-
certainties in SE and SY are an underestimation of the true
uncertainties. A review of uncertainties reported in the lit-
erature suggests that true uncertainty can be much higher
than the predicted uncertainty. However, in absence of long
records of observed SY, the quantification of true uncertainty
remains a challenge.

Data availability. Dataset SRTM DEM http://srtm.csi.cgiar.org;
soil and land use and land cover (LULC) http://gisserver.civil.
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