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Abstract. The semi-arid regions of Central Asia crucially
depend on the water resources supplied by the mountain-
ous areas of the Tien Shan and Pamir and Altai moun-
tains. During the summer months the snow-melt- and glacier-
melt-dominated river discharge originating in the moun-
tains provides the main water resource available for agricul-
tural production, but also for storage in reservoirs for en-
ergy generation during the winter months. Thus a reliable
seasonal forecast of the water resources is crucial for sus-
tainable management and planning of water resources. In
fact, seasonal forecasts are mandatory tasks of all national
hydro-meteorological services in the region. In order to sup-
port the operational seasonal forecast procedures of hydro-
meteorological services, this study aims to develop a generic
tool for deriving statistical forecast models of seasonal river
discharge based solely on observational records. The generic
model structure is kept as simple as possible in order to be
driven by meteorological and hydrological data readily avail-
able at the hydro-meteorological services, and to be appli-
cable for all catchments in the region. As snow melt domi-
nates summer runoff, the main meteorological predictors for
the forecast models are monthly values of winter precipita-
tion and temperature, satellite-based snow cover data, and
antecedent discharge. This basic predictor set was further
extended by multi-monthly means of the individual predic-
tors, as well as composites of the predictors. Forecast mod-

els are derived based on these predictors as linear combi-
nations of up to four predictors. A user-selectable number
of the best models is extracted automatically by the devel-
oped model fitting algorithm, which includes a test for ro-
bustness by a leave-one-out cross-validation. Based on the
cross-validation the predictive uncertainty was quantified for
every prediction model. Forecasts of the mean seasonal dis-
charge of the period April to September are derived every
month from January until June. The application of the model
for several catchments in Central Asia – ranging from small
to the largest rivers (240 to 290 000 km2 catchment area) –
for the period 2000–2015 provided skilful forecasts for most
catchments already in January, with adjusted R2 values of
the best model in the range of 0.6–0.8 for most of the catch-
ments. The skill of the prediction increased every following
month, i.e. with reduced lead time, with adjusted R2 values
usually in the range 0.8–0.9 for the best and 0.7–0.8 on av-
erage for the set of models in April just before the prediction
period. The later forecasts in May and June improve further
due to the high predictive power of the discharge in the first
2 months of the snow melt period. The improved skill of the
set of forecast models with decreasing lead time resulted in
narrow predictive uncertainty bands at the beginning of the
snow melt period. In summary, the proposed generic auto-
matic forecast model development tool provides robust pre-
dictions for seasonal water availability in Central Asia, which
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will be tested against the official forecasts in the upcoming
years, with the vision of operational implementation.

1 Introduction

The Central Asia (CA) region, encompassing the five coun-
tries Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and
Uzbekistan as well as northern parts of Afghanistan and
north-western regions of China, is characterized by the pres-
ence of two major mountain systems. The Tien Shan and
Pamir Mountains are drained by a number of endorheic river
systems such as the Amudarya, Syrdarya, Ili, Tarim, and a
few smaller rivers. The CA river basins are characterized by
semi-arid climate with strong seasonal variation of precip-
itation. Most precipitation falls as snow during winter and
spring months in the western and northern Tien Shan (Aizen
et al., 1995, 1996; Sorg et al., 2012). In contrast, parts of
the central Tien Shan and the eastern Tien Shan receive their
largest precipitation input during the summer months. The
Pamir Mountains receive the highest portion of precipitation
during winter and spring months, with the minimum in sum-
mer (Schiemann et al., 2008; Sorg et al., 2012).

Precipitation also exhibits a high spatial variation, ranging
from less than 50 mm yr−1 in the desert areas of Tarim and
around 100 mm yr−1 on leeward slopes of the central Pamir,
to more than 1000 mm yr−1 in the mountain regions, which
are exposed to the westerly air flows. These flows are a ma-
jor moisture source in the region (Aizen et al., 1996; Bothe
et al., 2012; Hagg et al., 2013; Schiemann et al., 2008). The
combination of the low precipitation in the CA lowlands with
high precipitation in the mountains highlight the Tien Shan
and Pamir Mountains as the most important regional water
source (the so called “water towers of Central Asia”). Snow
melt in the mountains is the dominant water source for the
lowlands during spring and summer, i.e. for most of the vege-
tation period. During summer, glacier melt and liquid precip-
itation gain some importance depending on the basin location
and degree of glacierization (Aizen et al., 1996). The Tien
Shan and Pamir Mountains exhibit particularly high relative
water yield compared to the lowland parts of these catch-
ments (Viviroli et al., 2007). Related to the economic water
demands in the lowland plains primarily for irrigated agricul-
ture, the Tien Shan and Pamir Mountains are among the most
important contributors of stream water worldwide (Viviroli
et al., 2007). These mountains also have a very high frac-
tion of glacier meltwater in summer, particularly in drought
years (Pritchard, 2017). Within the Aral Sea basin, to which
the Amudarya and Syrdarya rivers drain, the irrigated area
amounts to approximately 8.2–8.4 million ha (Conrad et al.,
2016; FAO, 2013). Additionally, considerable irrigation ar-
eas are located in the Aksu–Tarim basin, where agricultural
land doubled in the period 1989–2011 and land use for cotton
production even increased sixfold (Feike et al., 2015). Irri-

gated agriculture in CA is mainly fed by the stream water di-
version with only a small portion of groundwater withdrawal
(FAO, 2013; Siebert et al., 2010). Hence, reliable predic-
tion of seasonal runoff during the vegetation period (April–
September) is crucial for agricultural planning and yield es-
timation in the low-lying countries in the Aral Sea basin, as
well as for the management of reservoir capacities including
dam safety operations in the upper parts of the catchments.
Seasonal forecasts are one of the major responsibilities of the
hydro-meteorological (hydromet) services of the CA coun-
tries and are regularly released starting in January and con-
tinuing until June, with the primary forecast issued at the end
of March–beginning of April for the upcoming 6-month pe-
riod. In some post-Soviet countries, these forecasts are typi-
cally developed based on empirical relationships for individ-
ual basins relating precipitation, temperature and snow depth
and snow water equivalent (SWE) records to seasonal dis-
charge, partly available only in analogue form as look-up ta-
bles or graphs (hydromet services, unpublished questionnaire
survey undertaken within the CAWa project, http://www.
cawa-project.net). Particularly, point measurements of snow
depth and/or snow water equivalent, which have been car-
ried out by helicopter flights or footpath surveys in mountain
regions in recent decades, are costly or not feasible due to ac-
cess problems nowadays. Other hydromet services apply the
hydrological forecast model AISHF (Agaltseva et al., 1997),
developed at the Uzbek hydro-meteorological service (Uzhy-
dromet), which computes discharge hydrographs by consid-
ering temperature, snow accumulation, and snow melt. Snow
pack is accumulated in winter and temperature and precipi-
tation are taken from an analogous year to drive the model in
the forecast mode. The hydro-meteorological services rely
on meteorological and hydrological data acquired by the
network of climate and discharge stations, which, however,
strongly diminished during the 1990s (Unger-Shayesteh et
al., 2013). Fortunately the density of the monitoring network
recovers nowadays, partly with substantial international sup-
port (e.g. Schöne et al., 2013; CAHMP Programme by World
Bank; previous programmes by SDC and USAID), but at
a slow rate. In any case, the hydro-meteorological services
need timely to near-real-time data and simple methodologies
capable of utilizing available information in order to fulfil
their mandatory tasks.

Some research activities were undertaken towards the es-
tablishment of simple forecast methods in the past, mainly
trying to establish a relationship between large-scale precip-
itation records and seasonal discharge. Schär et al. (2004)
showed the potential of the ERA-15 precipitation data
from the December–April period to explain about 85 % of
the seasonal runoff variability in May–September in the
large-scale Syrdarya river basin. The explained variance
for the Amudarya River amounted, however, to only about
25 %, presumably due to poor precipitation modelling in
the ERA data set, strong influence of glacier melt, and
water abstraction for irrigation purposes. Similarly, Bar-
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low and Tippett (2008) explored the predictive power of
NCEP–NCAR cold-season (November–March) precipitation
for warm-season (April–August) discharge forecasts using
canonical correlation analysis. Though for some of the 24
CA gauges, no skilful prediction could be achieved, for a few
catchments 20 to 50 % explained variance could be attained.
Archer and Fowler (2008) utilized temperature and discharge
records as well as precipitation for spring and summer sea-
sonal flow forecasts on the southern slopes of Himalaya in
northern Pakistan using multiple linear regression (MLR)
models. Despite good predictions of spring and early summer
flows, late summer discharges were poorly forecasted due
to the strong influence of the summer monsoon. Recently,
Dixon and Wilby (2015) demonstrated the skill of a lin-
ear regression model for the Naryn basin, Kyrgyzstan, based
on TRMM precipitation from October to March to explain
65 % of the seasonal flow variance in the vegetation period.
The authors selected specific TRMM pixels in the catch-
ments showing the highest correlation to seasonal discharge.
They also explored the predictive skill of multiple linear re-
gression models additionally including temperature and an-
tecedent discharge and testing different lead times from 1 to
3 months. They showed that forecasts based on multiple lin-
ear regression models are always superior to zero-order fore-
casts, i.e. the mean flow.

The fact that substantial snow accumulation in CA moun-
tain regions during the winter and spring months signifi-
cantly governs runoff in the vegetation period can be ef-
fectively utilized for seasonal forecasts. For a similar cli-
matic setting, Pal et al. (2013) included the measurements
of snow water equivalent at point locations into multiple lin-
ear regression models along with precipitation, antecedent
discharge and temperature-based predictors. Linear models
with multiple predictor combinations achieved skilful fore-
casts of the spring (March–June and April–June) seasonal
flow in northern India on the southern Himalayan slopes.
Point snow measurements are, however, rarely available, and
remotely sensed snow cover extent can provide a viable alter-
native. Based on the monitored snow cover extent, e.g. using
optical satellite imagery, and additionally considering tem-
perature and precipitation to implicitly approximate SWE,
a solid basis for seasonal discharge forecast can be assem-
bled. The MODIS snow cover product proved to be highly
accurate for the CA region (Gafurov et al., 2013). Method-
ologies to remove cloud obstruction of optical imagery have
matured over the past decade (Gafurov and Bárdossy, 2009;
Gafurov et al., 2016) and tools for automated image acquisi-
tion and processing reached the operational level (Gafurov et
al., 2016). MODIS snow cover data were, for example, used
for runoff forecast in the Argentinian Andes in the high-flow
season (September–April), though no cloud elimination al-
gorithms were applied (Delbart et al., 2015). Snow cover in
September–October could explain about 60 % of the high-
flow season discharge variance. However, no skilful forecasts
with lead times greater than zero were possible. Rosenberg et

al. (2011) proposed a hybrid (statistical–hydrological model)
framework for seasonal flow prediction in Californian catch-
ments using accumulated precipitation in antecedent peri-
ods and SWE modelled by a distributed hydrological model.
These two predictors were linked to seasonal discharge by
principal component and Z-score regression (Rosenberg et
al., 2011). The hybrid approach was found to be comparable
and in some cases superior to a purely statistical approach,
but this required substantial efforts for hydrological simula-
tion of the SWE dynamics.

Based on the finding of the studies listed above, we pro-
pose a simple methodology for the operational forecast of
seasonal runoff for the vegetation period (April–September)
for all CA catchments, whose individual drainage areas range
over 3 orders of magnitude. The method is based on multi-
ple linear regression models with automatic predictor selec-
tion. The predictors are based on the readily available pre-
cipitation, temperature, and discharge gauge records, aug-
mented by the operationally processed cloud-free MODIS
snow cover product (Gafurov et al., 2016). Based on theoret-
ical considerations, it is argued that in linear modelling the
use of meteorological data from a single gauging station for
a large catchment is justified, as long as the variability of the
station records are representative for the variability within
the whole catchment. The validity of this assumption can be
verified by the achieved model performance. We demonstrate
the model predictive skill and robustness in a cross-validation
and discuss the relative importance of the automatically se-
lected predictors depending on the prediction lead time.

2 Study sites and data

For the testing of the forecast models, 13 catchments were
selected. The catchments cover a wide range of geographical
regions, ranging from catchments along the western slopes of
the Altai mountains in eastern Kazakhstan (Uba, Ulba), the
western and northern rim of the Tien Shan (Chirchik, Talas,
Ala-Archa, Shu (also known as Chu), Chilik, Charyn) and
central Tien Shan (Karadarya, Naryn; cf. Aizen et al., 2007),
to the northern and central Pamir (Amudarya) and the north-
ern Hindu Kush (Murgap). The size of the catchments varies
by over 3 orders of magnitude, from 239 to 288 000 km2. Fig-
ure 1 provides an overview of the location and size of the
catchments, while Table 1 additionally lists the discharge and
meteorological gauging stations used for the seasonal flow
forecast. Note that the Naryn catchments are nested. The up-
per Naryn represents a high alpine catchment and is the head-
water catchment of the larger Naryn catchment draining into
the Toktogul reservoir. This separation was undertaken in or-
der to test the proposed method for a high alpine catchment
with a comparably high degree of glacialization. The wide
range of catchment locations, climatic conditions, and sizes
enable a testing of the proposed forecast models under dif-
ferent boundary conditions, and thus provides an indication
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Figure 1. Overview of the catchments for which prediction models were established, with locations of discharge and meteorological gauging
stations used (coordinates in latitude–longitude).

of the applicability, robustness, and transferability of the ap-
proach.

The catchment boundaries are derived to map the catch-
ment area draining to the selected discharge stations. For the
meteorological data (temperature and precipitation) meteoro-
logical stations run by the individual hydromet services were
selected. Ideally those are located in the catchment area and
have sufficient data coverage of at least 16 years (starting
in 2000 in order to be consistent with the MODIS temporal
coverage). However, for two catchments meteorological sta-
tions fulfilling these criteria were not available (Talas, Chi-
lik). For those catchments, meteorological stations nearby
were selected for the prediction. For both catchments the me-
teorological stations are located in the same river catchment
downstream of the discharge station.

Monthly values of discharge and meteorological data were
obtained for the stations listed in Table 1, i.e. monthly mean
discharges, monthly mean temperatures, and total monthly
precipitation. For the present study meteorological station
data were used, because of its operational availability to
the CA hydromet services. Gridded reanalysis products like
ERA-Interim typically have a latency of weeks to months,
and thus cannot be used for operational forecasts to fulfil the
mandatory regulations. A limitation of station temperature
and precipitation data is that they are likely not representa-
tive for basin-average values. However, it is assumed that the

variability of the catchment averages and the variability of
station data are similar. This, in turn, enables the use of the
station data in the statistical forecast using multiple linear re-
gressions.

In addition to the station data, mean monthly snow cov-
erage values for the individual catchments were calculated
using daily snow cover data derived by the MODSNOW-
Tool (Gafurov and Bárdossy, 2009; Gafurov et al., 2016).
MODSNOW uses the MODIS satellite snow cover product
and applies a sophisticated cloud elimination algorithm (Ga-
furov and Bárdossy, 2009; Gafurov et al., 2016) to obtain
cloud-free daily snow cover images. The MODSNOW-Tool
runs operationally in most of the CA hydromet services, thus
enabling the use of snow cover information for operational
forecasts.

Due to the use of MODIS snow cover data, which are
available for March 2000 onwards, the time series of the data
used for the construction of the forecast models had to be
limited to post-2000. The time period for the model devel-
opment and testing was thus set to 2000–2015, for which
mostly complete continuous time series for all data and sta-
tions were available.

The seasonal discharge, i.e. the predictand of the forecasts,
is calculated as the mean monthly discharge for the period
April to September.
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Figure 2. Seasonal discharge (mean monthly discharge for the pe-
riod April–September) for the catchments under study (a). Panel
(b) shows the seasonal discharge normalized to zero mean and stan-
dard deviation of 1.

Seasonal discharge variability

Figure 2 shows the seasonal discharges for all catchments
considered in this study. The top panel highlights the dif-
ferences in the magnitude of the seasonal discharge, span-
ning almost 3 orders of magnitude (see also Table 1). Dis-
continuous lines indicate data gaps. In order to illustrate dif-
ferences in the inter-annual variability of the seasonal dis-
charge the lower panel of Fig. 2 plots the seasonal discharges
normalized to zero mean and standard deviation of 1. This
plot indicates similar but also different inter-annual variabil-
ity patterns of the different catchments. In order to distin-
guish between similar and different inter-annual variabili-
ties, cross-correlations of the seasonal discharges are calcu-
lated and hierarchically clustered (Fig. 3). Cluster member-
ships were established using the Ward algorithm, clustering
the catchments based on the dissimilarities of the correla-
tion between the seasonal discharge time series of the differ-
ent catchments. The correlation matrix in Fig. 3 shows that
the seasonal discharges mainly cluster according to their ge-
ographical location. The variability of the seasonal discharge
of the two catchments in the Altai region (Uba, Ulba) is
distinctively different to all the others. Also, the two most
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Figure 3. Correlation matrix of the seasonal discharges of the catchments under study. The catchments are hierarchically clustered using the
Ward algorithm. The colour and size of the circles indicate the direction and strength of the correlations, with blue colours indicating positive
and red colours indicating negative correlations. The numbers provide the actual linear correlation coefficient. The coloured circles indicate
significant correlation at a significance level of p= 0.05.

southern catchments (Amudarya and Murgap) form a dis-
tinct cluster that is joined by the most western catchment of
the northern Tien Shan, Chirchik. However, Chirchik is also
well correlated to the largest group, the catchments in the
Tien Shan, which all show similar inter-annual variability of
the seasonal discharge. An exception to this is the smallest
catchment in the study, Ala-Archa, which is not correlated
to any of the other catchments, presumably due to the strong
influence of local small-scale meteorology and glacier-melt-
dominated discharge formation in the summer months.

The analysis of the inter-annual variability broadly maps
the geographical and climatic differences of the catchments
considered in this study. These differences in variability, but
also in the magnitude of the discharges and catchment size,
imply that the forecast methods can be tested against a wide
range of boundary conditions and seasonal variabilities. If
skilful forecasts are obtained for all catchments, it can be

argued that the approach delivers robust forecasts that are
not obtained by chance or due to similar variabilities in all
catchments. If successful, it could also be inferred that the
approach can be transferred to other regions with similar
streamflow generation characteristics.

3 Method

As mentioned in the introduction, the seasonal discharge dur-
ing the vegetation period of April to September in CA is
dominated by snow melt in the mountains. Therefore a good
estimation of the snow accumulation and snow water equiva-
lent in the catchments during the winter months may provide
reliable forecasts of the discharge during the vegetation pe-
riod. However, snow depth and snow water equivalent are not
regularly monitored except for some dedicated research sites.
Thus, alternative data containing proxy information about the
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snow depth and snow water equivalent must be used. Based
on these considerations predictors for the forecast models
were derived from mean monthly temperature records, total
monthly precipitation and monthly mean snow coverage of
the catchments. It is argued that combinations of these fac-
tors are able to serve as proxy data for snow depth and water
equivalent. While the precipitation directly contains informa-
tion about the snow fall amount and thus accumulation, tem-
perature may contain information on the wetness of the snow
pack. In combination with snow coverage, temperature and
precipitation may thus provide information about the snow
volume and water content. In addition to the climate data,
monthly antecedent discharge can serve as an indicator of the
magnitude of the snow melt process and groundwater storage
state and release and is used as predictor, too. The usefulness
of antecedent discharge for flow prediction has been shown,
e.g. in Slater et al. (2017). It should be noted that in this study
only direct observations are used. Forecasted climate data are
not used for the predictions.

For some regions, particular the Altai catchments, early
summer (May–July) precipitation plays a larger role for the
seasonal discharge generation. This precipitation is partly
considered as observations in the late forecasts presented
here. However, reliable information on the May–July precip-
itation some months in advance could possibly improve the
early forecasts. But due to the low predictability of the typ-
ically convection-type summer precipitation (Gerlitz et al.,
2016), this is not considered in the predictor set.

Evaporative losses in the presented mountain catchments
are considered to be low due to the low summer tempera-
tures, fast catchment response, and high water flow veloci-
ties in the rivers. Higher losses can occur in reservoir lakes,
but with the exception of the large Amudarya basin no reser-
voirs are present in the selected catchments. The Nurek reser-
voir lake exists on the Vakhsh river In the Amudarya catch-
ment, but evaporative losses from the lake surface area of
98 km2 can be considered negligible in comparison to the
large catchment size. Therefore evaporation is not directly
considered as a predictor for the forecasts.

The catchment area of the Vaksh river at the conjunc-
tion with the Panj river amounts to 31 415 km2, equivalent to
about 11 % of the Amudarya catchment at Kerky considered
here. Assuming further that the reservoir can manage only a
fraction of the total discharge of the Vakhsh river, and that the
effects of the water retention are further buffered by the sea-
sonal mean discharge spanning 6 months, it can be assumed
that the regulating effect of the Nurek dam on the overall sea-
sonal discharge of the Amudarya at Kerky is rather low. Ad-
ditionally, the dam is operational since 1980, and therefore a
discontinuity in the time series 2000–2015 can be ruled out.
We thus argue that the anthropogenic influence of the sea-
sonal discharge time series of the Amudarya is negligible for
the presented study.

3.1 Generation of the predictor set

The core set of predictors consists of the monthly values pre-
ceding the prediction date. According to the operational fore-
cast schemes of the CA hydromet services a series of differ-
ent prediction dates were defined. The first prediction of the
seasonal mean discharge for the vegetation period (April to
September) is issued on 1 January, followed by predictions
on 1 February, 1 March, 1 April, 1 May, and 1 June. The
predictions from January to March are preliminary forecasts,
while the prediction on 1 April is the most important for the
water resource planning in the CA states. The following op-
erational forecasts serve as corrections of the April forecast.
However, if the discharge of the whole vegetation season is
predicted in these late forecasts, the predictors for the late
forecasts are not fully independent from the predictand, be-
cause the discharge of April and May is included in the sea-
sonal discharge, but at the same time used as predictor. This
violates formal requirements of a linear regression and biases
the performance evaluation of the late predictions. Therefore
we deviate from the official procedures of the CA hydromet
services for the late forecasts. In this study the mean dis-
charge of the remaining vegetation season is predicted in the
late forecasts (i.e. May–September for the May forecast, and
June–September for the June forecast), and the observed dis-
charge in April and May is then added to the forecasts in or-
der to obtain values for the whole vegetation period. By this
procedure the formal requirements of the MLR are fulfilled,
and the results of the forecasts are in line with the formal
procedures of the hydromet services. This is necessary to ob-
tain acceptance of the proposed method in the services and
their use in the official forecast procedures, because the water
regulation procedures and, for example, agricultural yield es-
timations are traditionally based on bulk numbers for the en-
tire period. If these procedures are not followed, the obtained
results, which are better than the forecasts issued with the
existing procedures, might not be implemented or come into
practise, and thus a chance would be missed to bring research
results into application. In this context it should be noted
that sub-seasonal discharges are highly correlated to the full
seasonal discharge (see Appendix A1). This means in con-
sequence that regression results obtained with sub-seasonal
discharges will be very similar to results obtained using the
full discharge time series.

The selection of the predictor set to be used in the MRL
follows this rationale, which is based on a combination of
principle hydrological considerations, preliminary correla-
tion tests, and expert judgement: for the prediction up to
1 April the monthly values over the whole winter period,
i.e. from October to the prediction date are used. For later
predictions (i.e. in May and June) the set was limited to data
of the prediction year, i.e. from January onwards. This re-
striction was implemented in order to keep the number of
predictor combinations and thus the calculation time within
reasonable limits. It can be justified by the typically low cor-
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relation of the October–December data with the seasonal dis-
charge compared to later values. The monthly predictor val-
ues were accompanied by multi-monthly means, spanning
over 2 and 3 months prior to the prediction date, and mean
values for the whole predictor period defined above, i.e. ei-
ther from October to the prediction month, or from January
to the prediction month, respectively. An exception for this
is the snow coverage, which is typically invariant in the deep
winter months (100 % coverage). Therefore multi-monthly
means are only calculated for the whole predictor period for
the early forecasts in January and February. For later fore-
casts, multi-monthly means from January onwards are used.
The early winter predictors are not used in the March to June
forecasts because of their low predictive power, which is il-
lustrated by the comparatively low performance of the early
forecasts (see Sect. 4).

Furthermore, composites were calculated from the clima-
tological data in order to extend the predictor set. They are
introduced in order to explore their potential to reflect snow
wetness. It is argued that composites can improve the predic-
tion by linear models, as some non-linear interactions might
be reflected better by composites compared to the raw data
(as shown in Hall et al., 2017, for example). Analogously
to the original data, monthly and multi-monthly composites
were derived. For the composites, products of “temperature
and precipitation”, “temperature and snow coverage”, “pre-
cipitation, snow coverage and temperature”, and “precipita-
tion and snow coverage” were used. Antecedent discharge
was not included in the composites, because this should not
influence the snow cover characteristic.

3.2 Statistical modelling

For the development of the statistical forecast models, stan-
dard multiple linear regression was applied. It is argued that
the discharge generation from snow melt over whole catch-
ments and on a seasonal timescale can be approximated by
linear models. In fact, this was shown by a large number
of studies using hydrological models based on linear con-
cepts like linear storage, e.g. Duethmann et al. (2014, 2015)
in CA. Additionally a number of studies have shown that
linear regression is a valid approach for seasonal forecasts
(e.g. Delbart et al., 2015; Dixon and Wilby, 2015; Seibert et
al., 2017). A linear modelling approach is thus seen as a valid
approach for seasonal forecasts in the study region from a
general point of view. However, in order to statistically sup-
port the assumption that the runoff-generating processes can
be approximated by linear models, the formal assumptions
of MLR were also tested: the assumption of normal distribu-
tion of the residuals was tested by the Shapiro–Wilk test, the
independence of the residuals was tested by calculating the
autocorrelation with lag 1, and the heteroscedasticity of the
residuals was tested by the Breusch–Pagan test.

In the model selection procedure all possible predictor
combinations, which are different for every prediction month

as described in 3.1, are used in the MLR for the construction
of forecast models. However, some restrictions were put on
the predictor combinations in order to avoid overfitting and
thus spurious regression results:

1. The predictors are grouped into 8 groups: snow cover,
temperature, precipitation, antecedent discharge, and
the four composite types.

2. The maximum number of predictors in a regression is
limited to four.

3. Only one predictor from each group of predictors can
be used in an individual regression model.

This resulted in 7728 predictor combinations, i.e. multi-
ple linear models to be tested in January, and increased to
155 690 possible models in April. A complete list of the
predictors for the different prediction months is provided
in Appendix A2. The coefficients for all these linear mod-
els were automatically fitted during the MLR by the least-
squares method. Only models with all predictors statistically
significant at p= 0.1 and with an overall model significance
of at least p= 0.1 were retained. From the remaining models
the best models were selected based on the lowest predicted
residual error mean of squares (PREMS) value obtained by
a leave-one-out cross-validation (LOOCV). In the LOOCV,
1 year of the seasonal discharge time series is removed from
the data set for fitting the MLR. The missing data point is
then estimated by the model fitted to the remaining data. The
PREMS value is the mean of squared errors of all seasonal
discharges left out and the associated predicted LOOCV val-
ues. PREMS is thus defined as follows.

PREMS=
1
n

n∑
i=1

e2
(i),

with e(i) being the residuals of the LOOCV:

e(i) = |yi − ŷ(i)|,

where ŷ(i) is the regression estimate of yi based on a regres-
sion equation computed leaving out the ith observation of
the overall number of n observations. The PREMS was used
in this study instead of the usual PRESS (predictive residual
error sum of squares) in order to avoid biases possibly intro-
duced by missing predictor or predictand data. Using the sum
of squares could favour models with missing data compared
to models providing predictions for all 16 years. Using the
mean of the squares can avoid this to a large extent.

The LOOCV is testing the MLR for robustness and can
avoid overfitting and incidental good MLR results valid for
the whole data set only. In order to avoid an overestimation
of the forecast skill the seasonal discharge time series were
tested for auto-correlation, which could lead to spurious es-
timation of model robustness in the LOOCV.

Model skill was evaluated by a number of measures: ad-
justed R2, root mean square error RMSE, and mean absolute
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error MAE. The robustness of the model set was quantified
as the ratio between the adjusted R2 based on the LOOCV
residuals and the adjusted R2 of the complete model residu-
als. The reliability of the model was analysed by probability
integral transform (PIT) diagrams (e.g. Crochemore et al.,
2017) and quantified as PIT scores (Renard et al., 2010).

In the presented study, not only the single-best model ac-
cording to PREMS of the LOOCV–MLR was selected as pre-
diction model, but rather the best 20 models, if more than
20 models pass the significance tests. This selection aims to
analyse the differences between the best models in terms of
performance and predictors, but also serves as a set of mod-
els for the forecast of the seasonal discharge. The distribution
of the residuals of the best 20 forecast models was evalu-
ated to provide 80 % predictive uncertainty bounds for ev-
ery forecast. However, it should be noted that the choice to
use the best 20 models is subjective, and this number can
be increased or reduced. Moreover, a distinct set of specific
models from the best models can be selected according to
their performance measures and temporal dynamics by ex-
perts knowledgeable of the individual catchments. A suffi-
cient amount of freedom was left for the selection of the
number and individual selection of the best models to be used
for the forecasts, in order to enable an expert selection of
models by the forecasters of the CA hydromet services. The
forecasters can check every model retained for their perfor-
mances (quantitatively and qualitatively) and select the mod-
els to be used for the prediction accordingly.

3.3 Predictor importance

The predictors of the selected best models were analysed for
their importance, i.e. their share of the overall explained vari-
ance (R2) of the individual models. This was achieved by
the lmg algorithm implemented in the R-package relaimpo
(Grömping, 2006). The lmg algorithm is based on sequen-
tial R2 values, but explicitly eliminates the dependence on
predictor orderings by averaging over orderings using sim-
ple unweighted averages. In sequential R2 calculations, the
model is re-run with a single predictor only and the explained
variance is calculated. Then the next predictor is added and
the gain in explained variance is calculated. By this proce-
dure the variance explained by individual predictors can be
quantified. However, in this procedure the sequence of pre-
dictors added influences the share of explained variance as-
sociated with the individual predictors. Therefore the lmg
algorithm tests all possible predictor sequences and calcu-
lates the mean importance of every sequence in order to over-
come the problem of predictor ordering in sequential R2 val-
ues. The predictor importance calculation yields information
about the importance of the individual predictors at different
forecast points in time for the catchments under study. This
can be used for a discussion of the factors responsible for
the winter snow accumulation and snow water content in the
catchments.

However, such a discussion is complicated by the use of
the composite predictors. Therefore the importance of com-
posite predictors is divided into equal proportions to the com-
ponents of the composites. If more than one composite is
used in a model, the proportions associated with the com-
ponent factors (snow cover, precipitation, temperature) are
summed up and displayed as parts of the composite impor-
tance in the figures presented in Sect. 4.2. This analysis is
not meant to provide a quantitative estimation for the com-
ponent importance of the composite predictors, but rather to
enhance the discussion and interpretation of the predictors of
the selected forecast models.

In addition to the importance for an individual model (here
the best LOOCV model), the mean importance over the best
20 LOOCV models is calculated. This is achieved by calcu-
lating the fractions of the sum of importance of an individual
predictor for all 20 models to the sum of the R2 values of all
20 models for each catchment and month. These fractions are
then multiplied by the mean R2 values of the best 20 mod-
els. This mean predictor importance can be compared to the
predictor importance of the best model in order to analyse the
stability of the predictor selection within the best 20 LOOCV
models.

4 Results

In order to test the suitability of the LOOCV for the seasonal
streamflow forecast the autocorrelation and partial autocorre-
lation of the streamflow time series was calculated and plot-
ted (Appendix A2). Any autocorrelation in the discharge time
series could lead to artificial overestimation of the forecast’s
skill by the LOOCV. Hardly any autocorrelation at α= 0.05
could be detected. Only for the Ulba some significant auto-
correlation for lag 1 and 2 is shown just above α= 0.05, but
by the partial autocorrelation only. No autocorrelation was
found at α= 0.01. Therefore it can be stated that autocorre-
lation does not exist in the discharge time series of all catch-
ments, and thus the proposed LOOCV is an appropriate val-
idation method.

The MLR fitting with LOOCV (see Sect. 3.2) was applied
for different forecast dates ranging from 1 January to 1 June
for all catchments. Out of the models that passed the sig-
nificance tests after fitting, the best 20 models according to
the PREMS resulting from the LOOCV were retained for the
forecasts. The tests for possible violations of the formal MLR
assumptions showed that 89.5 % of all selected models for
all catchments and prediction months fulfilled the criteria of
normal distributed residuals, 95.8 % of the selected models
passed the test for independence of the residuals, and 99.5 %
of the selected models have homoscedastic residuals (see Ap-
pendix A3). In summary, the formal requirements of MLRs
are fulfilled by almost all models, and the use of linear mod-
els for seasonal discharge forecasts is also justified from a
formal point of view.
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Table 2. Adjusted R2 values of the best-performing prediction models from the LOOCV for all catchments and prediction months. “Best”
indicates the single best model according to the LOOCV, and “Mean” indicates the mean percentage over the best 20 models according to
the LOOCV. The adjusted R2 values are associated with indicators for significance levels. Additionally, for the prediction months May and
June the adjusted R2 values for the prediction of the remaining season (i.e. for the mean seasonal discharge May–September for prediction
month May, and June–September for prediction month June) are given in italics.

January February March April May June

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean

1 Uba
0.678 0.511 0.824 0.714 0.842 0.743 0.811 0.790 0.868 0.828 0.968 0.958
++ ++ +++ +++ +++ +++ +++ +++ 0.775 0.723 0.836 0.793

+++ +++ +++ +++

2 Ulba
0.624 0.429 0.714 0.444 0.781 0.672 0.869 0.811 0.886 0.919 0.987 0.979

o + +++ + +++ ++ +++ +++ 0.858 0.875 0.921 0.862
+++ +++ +++ +++

3 Chirchik
0.253 0.278 0.594 0.556 0.650 0.593 0.891 0.884 0.959 0.940 0.972 0.965
++ – +++ ++ +++ ++ +++ +++ 0.931 0.918 0.948 0.932

+++ +++ +++ +++

4 Talas
0.669 0.408 0.794 0.703 0.808 0.728 0.823 0.787 0.921 0.872 0.966 0.958
+++ + +++ +++ +++ +++ +++ +++ 0.894 0.831 0.940 0.925

+++ +++ +++ +++

5 Ala-Archa
0.393 0.353 0.597 0.431 0.758 0.524 0.761 0.623 0.742 0.635 0.820 0.778
+ o ++ o +++ + +++ ++ 0.733 0.603 0.772 0.719

+++ ++ +++ ++

6 Shu
0.274 0.260 0.709 0.440 0.903 0.729 0.680 0.569 0.812 0.754 0.895 0.858
+ – +++ o +++ +++ +++ ++ 0.805 0.745 0.882 0.841

+++ +++ +++ +++

7 Chilik∗
0.865 0.818 0.856 0.787 0.910 0.873 0.757 0.770 0.884 0.800 0.934 0.829
+++ ++ +++ ++ +++ +++ +++ ++ 0.843 0.770 0.934 0.831

+++ +++ +++ +++

8 Charyn
0.643 0.503 0.844 0.786 0.792 0.765 0.873 0.810 0.943 0.947 0.989 0.986
+++ + +++ +++ +++ +++ +++ +++ 0.918 0.919 0.964 0.951

+++ +++ +++ +++

9 Karadarya
0.573 0.449 0.589 0.411 0.880 0.845 0.976 0.968 0.994 0.984 0.983 0.978
++ + +++ ++ +++ +++ +++ +++ 0.988 0.970 0.947 0.930

+++ +++ +++ +++

10 Naryn
0.782 0.679 0.657 0.657 0.844 0.800 0.853 0.819 0.824 0.824 0.932 0.898
+++ +++ +++ +++ +++ +++ +++ +++ 0.811 0.806 0.896 0.847

+++ +++ +++ +++

11 Upper Naryn
0.832 0.810 0.898 0.850 0.916 0.897 0.947 0.923 0.862 0.863 0.946 0.944
+++ +++ +++ +++ +++ +++ +++ +++ 0.847 0.839 0.917 0.916

+++ +++ +++ +++

12 Amudarya
0.213 0.304 0.841 0.691 0.857 0.840 0.878 0.839 0.897 0.893 0.982 0.977
+ + +++ +++ +++ +++ +++ +++ 0.869 0.845 0.961 0.949

+++ +++ +++ +++

13 Murgap
0.465 0.367 0.757 0.551 0.802 0.642 0.807 0.700 0.985 0.970 0.997 0.996
++ o +++ + +++ ++ +++ ++ 0.965 0.934 0.985 0.981

+++ +++ +++ +++

∗ The performance of Chilik is not representative and comparable to the other catchments due to too many missing discharge and predictor data. Significance level p: +++= 0.01, ++= 0.05, += 0.1,
o= 0.2, –=> 0.2; for mean the lowest significance of the model set is used.

In general the performance of the linear models increases
from January to June, with the best models reaching ad-
justed R2 (adj. R2) values in the range of 0.68–0.97 in April
and 0.89–0.99 in June. For most of the catchments high adj.
R2 values in the range of 0.57–0.83 were already obtained in
January. Only for Ala-Archa, Amudarya, Shu, and Chirchik

is the performance unsatisfyingly low in January, but in-
creases to adj. R2> 0.59 already 1 month later in February.
Table 2 lists the adj. R2 values of the best LOOCV mod-
els for all catchments and forecast months. Note that the adj.
R2 in the table is calculated using the coefficients of the lin-
ear models fitted to the whole data set, i.e. they are not cross-
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validated adj. R2. For the months May and June the perfor-
mance is (a) calculated for the whole seasonal discharge by
adding the forecast values of the sub-season to the observed
discharge, and (b) for the sub-season only. As expected, the
adj. R2 values are higher for the whole seasonal discharge,
because in this case parts of the seasonal discharge is ex-
plained by actual observations. However, the performance
is just slightly lower for the sub-seasonal discharge predic-
tions, typically in the range of 0.01–0.05, less than the adj.R2

for the whole season. Only for Uba is a larger difference of
about 0.1 in adj.R2 in May observed. This good performance
of the sub-seasonal forecasts can be explained by the gen-
eral high correlation of the sub-seasonal discharges with the
full seasonal discharge (Appendix A1), and the high predic-
tive power of antecedent discharge for the later forecasts (see
Sect. 4.2).

While for most of the catchments, the performance of the
models gradually increases with decreasing lead time includ-
ing the sub-seasonal discharge forecasts, the performance
for Chilik shows significant decreases and increases. This is
mainly caused by a comparatively large number of missing
discharge and predictor data, but possibly also by the fact
that the meteorological station used for this catchment is lo-
cated outside of the catchment. The automatic fitting algo-
rithm takes advantage of this by finding models able to ex-
plain the fewer data points better compared to the full time
series despite the use of PREMS instead of PRESS. However,
these models can already represent an overfitting and are thus
less reliable or less stable in time compared to models fitted
to longer time periods.

In order to get a more comprehensive picture of the model
performance, Fig. 4 shows the temporal evolution of the
adj. R2 evaluated for the complete time period of the sin-
gle best LOOCV model, the minimum adj. R2 of the best
20 models, the mean adj. R2 of the best 20 models, the root
mean square error (RMSE) of the single best LOOCV model
calculated for the full data set normalized to the mean sea-
sonal discharge (see Table 1), the normalized mean absolute
error MAE, and the PREMS value of the best model. Note
that the highest adj. R2 value is not necessarily the adj. R2

of the single best model, because the best model is selected
according to the lowest PREMS in the LOOCV, and not the
best adj. R2 evaluated using the whole time series. There-
fore the mean adj. R2 in January is occasionally higher than
the adj. R2 of the best LOOCV model, i.e. the most robust
model. In general, Fig. 4 shows that the different adj. R2,
RMSE, MAE, and PREMS values are similar in their evolu-
tion in time, i.e. increase (adj.R2) or decrease (RMSE, MAE,
PREMS) with later forecast months. This indicates that for
all best 20 models the performance is improving with later
forecasts.

Furthermore, the difference between minimum adj.R2 and
mean adj. R2 to the adj. R2 of the single best LOOCV model
is typically larger in the early prediction months. This indi-
cates a wider spread of model performance within the se-

lected 20 models for the predictions with longer lead times.
This difference decreases with shorter lead times, mean-
ing that more models with similar high performance can be
found, and thus uncertainty of the model set is reduced. To
a certain extent this is likely caused by the larger number of
possible predictors for later prediction months, but it is also
well justified to assume that the later predictors have more
predictive power: data from the late winter months can better
describe the snow coverage and water content compared to
predictors from the previous autumn–early winter. This issue
will be discussed further in Sect. 4.3.

Figure 4 shows that the RMSE as well as the MAE of the
best model of the LOOCV is at its maximum at about 35 % of
the long-term seasonal mean discharge. (Talas and Murgap
in January). However, for most catchments the normalized
RMSE and MAE is already below 20 % in January. For the
important April forecast they generally fall below 10 %, ex-
cept for Talas and Murgap, where it remains at 20 %. These
values state the high performance of the linear forecast mod-
els in terms of actual discharge and are thus a useful source of
information for practitioners to assess the value of the fore-
casts.

Figure 4 also shows the PREMS values of the best models
and the performance development with the forecast months.
The PREMS values generally decrease (i.e. improve) with
decreasing lead time. However, occasionally increases can be
observed for later forecast months. This can be also seen in
the adj.R2 values, but is less pronounced because of the scale
of the left y axis. This phenomenon is caused by the chang-
ing predictor sets from forecast month to forecast month. In
particular, multi-monthly predictors change for each predic-
tion date according to the parameter selection outlined in
Sect. 3.1. As this phenomenon of increasing PREMS val-
ues usually occurs in April or May, it can be hypothesized
that the information of the late winter–early spring months
used in the later forecasts does not contain better information
about the snow cover as the previous months. With respect to
a practical application, the better performing forecasts from
the previous months can be used, which is equivalent to an
extension of the predictor set by the predictors of the previ-
ous month.

This general reduction of PREMS also means that the
models become more robust for later prediction months. To
illustrate this more clearly, Fig. 4 also shows the relation be-
tween the mean adj. R2 of the LOOCV for all 20 models to
the mean adj. R2 of the full model fit. The mean adj. R2 of
the LOOCV is calculated from the LOOCV residuals used
to calculate the PREMS. According to the rationale of the
LOOCV, a model is more robust and less prone to overfitting,
if the LOOCV R2 is very close to the overall R2. Figure 4
shows that this is generally the case for the catchments with
very high adj.R2 values, and also for later prediction months.
This means that the selection of the predictors is likely stable
even if additional data are added to the time series in future.
However, there are some catchments for which comparably
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Figure 4. Performance of the prediction models for the different catchments and prediction months. Adj. R2 best model is the adjusted R2 of
the single best LOOCV model given for the prediction of the complete seasonal discharge (lines) and the sub-seasonal discharge prediction
in May and June (dots); mean adj. R2 is the mean adj. R2 of the best 20 LOOCV models; min adj. R2 is minimum adj. R2 of the best
20 LOOCV models; robustness is mean LOOCV–adj. R2 of the best 20 models divided by the mean adj. R2; RMSE (MAE) norm. is the
root mean squared error (mean absolute error) of the single best model normalized to mean multi-annual seasonal discharge; mean RMSE
(MAE) norm. is the mean root mean square error (mean absolute error) of the best 20 LOOCV models normalized to the multi-annual mean
seasonal discharge; PREMS is the predictive residual sum of squares (PRESS) of the single best model, divided by the number of years for
which prediction could be made (i.e. predictive residual mean of squares). Prediction months 1–6 refer to predictions made in January to
June.
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Table 3. Number of times the models yield acceptable prediction according to the criteria of the CA hydromet services for all catchments
and prediction months. Numbers indicate percentage of the years of the period 2000–2015 for which the criteria for an acceptable forecast
is fulfilled. “Best” indicates the best model according to the LOOCV, and “Mean” indicates the mean percentage over the best 20 models
according to the LOOCV.

January February March April May June

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean

1 Uba 69 % 70 % 88 % 85 % 88 % 85 % 88 % 83 % 93 % 93 % 100 % 100 %
2 Ulba 80 % 62 % 87 % 71 % 87 % 77 % 93 % 87 % 100 % 99 % 100 % 100 %
3 Chirchik 50 % 54 % 75 % 73 % 75 % 75 % 88 % 93 % 100 % 100 % 100 % 100 %
4 Talas 81 % 67 % 94 % 82 % 88 % 81 % 88 % 88 % 100 % 99 % 100 % 100 %
5 Ala-Archa 67 % 59 % 73 % 63 % 80 % 69 % 87 % 75 % 85 % 81 % 92 % 87 %
6 Shu 69 % 55 % 81 % 70 % 88 % 81 % 81 % 77 % 93 % 90 % 100 % 96 %
7 Chilik 85 % 83 % 85 % 82 % 85 % 93 % 92 % 87 % 92 % 92 % 100 % 93 %
8 Charyn 75 % 67 % 88 % 84 % 88 % 83 % 94 % 88 % 100 % 100 % 100 % 100 %
9 Karadarya 75 % 70 % 69 % 69 % 88 % 84 % 88 % 88 % 100 % 100 % 100 % 100 %
10 Naryn 88 % 79 % 75 % 79 % 88 % 84 % 88 % 87 % 100 % 99 % 100 % 100 %
11 Upper Naryn 88 % 86 % 88 % 87 % 88 % 90 % 94 % 92 % 100 % 96 % 100 % 100 %
12 Amudarya 44 % 51 % 81 % 70 % 75 % 79 % 81 % 82 % 94 % 96 % 100 % 100 %
13 Murgap 75 % 66 % 88 % 76 % 88 % 78 % 88 % 86 % 100 % 100 % 100 % 100 %

less robust models could be derived even for later prediction
months (Ala-Archa, Shu). For these catchments it is likely
that the predictor selection will change with additional data.

In addition to the performance metrics, Fig. 5 plots the
temporal dynamics of the best LOOCV models for all six
prediction months. It can be seen that the models can map
the high variability of the observed seasonal discharges very
well, often already in January or February. This graphically
corroborates the findings derived from the performance met-
rics and underlines that the good performance of the models
is not a statistical artefact.

In order to set the performance of the presented models in
the context of the routines and guidelines of the CA hydromet
services, the performance of the models was also estimated
according to the performance criteria used by the hydromet
services. This is defined by the following:

Sσ =
|res|
σQs

, (1)

with |res| denoting the absolute value of the residual of an in-
dividual forecast, and σQs the standard deviation of the sea-
sonal discharge (here calculated for the discharge time series
used, i.e. for the period 2000–2015). According to the pro-
tocols of the hydromet services an acceptable (“good”) fore-
cast is defined by Sσ < 0.675. Table 3 shows how often this
criteria was fulfilled during the analysis period 2000–2015
for the best model, and on average by the best 20 models.
For the critical forecast month April the criteria was fulfilled
for at least 81 % of the years (13 out of 16 years) by the
best model for all catchments. For all catchments the per-
centages increase further for the later forecast months. These
findings are also valid for the set of the best 20 models, as the
very similar percentages of the mean of all models compared
to the best model indicate. This means that the developed

models would provide acceptable forecasts for the hydromet
services in the range of 80–90 % for the important forecast
month April.

4.1 Predictive uncertainty

In order to quantify the predictive uncertainty the empirical
10 and 90 % percentiles were calculated for every prediction
month based on the residuals of the forecast model sets con-
sisting of the best models according to PREMS and fulfill-
ing the formal selection criteria. Note that for the early pre-
diction months, occasionally less than 20 models passed the
significance test. The tables in Appendix A3 indicate when
this was the case. The quantiles of the residuals were then
added to the median of the predictions of the model set, thus
providing an 80 % predictive uncertainty band, i.e. an inter-
val in which the true value of the seasonal discharge should
lie with a probability of at least 80 %. Figure 6 shows the
predictive uncertainty bands for every catchment along with
the observed seasonal discharge. The predictive uncertainty
for the different prediction months is shown in shades of or-
ange. In general it can be seen that the predictive uncertainty
bands narrow with later prediction months, illustrating the
better prediction during later prediction months described
above. While this is perfectly visible for most catchments
(e.g. Chirchik, Karadarya), it is not the case for some others
(Ala-Archa, Shu, Chilik, Naryn). For Chilik and Naryn this
is a consequence of the already high performance of the early
forecasts, which results in similar uncertainty bands for the
different prediction months. For Ala-Archa and Shu, how-
ever, this is caused by the larger difference between the pre-
dictions and performance of the best 20 models compared to
the other catchments, as indicated by the difference between
the best and mean adj. R2 shown and listed in Fig. 4 and
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Figure 5. Forecasts of the seasonal discharge by the single best model selected by the LOOCV for the individual catchments and all prediction
months. The blue lines show the observed seasonal discharges. Note that some models do not provide forecasts for every year due to missing
predictor data.

Hydrol. Earth Syst. Sci., 22, 2225–2254, 2018 www.hydrol-earth-syst-sci.net/22/2225/2018/



H. Apel et al.: Statistical forecast of seasonal discharge in Central Asia using observational records 2239

2000 2005 2010 2015

20
0

40
0

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

3. Chirchik

2000 2005 2010 2015

0
20

40
60

●
●

●

●
●

●

●
●

●

●
●

●

● ●
●

●

4. Talas

2000 2005 2010 2015

6
7

8
9

11

�
�

�

�
�

�
�

�

�

� � �
�

�

�
5. Ala−Archa

2000 2005 2010 2015

20
60

10
0

●
● ●

● ●

●
● ●

●

●

●

●

● ●

●

●

8. Charyn

2000 2005 2010 2015

0
20

0
40

0

�
�

� �
�

� �
� �

�

�

� � �
�

�

9. Karadarya

2000 2005 2010 2015

40
0

80
0

● ●

●
●

●
●

●

●
●

●

●

●
● ●

●

●

10. Naryn

2000 2005 2010 2015

10
0

30
0

50
0

●

●
●

●

● ● ●

●

●

●
●

●
●

●

●

●

1. Uba

2000 2005 2010 2015

50
15

0
25

0

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

2. Ulba

2000 2005 2010 2015
0

20
40

60

●

●

●
●

● ●
●

●
●

●

●

●
● ●

●

●

6. Shu

2000 2005 2010 2015

50
70

90 �

�

�
� �

�
�

�
� �

�
�

�

7. Chilik

2000 2005 2010 2015

10
0

20
0

�
�

�

�

� � �
� �

�

�

�
� �

�

�

11. Upper Naryn

2000 2005 2010 2015

10
00

25
00

40
00

� �

� �

�

�

� �

�

�

�

�

�

� �

�

12. Amudarya

2000 2005 2010 2015

−2
0

20
60

10
0

�
�

�

�

�

�

�

�

�

� �

�

�

�
�

�

13. Murgap

Year Year

January

February

March

April

May

June

Q
se

as
 [m

3  
s-

1 ]
Q

se
as

 [m
3  

s-
1 ]

Q
se

as
 [m

3  
s-

1 ]

Q
se

as
[m

3
s-

1 ]
Q

se
as

[m
3

s-
1 ]

Q
se

as
[m

3
s-

1 ]
Q

se
as

[m
3

s-
1 ]

Q
se

as
 [m

3  
s-

1 ]
Q

se
as

 [m
3  

s-
1 ]

Q
se

as
 [m

3  
s-

1 ]

Q
se

as
[m

3
s-

1 ]

Q
se

as
 [m

3  
s-

1 ]

Q
se

as
[m

3
s-

1 ]

Figure 6. The 80 % predictive uncertainty bands for all catchments and forecasts months. The blue lines indicate the observed seasonal
discharges.
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Table 2, respectively. This causes a wider distribution of the
residuals of the best 20 models and thus higher predictive un-
certainty. However, if only the best or a smaller selection of
the best 20 models are used for a forecast, the predictive un-
certainty would also be reduced. This means that the uncer-
tainty bands derived depend on the subjective choice of the
number of models to be kept in the model set. Another rea-
son for wider predictive uncertainty bands for later months
is the observed decline in performance during later months
in some catchments due to the changed predictor set (e.g. for
Shu). This causes again higher predictive uncertainty bands,
which overlay the narrower band from the previous month.

From a formal point of view the uncertainty bands cor-
rectly include at least 80 % of the observed seasonal dis-
charges, even for very narrow bands (e.g. in June for Chirchik
or Karadarya). This indicates that the uncertainty estimation
derived from the regression residuals provides a reliable es-
timation of the uncertainty associated with model selection,
and can be used to derive decisions based on the forecasts
given by the MLR model sets. However, it must be noted that
the derived uncertainty bands represent the predictive uncer-
tainty of the MLR models fitted to the available time series.
They do not account for any uncertainty stemming from a
possible lack of representativeness of the rather short time
series used. Longer discharge time series might show a dif-
ferent variability of seasonal discharge, which would then not
be covered by the derived models. However, as the models
can be updated every year in future, this potential problem is
expected to decrease with further use of the approach in the
CA hydromet services.

Moreover, it should be noted that the estimated uncertainty
cover only the model selection uncertainty. Other uncertainty
sources are the following:

– model structure, which is assumed to be rather low
given the high explained variances;

– data sources, which are not quantifiable, but might be
high, particularly the discharge data;

– the performance criteria for selecting the best models.

The last aspect has been tested. Using other performance cri-
teria as PREMS can result in a slightly different selection of
the best models, but more often just in a different order of the
best models. The best PREMS model is not necessarily the
best cross-validated R2 model, or the best MAE or RMSE
model. However, as this mainly affects the ordering of the
best models, the results in terms of predictions and predic-
tive uncertainty of the model set, if unweighted as presented,
would be very similar.

In addition to the predictive uncertainty, the reliability of
the forecasts was also quantified by PIT diagrams and PIT
scores. Figure 7 shows the PIT diagrams for every catchment
and all forecast months using the forecasts of the selected set
of models. The PIT diagrams show that the model set predic-

tions are in most cases close to the 1 : 1 line, i.e. provide reli-
able forecasts. However, in some cases the predictive uncer-
tainty is underestimated (PIT diagram lines with pronounced
vertical component around the 50 % quantile). This means
that some of the predictive uncertainty bands presented in
Fig. 6 are too narrow to reliably quantify the predictive un-
certainty. This is mostly the case for the late forecasts with
high skill, where the models in the set often produce very
similar forecasts. In addition to the diagrams a PIT score was
calculated as the area between the PIT curve and the 1 : 1 line
as a summarizing indicator for the reliability (Renard et al.,
2010). The theoretically least reliable model has a score of
0.5, a perfect model a score of 0. The highest score, i.e. the
lowest reliability, of all models is 0.2, with the majority of
the models being in the range of 0.07–0.15. Interpreting the
scores with the curves in the PIT diagram it can be deduced
that the reliability of model sets with PIT scores≤ 0.1–0.14
is acceptable. For higher scores the predictive uncertainty de-
rived from the model set is likely to be underestimated.

4.2 Predictor importance (is there some hydrological
process information in linear models?)

Figure 8 illustrates the importance of the predictors of the
selected MLR models as absolute fractions of the R2 values,
whereas it is not differentiated between individual predictors,
but rather between predictor classes described in Sect. 3.1.
The left panels of Fig. 8 show the importance for the single
best LOOCV model, while the right panels show the average
importance of the predictors for the best 20 LOOCV models.
A comparison of the left and right panels shows that the pre-
dictor selection and importance for the different catchments
and prediction months of the best model is quite similar to
the mean of the best 20 models. This indicates that the pre-
dictor selection for the models in the set is quite stable, and
hence that the predictor selection is not random, but rather
has some hydrological meaning. However, an interpretation
of the contributions of the different factors is complicated by
the use of the composites, which are almost always selected
as one or more predictors in the MLR models. Nevertheless,
some general features can be identified from Fig. 7:

– Typically there is no single factor dominating the ex-
plained variance, with the exception of Karadarya,
where the composites have an exceptionally large share
of the explained variance. But as the composites are
comprised of the other predictors (except antecedent
discharge), this statement is actually valid for all catch-
ments. This indicates that the winter snow accumula-
tion providing the bulk of the seasonal discharge is best
described by a combination of the factors determining
the extent and water equivalent of the snow pack in the
catchments (precipitation, temperature, snow coverage).
Omitting one of these predictors leads in fact to a reduc-
tion in model performance.
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Figure 7. PIT reliability diagrams for every catchment and forecast month. The PIT score is calculated as the area between the reliability plots
and the 1 : 1 line as suggested in Renard et al. (2010). The lower the PIT score, the higher the reliability. The theoretically least-reliability
score is 0.5, the best 0. The colour codes of the PIT scores indicate the forecast month as in the legend.
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Figure 8. Importance of the predictors in the linear models as absolute contribution to the explained variance (R2) for all catchments and
prediction months. Left panels: of the best LOOCV model; right panels: on average for the best 20 LOOCV models. Squares in the left
panels indicate the presence of the different predictors used in the composites: snow cover, precipitation, and temperature, using the same
colour codes as for the individual predictors.

– There is a general and plausible trend for higher im-
portance of antecedent discharge in the later prediction
months. In this period it can be expected that antecedent
discharge has higher predictive power of the seasonal
discharge compared to the winter months, i.e. during
the accumulation phase, because it directly indicates
the magnitude of the discharge generation from snow
melt. This finding is valid for most catchments ex-
cept Chirchik, Ala-Archa, and Chilik. For Chirchik the
importance of antecedent discharge is almost constant
throughout the prediction months, both for the best
model and on average. Contrary to this, antecedent dis-
charge has very little importance for Ala-Archa and
Chilik. For Ala-Archa this observation can be explained
by the very small catchment size and thus the quick re-
sponse of discharge to precipitation events and snow

melt, i.e. lower transit times, but also with the high pro-
portion of glacier melt during the summer months. The
high importance of precipitation, which is higher than
in any other catchment particularly in the later predic-
tion months, also supports this reasoning. For Chirchik
and Chilik, however, no plausible explanation can be de-
rived from the basic catchment characteristics presented
here.

– The importance of the snow coverage predictors indi-
cate a regional differentiation in the predictor impor-
tance. For the two catchments in the Altai region (Uba,
Ulba, cluster 1 in Fig. 3) snow coverage as an individ-
ual factor is of less importance compared to the other
regions. This observation can be attributed to different
snow cover characteristics in these catchments, which
have lower altitudes compared to other catchments in
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this study. Therefore, snow accumulation in these catch-
ments is comparably low and quickly responds to in-
creasing temperature already in the first months of the
year. Seasonal snow cover variations obtained from
the MODSNOW-Tool (Gafurov et al., 2016) for these
catchments also illustrate sudden snow cover depletion
in the month of April for both catchments, and also
for Uba with multiple depletions in winter months un-
til April (analysis not shown in this study). Thus, snow
melt is not important in these catchments for seasonal
summer discharge, although it may be of high impor-
tance for spring discharge, which is beyond the focus of
this study. The reverse line of argument can be applied
for the relatively high importance of snow coverage for
the high-altitude central Tien Shan catchments (Naryn
and upper Naryn) with mean annual temperatures below
zero (see Table 1), where snow coverage alone explains
up to almost 40 % of the explained variance by the MLR
models, to which the share of snow coverage contained
in the composites has to be added. For these catchments
snow coverage alone is thus already a good indicator of
the seasonal discharge.

– In terms of predictor importance no obvious differences
can be detected on average (right panels in Fig. 8) be-
tween the Tien Shan and Pamir discharge regimes iden-
tified in the cluster analysis (Fig. 3), with the exception
of the Naryn catchments as stated above. The mean pre-
dictor importance figures for those catchments are all
very similar. This can indicate that although the variabil-
ity of seasonal discharges varies with geographical loca-
tion, the runoff-generating processes seem to be similar.

This general interpretation of the predictor importance shows
that the selection of the predictors, particularly the change
of predictors with prediction months and geographic region,
has some hydrological meaning. Due to the simplicity of the
approach and the simple linear relationship between the pre-
dictors, it is unlikely that more hydrological process infor-
mation and understanding can be extracted from the MLR
results. If this can be achieved at all, then it is on an indi-
vidual catchment basis only and by the interpretation of the
exact predictors, i.e. not aggregated by classes as above. This
is, however, beyond the scope of this study. But neverthe-
less, the observations described above indicate that the gen-
eral runoff-generation processes can be described by linear
models, and that the presented forecast results are unlikely to
be obtained by pure chance only.

4.3 Potential of operational application

A lot of management and strategic decisions are based on
seasonal forecasts of water availability in CA. The main con-
sumer of water resources in the Aral Sea basin is the agri-
cultural sector, which is based on one of the world’s largest
irrigation systems (Dukhovny and de Schutter, 2011). The

planning of agricultural production crop types and water allo-
cation through the irrigation network are important decisions
that are made based on water availability forecasts. Also the
estimation of agricultural yield is related to water availability
and is needed for country income planning, which depends
heavily on agricultural export in some countries. Therefore
reliable forecasts of seasonal water availability are essential
for the economies of CA states.

In order to design a generic and readily applicable fore-
cast tool, the presented method was designed according to
the needs and data availability of the CA hydromet services,
which are responsible for the seasonal forecasts. The method
is based on station data readily available to the state agen-
cies, thus fulfilling a core prerequisite for an operational im-
plementation of the method. Moreover, the procedure for de-
riving forecast models is fairly simple and implemented in
the open-source software R. Therefore no limitations due to
licence issues exist. The model development is automated re-
quiring only some basic definitions, such as the formatting
and provision of the predictor data as ASCII text files, and
the specification of the prediction month. Therefore the code
can be applied by the staff of the hydromet services after a
short training period. However, it should be noted that the
provided predictor data should be as complete as possible
in order to avoid spurious model fitting results (overfitting).
Due to the automatic model fitting the algorithm may find
the best-performing models fitted to a few years only, if too
many predictor data are missing. The chances of overfitting
are then greatly increased as the degree of freedom of the
linear models, i.e. the ratio of the years used for fitting to the
variables in the prediction models, decreases.

The presented model system can also be run with alter-
native predictor data. For example, it has been tested using
gridded ERA-Interim reanalysis data for precipitation and
temperature, averaged monthly over the individual catch-
ment areas. Results similar to, if not better than, those pre-
sented were obtained. However, due to the latency of at least
2 months until the data are released, an operational use of the
model system with ERA-Interim data is not feasible at the
moment.

5 Discussion and conclusions

The presented study aimed to develop a flexible and generic
forecast model system for the prediction of the seasonal
(April–September) discharge in CA river basins, with the fi-
nal goal of operational use by the CA hydromet services.
In order to achieve this the data requirements were kept as
low as possible, using only monthly precipitation and tem-
perature data from a single station in the individual catch-
ments, accompanied by operationally processed monthly
MODIS snow coverage data and monthly antecedent dis-
charge. Based on this core predictor data set, a variety of
monthly, multi-monthly, and composite predictors were au-
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tomatically derived for different prediction dates. The pre-
dictors were then used for predicting the seasonal discharge
with multiple linear regression models. In order to avoid
overfitting, restrictions were set on the selection and num-
ber of predictors in each MLR, and the models were tested
for significance and for robustness by a leave-one-out cross-
validation. A set of significant prediction models was then se-
lected based on the predictive residual error mean of squares
of the LOOCV.

The prediction model system was tested for the pe-
riod 2000–2015 on a selection of 13 different river basins in
different geographic and climatic regions, and with different
catchment characteristics. It could be shown that the mod-
els provided good to excellent predictions for all catchments
and for all defined prediction dates and lead times. For the
first prediction on 1 January, i.e. for a lead time of 3 months,
the explained variance (expressed as adjusted R2) is already
high in the range of 0.46–0.86 for 9 catchments. For the fol-
lowing prediction on 1 February the explained variance is
above 0.59 for all catchments and increases further with the
following months. For the important prediction date for the
planning of water resources in the region on 1 April just be-
fore the high-flow season, adj. R2 values of the best models
for each catchment are in the range 0.68–0.97, indicating ex-
ceptional high performance for a seasonal forecast.

The automatic selection of the predictors and their impor-
tance revealed some geographic or temporal patterns. Geo-
graphically the northern Altai catchments differ in the predic-
tor selection of the best LOOCV–MLR models from the other
regions, as snow melt in this region has less contribution to
seasonal discharge (April–September), with snow cover of-
ten reduced to zero already in early spring. For all catch-
ments the importance of antecedent discharge is increasing
with progressing prediction dates. This is plausible from a
hydrological perspective: while during the winter months the
discharge is dominated by groundwater contribution, the dis-
charge in April and later contains information about the snow
melt process and thus has predictive power. This means in
summary that the selected predictors and their importance
have some hydrological meaning, thus supporting the valid-
ity of the forecast models derived by the model system. How-
ever, it should be noted that specific features of runoff gener-
ation in the catchments cannot be detected and discovered
by the rather abstract level of predictors, predictor impor-
tance, and the very basic catchment characteristics presented
here. Overall, the presented simple forecast system proved to
be able to provide robust, very skilful, and reliable forecast
models for CA.

The reason for the high performance is surely the tempo-
ral separation of most of the annual precipitation (snow in
winter), and the runoff generation (snow melt in spring and
summer). The forecast is thus based on an estimation of the
snow pack accumulation in winter and its snow water equiva-
lent, for which the predictors and their combinations provide
proxy information. Moreover, the proxy information is not

forecasted, but measured, thus providing more reliable in-
formation compared to forecasted predictors. An additional
incorporation of climate predictions from dynamical (Kim et
al., 2012) and statistical (Gerlitz et al., 2016) seasonal predic-
tion models is unlikely to further increase the forecast skill.
The contribution of spring and summer rainfall to discharge
variations appears to be dispensable, as represented by the
high forecast performance of the applied predictor variables.
Furthermore, the prediction of seasonal climate anomalies
is highly uncertain, particularly for the rather dry summer
season, which impedes its application for seasonal runoff
forecasts (Gerlitz et al., 2016). Potential improvements could
be achieved using gravity-based water storage variations, as
provided by the GRACE mission for example. The total wa-
ter storage variation monitored by GRACE should actually
map the snow accumulation and the snow water content over
the whole winter period. This information could be used as
predictor for catchments large enough to match the spatial
resolution of GRACE.

As the timely separation of precipitation and runoff is a
unifying feature of all CA headwater catchments encom-
passing high-mountain ranges, the model system is able to
perform exceptionally well for all tested catchments. It is
thus also very likely that the model system will also work
well in the CA catchments not included in this study, with
some limitations for very small catchments. Thus, the pro-
posed methodology provides a generic and flexible tool for
the development of seasonal discharge forecast models for
CA rivers. This tool can be used by the responsible hydromet
services without the need for larger investments in hard-
ware, software, and education and training of staff. In fact,
the model system is already tested in four CA national hy-
dromet services. The only prerequisite for the application of
the model system is the availability of meteorological data
from stations within the catchments. If this is not given, sta-
tions nearby can be used as an alternative. However, they
need to be representative for the meteorological variability in
the catchment. As this study has shown, this might work, for
example, for stations located downstream of the discharge
stations within the same but larger catchment. Moreover, a
comparable forecast skill can be expected in other regions
with similar climatic settings, e.g. the South American dry
Andes or the western US (e.g. the Sierra Nevada). The pro-
vided information of seasonal water availability could also
be used in dam operation and dam safety procedures, as well
as strategic flood hazard management plans.

Data availability. Data sets are available upon request by contact-
ing the correspondence author.
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Appendix A

A1 Correlation of seasonal discharge to sub-seasonal
discharge
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Figure A1. Comparison of seasonal discharge for the whole veg-
etation period April to September to sub-seasonal discharge time
series, taking the Naryn basin as example. The sub-seasonal series
are highly correlated to the seasonal time series. Numbers in the
legend provide the linear correlation coefficient of the sub-seasonal
discharges to the seasonal discharge of the whole vegetation period.

A2 Predictors used for the different prediction dates

The following sections list the predictors created and used
for the different forecast dates, ranging from 1 January to
1 June. The predictors are abbreviated, with snowcov and sc
denoting the snow coverage in the catchment derived by the
MODSNOW-tool, precip the station records of precipitation,
temp the station records of temperature, and Q the discharge
recorded at the river gauges. Catchment characteristics and
the locations of the gauges are listed in Table 1. The data for
all predictors are monthly values (mean for snow coverage,
temperature and discharge, total for precipitation), with jan
indicating January values, feb February values, mar March
values, apr April values, may May values, and jun June val-
ues.

Multi-monthly values are mean values of the monthly val-
ues spanning over several months, whereas the range of the
months included is indicated by the concatenation of the indi-
cators of the months, e.g. janapr means multi-monthly means
for the period January to April, or febmar indicates the mean
of the months February and March. The predictor abbrevia-
tions are combined with the indicators for the months; snow-
cov_apr thus stands for the mean snow coverage of the catch-
ment in April, or precip_janmar for the mean of the monthly
total precipitation for the months January to March.

For the composites the predictors included are listed
by their abbreviations, followed by the indicators for the
months. For calculating the composites, the monthly values
of the predictors denoted by the month indicators are mul-
tiplied. For example, sc_temp_mar thus means the product
of the mean snow cover in March and the mean temperature
in March, or sc_temp_precip_janmay denotes the product of
the multi-monthly means January to May of snow coverage,
temperature, and precipitation.
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Predictors used for prediction on 1 January

Snowcover:
snowcov_dec, snowcov_nov, snowcov_oct, snowcov_octdec
Precipitation:
precip_dec, precip_nov, precip_oct, precip_novdec, precip_octdec
Temperature:
temp_dec, temp_nov, temp_oct, temp_novdec, temp_octdec
Composites snowcover× temperature:
sc_temp_octdec
Composites snowcover, × precipitation:
sc_precip_octdec
Composites temperature× precipitation:
temp_precip_dec, temp_precip_nov, temp_precip_oct, temp_precip_octdec
Composites snowcover, × temperature× precipitation:
sc_temp_precip_octdec
Antecedent discharge:
Q_dec, Q_nov, Q_oct, Q_novdec, Q_octdec

Predictors used for prediction on 1 February

Snowcover:
snowcov_jan, snowcov_dec, snowcov_nov, snowcov_oct, snowcov_octjan
Precipitation:
precip_jan, precip_dec, precip_nov, precip_oct, precip_decjan, precip_novjan, precip_octjan
Temperature:
temp_jan, temp_dec, temp_nov, temp_oct, temp_decjan, temp_novjan, temp_octjan, sc_temp_jan
Composites snowcover, × temperature:
sc_temp_jan
Composites snowcover× precipitation:
sc_precip_jan
Composites temperature× precipitation:
temp_precip_jan, temp_precip_dec, temp_precip_nov, temp_precip_oct, temp_precip_decjan, temp_precip_novjan,
temp_precip_octjan
Composites snowcover× temperature× precipitation:
sc_temp_precip_octjan
Antecedent discharge:
Q_jan, Q_dec, Q_nov, Q_oct, Q_decjan, Q_novjan, Q_octjan
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Predictors used for prediction on 1 March

Snowcover:
snowcov_feb, snowcov_jan, snowcov_janfeb, snowcov_dec, snowcov_nov, snowcov_oct, snowcov_octfeb
Precipitation:
precip_feb, precip_jan, precip_dec, precip_nov, precip_oct, precip_janfeb, precip_decfeb, precip_novfeb, precip_octfeb
Temperature:
temp_feb, temp_jan, temp_dec, temp_nov, temp_oct, temp_janfeb, temp_decfeb, temp_novfeb, temp_octfeb
Composites snowcover× temperature:
sc_temp_jan, sc_temp_feb, sc_temp_janfeb
Composites snowcover× precipitation:
sc_precip_jan, sc_precip_feb, sc_precip_janfeb
Composites temperature× precipitation:
temp_precip_jan, temp_precip_feb, temp_precip_dec, temp_precip_nov, temp_precip_oct, temp_precip_janfeb,
temp_precip_novfeb, temp_precip_octfeb
Composites snowcover× temperature× precipitation:
sc_temp_precip_janfeb, sc_temp_precip_octfeb
Antecedent discharge:
Q_feb, Q_jan, Q_dec, Q_nov, Q_oct, Q_janfeb, Q_decfeb, Q_novfeb, Q_octfeb

Predictors used for prediction on 1 April

Snowcover:
snowcov_mar, snowcov_feb, snowcov_jan, snowcov_janmar, snowcov_febmar
Precipitation:
precip_mar, precip_feb, precip_jan, precip_dec, precip_nov, precip_oct, precip_febmar, precip_janmar, precip_decmar,
precip_novmar, precip_octmar
Temperature:
temp_mar, temp_feb, temp_jan, temp_dec, temp_nov, temp_oct, temp_febmar, temp_janmar, temp_decmar, temp_novmar,
temp_octmar
Composites snowcover× temperature:
sc_temp_mar, sc_temp_febmar, sc_temp_janmar
Composites snowcover× precipitation:
sc_precip_mar, sc_precip_febmar, sc_precip_janmar, sc_precip_mar_decmar, sc_precip_mar_novmar
Composites temperature× precipitation:
temp_precip_jan, temp_precip_feb, temp_precip_mar, temp_precip_febmar, temp_precip_janmar, temp_precip_decmar,
temp_precip_novmar
Composites snowcover× temperature× precipitation:
sc_temp_precip_mar, sc_temp_precip_febmar, sc_temp_precip_janmar
Antecedent discharge:
Q_mar, Q_feb, Q_jan, Q_dec, Q_nov, Q_oct, Q_febmar, Q_janmar, Q_decmar, Q_novmar, Q_octmar
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Predictors used for prediction on 1 May

Snowcover:
snowcov_apr, snowcov_mar, snowcov_feb, snowcov_janapr, snowcov_febapr, snowcov_marapr
Precipitation:
precip_apr, precip_mar, precip_feb, precip_jan, precip_marapr, precip_febapr, precip_janapr, precip_decapr,
precip_novapr, precip_octapr
Temperature:
temp_apr, temp_mar, temp_feb, temp_jan, temp_marapr, temp_febapr, temp_janapr, temp_decapr, temp_novapr,
temp_octapr
Composites snowcover× temperature:
sc_temp_mar, sc_temp_apr, sc_temp_marapr, sc_temp_febapr
Composites snowcover× precipitation:
sc_precip_mar, sc_precip_apr, sc_precip_marapr, sc_precip_febapr
Composites temperature× precipitation:
temp_precip_jan, temp_precip_feb, temp_precip_mar, temp_precip_apr, temp_precip_febapr, temp_precip_marapr,
temp_precip_octapr
Composites snowcover× temperature× precipitation:
sc_temp_precip_mar, sc_temp_precip_apr, sc_temp_precip_marapr, sc_temp_precip_janapr
Antecedent discharge:
Q_apr, Q_mar, Q_feb, Q_jan, Q_marapr, Q_febapr, Q_janapr, Q_decapr, Q_novapr, Q_octapr

Predictors used for prediction on 1 June

Snowcover:
snowcov_apr, snowcov_mar, snowcov_feb, snowcov_janapr, snowcov_febapr, snowcov_marapr
Precipitation:
precip_may, precip_apr, precip_mar, precip_feb, precip_jan, precip_aprmay, precip_marmay, precip_febmay,
precip_janmay, precip_octmay
Temperature:
temp_may, temp_apr, temp_mar, temp_feb, temp_jan, temp_aprmay, temp_marmay, temp_febmay, temp_janmay,
temp_octmay
Composites snowcover× temperature:
sc_temp_mar, sc_temp_apr, sc_temp_marmay
Composites snowcover× precipitation:
sc_precip_mar, sc_precip_apr, sc_precip_marmay
Composites temperature× precipitation:
temp_precip_feb, temp_precip_mar, temp_precip_apr, temp_precip_may, temp_precip_marmay, temp_precip_octmay
Composites snowcover× temperature× precipitation:
sc_temp_precip_mar, sc_temp_precip_apr, sc_temp_precip_marmay, sc_temp_precip_janmay
Antecedent discharge:
Q_may, Q_apr, Q_mar, Q_feb, Q_jan, Q_aprmay, Q_marmay, Q_febmay, Q_janmay Q_octmay
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A3 Autocorrelation of seasonal discharge time series
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11. Upper Naryn
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Note: Ulba, Ala-Archa, and 
Chilik have missing discharge values.
Thus the autocorrelation estimate may 
not be valid. 

Figure A2. Auto-correlation (black) and partial auto-correlation (red) of the seasonal discharge tome series for all catchments and possible
lags.
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Table A1. Test for normal distributed residuals, for every catch-
ment, prediction month, and the selected 20 models.

January February March

Uba 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 1 1
Ulba 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chirchik 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Talas 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ala-Archa 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
Shu 1 1 1 1 0 1 1 1 1 1 1 1 1 NA NA NA NA NA NA NA 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
Chilik 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1
Charyn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Karadarya 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0
Naryn 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Upper Naryn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
Amudarya 1 1 1 1 1 1 1 1 1 1 1 1 1 NA NA NA NA NA NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Murgap 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

April May June

Uba 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ulba 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chirchik 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1
Talas 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1
Ala-Archa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Shu 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chilik 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1
Charyn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Karadarya 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0
Naryn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
Upper Naryn 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Amudarya 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Murgap 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1

1= normal distributed. 0= not normal distributed. NA= no valid model found.

A4 Formal test for MLR assumptions

The residuals of the models are tested for normality by the
Shapiro–Wilk test for normality. Doing so, one has to bear
in mind that this test is based on a sample size of maxi-
mal 16 values for each model only, so the test may not pro-
vide meaningful results. The table below shows the test result
for every model, catchment, and forecast month. A “1” indi-
cates normal distributed residuals, “0” not normal distributed
residuals. “NA” indicates that no more models with signif-
icant predictors could be found. For every forecast month
up to 20 indices are given according to the set of the best
20 models to be retained. The table shows that for most of
the models (91 %) the test was positive, i.e. the residuals are
normally distributed, even for this rather low and possibly
not representative sample size.
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Table A2. Test for autocorrelated (independent) residuals, for every
catchment, prediction month, and the selected 20 models; lag= 1.

January February March

Uba 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ulba 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chirchik 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Talas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ala-Archa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Shu 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA NA NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chilik 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Charyn 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Karadarya 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Naryn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Upper Naryn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Amudarya 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA NA NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Murgap 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

April May June

Uba 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ulba 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0
Chirchik 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Talas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ala-Archa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Shu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
Chilik 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Charyn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Karadarya 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Naryn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Upper Naryn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0
Amudarya 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Murgap 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1= correlated. 0= not correlated. NA= no valid model found.

Furthermore, testing was carried out to determine whether
the residuals are independent applying a test for autocorrela-
tion with lag 1 at significance level p= 0.05. In Table A2 a
“0” indicates independence, a “1” dependence. It shows that
96 % of the models have independent residuals.
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Table A3. Test for homoscedastic residuals, for every catchment,
prediction month, and the selected 20 models.

January February March

Uba 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ulba 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chirchik 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Talas 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ala-Archa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Shu 1 1 1 1 1 1 1 1 1 1 1 1 1 NA NA NA NA NA NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chilik 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Charyn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Karadarya 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Naryn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Upper Naryn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Amudarya 1 1 1 1 1 1 1 1 1 1 1 1 1 NA NA NA NA NA NA NA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

April May June

Uba 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ulba 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chirchik 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Talas 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ala-Archa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Shu 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chilik 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Charyn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Karadarya 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Naryn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Upper Naryn 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Amudarya 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

1= homoscedasticity test (Breusch–Pagan test) passed. 0= homoscedasticity test not passed. NA= no valid model found.

Finally, the Breusch–Pagan test for heteroscedasticity was
applied to the residuals. This test shows that 99.5 % of the
models have homoscedastic residuals. In Table A3 a “1” in-
dicates homoscedastic residuals, a “0” heteroscedastic resid-
uals according to the test.
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