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Abstract. A long-term forecasting ensemble methodology,
applied to water inflows into the Cheboksary Reservoir (Rus-
sia), is presented. The methodology is based on a version of
the semi-distributed hydrological model ECOMAG (ECO-
logical Model for Applied Geophysics) that allows for the
calculation of an ensemble of inflow hydrographs using two
different sets of weather ensembles for the lead time pe-
riod: observed weather data, constructed on the basis of the
Ensemble Streamflow Prediction methodology (ESP-based
forecast), and synthetic weather data, simulated by a multi-
site weather generator (WG-based forecast). We have studied
the following: (1) whether there is any advantage of the de-
veloped ensemble forecasts in comparison with the currently
issued operational forecasts of water inflow into the Chebok-
sary Reservoir, and (2) whether there is any noticeable im-
provement in probabilistic forecasts when using the WG-
simulated ensemble compared to the ESP-based ensemble.
We have found that for a 35-year period beginning from the
reservoir filling in 1982, both continuous and binary model-
based ensemble forecasts (issued in the deterministic form)
outperform the operational forecasts of the April–June inflow
volume actually used and, additionally, provide acceptable
forecasts of additional water regime characteristics besides
the inflow volume. We have also demonstrated that the model
performance measures (in the verification period) obtained
from the WG-based probabilistic forecasts, which are based
on a large number of possible weather scenarios, appeared
to be more statistically reliable than the corresponding mea-
sures calculated from the ESP-based forecasts based on the
observed weather scenarios.

1 Introduction

Spring freshets are a hydrological phenomenon of which
magnitude is highly dependent on the amount of water ac-
cumulated on the surface and in subsurface storages of the
river basin during several months prior to the snowmelt. This
dependency serves as a physical basis for the predictability
of spring runoff (Li et al., 2009). As stated by Lettenmaier
and Waddle (1978, p. 1), “snowmelt runoff is one of the few
natural phenomena for which relatively accurate long-term
forecasts can be made”.

Implementation of this opportunity is crucial for the wa-
ter reservoirs of the Volga-Kama reservoir cascade (VKRC)
in Russia – one of the world’s largest multi-purpose wa-
ter management systems. The VKRC is located within the
largest European river basin, the Volga River basin (area of
1 350 000 km2), and consists of 11 reservoirs that hold from
1 to 58 km3 of water. It is used to conduct seasonal and
multi-year flow regulation. The VKRC was designed to re-
distribute the highly uneven runoff of the Volga River, with
two-thirds of the annual runoff volume occurring during the
2–4 months of the spring–summer freshet. This task, aimed
at optimizing reservoir management for power production,
navigation and flood protection, is even more complex due
to the requirement of annual spring water release to Lower
Volga aimed at allowing for sturgeon spawning. Such re-
lease that is regulated over several weeks with a predefined
amount and temperature of water during the spring freshet is
an extremely complex task for water management (Avakyan,
1998). Hence, a reliable and firsthand forecast of snowmelt
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inflow into the VKRC reservoirs is crucial for decision mak-
ers.

By the mid-1960s, the specific methods were developed
which underlie the contemporary operational forecast for
VKRC management (water supply forecast). For different
reservoirs, the produced forecasts are based on two primary
techniques: the index methods and the so-called physical–
statistical methods (Gelfan and Motovilov, 2009; Borsch and
Simonov, 2016). Both methods produce deterministic (de-
spite the term “physical–statistical”), purely data-driven fore-
casts and relate the predictors (such as initial snow water
equivalent, soil freezing and soil moisture indices, precipi-
tation amount for the forecast period) to the main predictand
– the spring inflow into a reservoir. The initial basin charac-
teristics are derived from observations; yet the precipitation
amount is typically set to the climatic mean. The operational
water supply forecasts’ methodology is used in real practice
by water managers and has remained unchanged over the past
half-century.

While the utility of data-driven flow forecasts (which cur-
rently may be based on advanced statistical and machine
learning techniques) has been demonstrated through various
examples (see e.g. Abrahart et al., 2012), their skill and relia-
bility depend on the amount and stationarity of available data
and they are not always adequate. It would be difficult to ex-
pect a forecast improvement within the existing framework
of the purely data-driven approach because of the reduction
of the observational network in the Volga basin (estimated at
30 % in Borsch and Simonov, 2016), the non-homogeneity
of the observations caused by changes in the measurement
techniques and changes in climate, land use and so on.

An opportunity to improve the operational water supply
forecasts of water inflow into the VKRC lies in shifting from
the traditional exclusively data-driven forecasts towards hy-
drological model-based forecasts, and from a determinis-
tic methodology to one using ensembles with a possibility
of characterizing forecast uncertainty. During the last 20–
30 years there has been a general understanding of the neces-
sity of such a shift to Ensemble Streamflow Prediction (ESP)
systems (e.g. Day, 1985) and a considerable research effort
in this direction (Franz et al., 2003; Wood and Lettenmaier,
2006; Li et al., 2009; Shukla and Lettenmaier, 2011; Yossef
et al., 2013; Najafi and Moradkhani, 2016; Demirel et al.,
2015; Beckers et al., 2016; Arnal et al., 2017; Mendoza et
al., 2017). Such systems are currently used more and more in
operational mode by national weather services in the United
States (e.g. McEnery et al., 2005), Canada (Druce, 2001) and
other countries (Pappenberger et al., 2016).

In its original form, an ESP is based on an assumption
that historical time series of the observed meteorological
variables are representative of a local climate. These se-
ries are used as an ensemble of meteorological inputs into
a hydrological model to simulate corresponding ensembles
of streamflow forecasts. This allows uncertainty in weather
conditions during the forecast horizon to be considered and

provides an opportunity to quantify the corresponding uncer-
tainty (and hence, risk) in the forecast-based decision support
systems for reservoir management. In addition, utilizing the
process-based (physically based) hydrological models results
in an increase of the physical adequacy of forecasts and, po-
tentially, in an improvement of the forecast accuracy in com-
parison with the methods currently used in operational prac-
tice. However, such quantitative comparisons are not com-
monplace; to the best of our knowledge the only example
is the comprehensive experiment presented by Mendoza et
al. (2017) which compared ESP model-based forecasts with
operational data-driven forecasts for a multi-year historical
period.

The observed weather scenarios that are used within the
ESP framework do not encompass all of the possible weather
conditions for the forecast period. It is desirable to account
not only for the observed weather, but for possible weather
conditions that might lead to freshet events of rare occur-
rence. Assessing the magnitude of such an event might be
crucial for decision-making. Moreover, since the ensemble
size is limited to the number of the historical years, one may
need to deal with the statistical problems stemming from
large sample errors. For instance, Buizza and Palmer (1998)
demonstrate improvement of the weather forecast skill as the
ensemble size increases, wherein the degree of improvement
depends on the verification measure used. Particularly, the
ranked probability skill score (RPSS) is strongly dependent
on ensemble size and is negatively biased (see also Müller
et al., 2005; Weigel et al., 2007). Different aspects of the
effect of the ensemble size on statistical properties of the
ensemble weather forecast and verification scores are stud-
ied by Richardson (2001), Ferro et al. (2008) and Najafi et
al. (2012). A solution can be seen in employing the synthetic,
stochastically generated time series of weather variables in-
stead of the historical data used within the ESP framework.
As a result, the hydrological system response to a large vari-
ety of possible weather conditions can be reproduced, and a
sizeable ensemble of forecasts can be generated.

To the best of the authors’ knowledge, there are not too
many examples of employing stochastic weather genera-
tors (WGs) within the framework of long-term ensemble
forecasting. Hanes et al. (1977) were probably the first who
used Monte Carlo-simulated sequences of daily precipita-
tion to drive the conceptual US Geological Survey hydro-
logical model and provide an ensemble seasonal forecast of
snowmelt runoff volume. Kuchment and Gelfan (2007) and
Gelfan et al. (2015) used a physically based distributed hy-
drological model in combination with a weather generator
to create a long-term probabilistic forecast of spring runoff
of rivers in central Russia. Caraway et al. (2014) incorpo-
rated a stochastic weather generator into the ESP to make a
probabilistic seasonal climate forecast and applied the modi-
fied methodology to the San Juan River snowmelt-dominated
basin. Beckers et al. (2016) used an ENSO-conditioned (El
Niño–Southern Oscillation-conditioned) weather generator
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Figure 1. Cheboksary Reservoir basin: topography, river network and weather stations.

to compensate for the reduction of ensemble size in the
post-processing ensemble forecast scheme presented for the
Columbia River basin.

The studies and examples mentioned above serve as the
background, and the knowledge gaps that still exist drive the
main motivation for this study. The objective of this study is
to contribute to the ESP-related studies, with the focus on the
comparison between the data-driven techniques used in op-
erational forecasts and the ensemble forecasts of streamflow,
using two different weather scenarios: (a) scenarios based on
the historical data and (b) scenarios in which WG-based fore-
casts are employed. The case study is the Cheboksary Reser-
voir of the VKRC for which the operational forecasts have
been available since 1982.

Thus, this study is an attempt to answer the following
two research questions: (1) does the model-based ensemble
methodology allow one to improve the reliability and skill
of the operational forecast of spring inflow into the Chebok-
sary Reservoir, and to what extent? (2) Does the enlarged
ensemble size lead to any noticeable advantage when using
the WG-simulated ensemble compared to the ESP-based en-
semble?

The remaining part of this paper is organized as fol-
lows. The case study is described in the next section. The
operational forecast methodology, as well as the proposed
forecasting approach including modelling tools (hydrolog-
ical model and stochastic weather generator), forecasting
schemes, experimental design and forecast verification mea-
sures are described in Sect. 3. Results and discussion are pre-
sented in Sect. 4. The overall conclusions and recommenda-
tions are given in Sect. 5.

2 Case study basin

The Cheboksary Reservoir is located on the Volga River
in the central part of the European part of Russia. It was
constructed in 1982 to become the 11th member of Volga-
Kama reservoir cascade, with Nizhegorodskoe reservoir up-
stream and Kujbysevskoe reservoir downstream of it. The
total unregulated basin area of the Cheboksary Reservoir is
373 800 km2 (Fig. 1). Its main tributaries – Oka, Sura and
Vetluga rivers – account for 80 to 90 % of annual inflow into
the reservoir.

Local climate conditions can be described as moderately
continental, with a cool snow-abundant winter and a rela-
tively hot summer. Mean annual temperature ranges from
1.4 ◦C in the northern part of the basin to 4.8 ◦C in the south-
ern part. During wintertime air temperature may fall as low
as −35–−40 ◦C. The annual precipitation amount ranges
between 650 and 750 mm throughout the territory. Around
60 % of the precipitation occurs as rain. Most winter precip-
itation is stored as snow cover, emerging in mid-December
and lasting until mid-April. Snow water equivalent ranges
from 50 mm in the south-western part up to 100–120 mm in
the north. Springtime snowmelt contributes to the high-flow
freshet – the dominating hydrological season accounting for
around 65% of the total annual inflow into the reservoir
(51.3 km3). Typically, the freshet commences around mid-
April and lasts until June. The mean volume of inflow for the
period of reservoir operation (1982–2016) is 33.4 km3, and
the mean maximum inflow discharge is 9355 m3 s−1.
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3 Method

3.1 Operational data-driven forecast of spring inflow
into the Cheboksary Reservoir: current practice

The methodology for forecasting the spring inflow into the
Cheboksary Reservoir was developed by Chemerenko (1992)
on the basis of the so-called physical–statistical approach,
originally proposed for the reservoirs of Middle Volga in
the mid-1960s (Zmieva, 1964; Gelfan and Motovilov, 2009).
This approach is currently in use by the Russian hydromete-
orological service (Roshydromet) for inflow forecasting into
all reservoirs located on the Middle Volga River.

Water inflow volume Y into the Cheboksary Reservoir is
forecasted according to the following linear equation:

Y =

5∑
i=1

αiyi +β, (1)

where yi is the runoff forecast at streamflow gauge i, located
on the reservoir tributaries, as follows: i= 1 – Oka River,
Polovskoe gauge (drainage area F = 99 000 km2); i= 2 –
Klyazma River, Kovrov gauge (F = 24 900 km2); i= 3 –
Vetluga River, Vetluzhsky gauge (F = 27 400 km2); i= 4 –
Sura River, Poretsky gauge (F = 50 100 km2); i= 5 – Tsna
River, Knyazhevo gauge (F = 13 600 km2). αi and β are the
regression coefficients estimated from the streamflow data
observed at the corresponding gauge.

The runoff volume yi at the ith gauge is forecasted by a
unified procedure. The predictors are basin-averaged snow
water equivalent (S, mm), soil freezing depth, (FD, cm), soil
moisture index (W , dimensionless) on a forecast issue date
and total precipitation (x, mm) during the forecast horizon.

Runoff volume at each gauge is calculated as follows:

y = (1− f )
{
(S1+ x)−P0

[
1− exp

(S1+ x)

P0

]}
+ f η(S2+ x) (2)

Po = a exp
[
−b(θ − θmin)

c
]
, (3)

where S1 and S2 are the snow water equivalent at the forecast
issue date within the deep frozen (FD≥ 60 cm) and non-deep
frozen (FD< 60 cm) parts of the river basin, respectively, de-
rived from snow observations; x is the total precipitation for
the forecast horizon, assigned as the climatic mean; f is the
fraction of the basin area covered by deep-frozen soil, de-
rived from soil freezing observations; θ is the soil moisture
index, calculated from the precipitation amount during the
preceding autumn period; η is the runoff coefficient from
the basin fraction with non-deep frozen soil calculated as a
function of θ ; a, b, c, θmin are the parameters derived from
hindcasts for the 30-year period before the reservoir filling
in 1982.

The operational forecast of water inflow volume into the
Cheboksary Reservoir for April–June period is issued just

before the beginning of this period (27 March) and then up-
dated 2–3 times during April–May. In this paper, the opera-
tional deterministic forecast (not updated, i.e. issued before
the beginning of April) is compared with the deterministic
forecast derived from the model-based ensemble-mean fore-
cast described below (see Sect. 3.2.2).

3.2 Model-based ensemble forecast technique and
verification measures

3.2.1 Modelling tools

Hydrological model

The ECOMAG (ECOlogical Model for Applied Geophysics)
is a semi-distributed process-based hydrological model de-
scribing snow accumulation and melt, soil freezing and thaw-
ing, water infiltration into unfrozen and frozen soil, evapo-
transpiration, the thermal and water regime of soil and the
overland, subsurface and channel flow with a daily time step
(Motovilov et al., 1999). The model accounts for measurable
watershed characteristics such as surface elevation, slope,
aspect, land cover and land use, soil and vegetation prop-
erties. The parameters are spatially distributed by partition-
ing the watershed into sub-basins (elementary basins). Pa-
rameterization of the sub-grid processes is described by Mo-
tovilov (2016). The model is driven by time series of daily
air temperature, air humidity and precipitation intensity.

The model was applied at an earlier time for hydrological
simulations in many river basins with highly varying sizes
and characteristics – from small- to medium-sized European
basins (Gottschalk et al., 2001) to the large Volga, Lena and
Mackenzie basins with watershed areas exceeding 1 million
km2 (Motovilov 2016; Gelfan et al., 2017).

In this study, a digital elevation model with 1 km× 1 km
spatial resolution was used for the basin discretization and
river network construction. A total of 1045 elementary basins
were delineated, with an average area of 340 km2. The model
forcing data for each elementary basin were interpolated
from the 157 weather stations’ data (see Fig. 1), employ-
ing the inverse distance method. Most parameters are phys-
ically meaningful and were derived through available mea-
surements of the basin characteristics (topography, soil and
vegetation properties).

The model was calibrated and validated against the
Cheboksary Reservoir daily water inflow observations be-
ginning from 1 January 1982 (the first year after the reser-
voir was filled to capacity) to 31 December 2016: the cali-
bration covered the period of 2000–2010; the rest of the data
were used for the model evaluation. The ECOMAG calibra-
tion procedure is described in detail by Gelfan et al. (2015).
It is worth emphasizing two specific aspects concerning this
procedure. First, the values of several key parameters pre-
assigned from literature or from the available measurements
are considered as the initial approximations of the optimal
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values, and the latter are sought within the neighbourhood
of the initial, pre-assigned values. Second, during the cali-
bration process, the ratios between the initial values of the
distributed parameter corresponding to different soils, land-
scapes and vegetation are preserved. This approach allows
for the integration of important hydrological knowledge into
the optimization procedure. The Nash and Sutcliffe (1970)
efficiency criterion NSE is adopted to represent the goodness
of fit of the simulated and measured variables.

Multi-site weather generator (MSFR_WG)

The Multi-Site FRagment-based stochastic Weather Gener-
ator (MSFR_WG) is a stochastic model that uses a Monte
Carlo simulation to generate time series of daily weather
variables (precipitation, air temperature and air humidity
deficit), retaining statistical properties, both spatial and tem-
poral, of the corresponding observed variables. This mod-
elling procedure is based on the so-called “spatial frag-
ments’ (SFR) resampling method” initially presented by
Gelfan et al. (2015). The SFR method is a modification
of the temporal fragments’ (TFR) method proposed by
Svanidze (1980) for the stochastic simulation of highly au-
tocorrelated time series.

The SFR resampling method includes the following steps.

1. N normalized fields (spatial fragments, SFRs) of
weather variables are computed on the basis of the avail-
able meteorological data. SFRs are computed for each
of N years of observations by dividing each daily value
of the specific variable by the corresponding spatially
averaged annual value.

2. Monte Carlo simulation of the synthetic time series
of M spatially averaged annual weather variables, re-
producing temporal statistical features of the corre-
sponding annual variables derived from observation
data, is conducted. Cross-correlation between annual
values of the simulated weather variables is taken into
account through the Cholesky’s decomposition method
(see e.g. Press et al., 2007).

3. The synthetic daily fields of weather variables are cal-
culated by multiplying the computed SFRs (see step 1)
by the Monte Carlo-simulated spatially averaged annual
value of the corresponding variables (see step 2). SRFs
are randomly chosen from the available set by the Latin
hypercube method (McKay et al., 1979).

The advantage of MSFR_WG is that it has a small number
of free parameters in comparison with the widely used multi-
site weather generators (see e.g. Khalili et al., 2011 and ref-
erences therein), and it does not require complex estimation
procedures. Such features typically indicate that the model
has high robustness.

3.2.2 Ensemble forecasting technique

The proposed ensemble forecasting procedure utilized in this
study was verified by producing hindcasts of water inflow
into the Cheboksary Reservoir from 1 April for 3 months
ahead (up to 30 June). The hindcasts cover a 35-year period
between 1982 and 2016. (Hereafter, we use the term “fore-
casts” for these hindcasts.) For each ith year of the verifica-
tion period (i= 1, 2, . . . , 35), the procedure consists of the
following steps:

1. Spin-up of ECOMAG-based simulations (“warm start”)
is conducted using meteorological observations data
prior to the forecast issue date (31 March) in order to
calculate the initial watershed hydrological state (soil,
snow and channel water contents, groundwater level,
soil freezing depth, etc.) that initializes the forecast. The
simulations start from the end of the previous freshet,
i.e. 8–9 months before the forecast issue date.

2. A weather scenario1 is selected from the NESP-member
ensemble of the observed weather or from the NWG-
member ensemble of the generated weather for the fore-
cast horizon (NESP= 51; NWG= 1000; see Sect. 4.3.1).

3. The daily inflow hydrograph is simulated by the ECO-
MAG model driven by the selected scenario.

4. The next weather scenario (step 2) is repeatedly selected
from the ensemble and calculation of the corresponding
inflow hydrograph (step 3). The corresponding ensem-
ble of N inflow hydrographs is formed (N =NESP or
N =NWG).

5. From each of the modelled hydrographs, the follow-
ing inflow characteristics are derived: (1) inflow volume
(hereafter referred to as W ), (2) maximum inflow dis-
charge (Qmax), (3) number of days with the inflow dis-
charge above the mean observed discharge for the fore-
cast horizon (Nq ) and (4) number of days with the in-
flow discharge above the mean maximum observed dis-
charge for the forecast horizon (Nqmax ).

6. Deterministic (ensemble mean) and probabilistic fore-
casts are derived and verified for each of the inflow char-
acteristics.

3.2.3 Verification measures

To verify deterministic and probabilistic model-based fore-
casts, as well as to compare them with each other and with
the operational data-driven forecast of water inflow into the

1Hereafter, by “weather scenario” we mean an array of weather
time series (daily precipitation amount, air temperature and humid-
ity deficit) that are used to drive the hydrological model for the fore-
cast horizon.
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Cheboksary Reservoir, we used the following, quite tradi-
tional, measures of the forecasts’ efficiency and skill.

For the deterministic forecast verification, the mean error,
relative bias, root-mean-squared error (RMSE) and Pearson’s
correlation coefficient r were used. In addition, for presenta-
tion, we used a Taylor diagram (Taylor, 2001), which com-
bines three forecast characteristics in one chart, namely the
forecast standard deviation, the RMSE and the correlation
coefficient between the observations and the forecasted val-
ues.

For categorical forecast verification, we used measures
that can be calculated from a contingency table (Ferro and
Stephenson, 2011), such as the probability of detection
(POD, which shows the correct forecast fraction of the ob-
served events), the false alarm ratio (FAR, which shows the
fraction of forecasts that did not occur), the frequency bias
(which shows correspondence of the observed and the fore-
casted events), the Heidke skill score (HSS, which shows
the advantage of the forecast as compared to a random fore-
cast), the Hansen and Kuipers score (KSS, which can detect
if the forecast is hedging) and the Symmetric Extremal De-
pendency Index (SEDI, which evaluates the performance of
the forecast of rare binary events).

The probabilistic ensemble forecasts’ performance was as-
sessed by several verification measures. The ability of fore-
casts to correctly predict the category of events that oc-
curred within several categories was measured by the ranked
probability score (RPS) (Wilks, 1995), which can also be
treated as the mean squared error of the probabilistic fore-
cast. The probability forecast efficiency relating to stream-
flow climatology was measured by the ranked probability
skill score (Wilks, 1995). To visualize the specifics of prob-
abilistic forecasts, three diagrams were employed. A predic-
tive Q–Q (quantile–quantile) plot (Laio and Tamea, 2007)
was used to assess the degree of correspondence between the
cumulative distribution function of predictions and the ob-
served values. A reliability diagram (Hartmann et al., 2002)
was used to plot the forecast probability against the relative
frequency of the observations in the corresponding forecast
probability bin. Finally, the discrimination diagram (Wilks,
1995) was used to show the frequency of each forecast prob-
ability for events and non-events.

A full list of the aforementioned verification measures and
their formulations, units and value ranges are presented in
Table S1 (Supplement).

4 Results and discussion

4.1 Calibration and evaluation of the hydrological
model

The hydrological model was calibrated and evaluated against
the daily time series of water inflow into the Cheboksary
Reservoir for the periods of 2000–2010, 1982–1999 and

2011–2016. The observed inflow data do not account for in-
flow from the upstream Nizhegorodskoe reservoir. Figure 2
compares hydrographs of the observed and the simulated
daily inflow discharges. The Nash–Sutcliffe efficiency for
daily inflow discharge is rather high (NSE= 0.80) and ranges
from 0.79 for the evaluation period to 0.83 for the calibration.
One can see that the model demonstrates good performance
with respect to this criterion. Additionally, a small difference
between the criteria estimated for the calibration and evalu-
ation periods confirms the model robustness (Gelfan et al.,
2015).

The model performance was also tested by comparison
of the observed and simulated inflow characteristics, which
were then used for the forecast verification and are listed in
Sect. 3.2.2. Figure 3 shows scatterplots of the observed and
simulated characteristics of the inflow into the Cheboksary
Reservoir in April–June. In general, the inflow volume is
well simulated, yet slightly underestimated for the high flows
(above 50 km3; see Fig. 3a). Maximum inflow discharge is a
highly uncertain characteristic but is still well simulated by
the model (Fig. 3c). The number of days above a certain in-
flow discharge threshold is a highly important characteristic
for various uses, e.g. waterways’ navigation and water sup-
ply. For the number of days above long-term (1982–2016)
mean inflow discharge during the period between April and
June, the model shows fewer days than the observed ones
(Fig. 3b) – 31 compared to 36 days, on average for the whole
period. For the number of days above long-term mean max-
imum inflow discharge the model also shows fewer days
(Fig. 3d) – 13 compared to 17 days, on average.

The relative bias of the inflow volume in April–June for
the whole period 1982–2016 is −3 %; the RMSE of the in-
flow volume (5.23 km3) is 55 % of the observed data stan-
dard deviation (σW = 9.41 km3). The relative bias of the
maximum inflow discharge is 5 % m3 s−1; the RMSE is
2321 m3 s−1, that is 30 % lower than the standard deviation
of the observed maximum inflow discharge (3385 m3 s−1).

The obtained results allow us to conclude that the devel-
oped model can be considered as a suitable tool for the long-
term hydrological forecasting of spring water inflow into the
Cheboksary Reservoir.

4.2 MSFR_WG: parameter estimation and model
testing

Time series of daily precipitation, air temperature and hu-
midity deficit observed at the meteorological stations located
at the Cheboksary Reservoir basin for 51 years (1966–2016)
are used to estimate the nine parameters of the developed
stochastic model. The parameters estimated by the method
of moments are shown in Table S2. The stochastic mod-
els were comprehensively tested for their ability to repro-
duce the main statistical characteristics of meteorological
processes at the Cheboksary Reservoir basin. For testing,
we only compared those characteristics of the observed and
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Figure 2. Observed and simulated daily discharges of inflows into the Cheboksary Reservoir.

Figure 3. Scatterplots for the observed and simulated characteris-
tics of inflow into the Cheboksary Reservoir during April–June:
volume W (a), the number of days above the mean inflow dis-
charge Nq (b), the maximum discharge Qmax (c) and the number
of days above the mean maximum inflow discharge Nqmax (d). The
blue line represents the linear fit. The black line represents the per-
fect fit. The grey shaded area denotes the variance band of ±1 SD
(standard deviation) of the respective observed values.

simulated time series, which are neither the parameters of
the model, nor a single-valued function of the parameters as
suggested in Gelfan (2010). Statistics of the 1000-member
Monte Carlo-generated ensemble of the daily meteorologi-
cal variables were compared with the following correspond-
ing statistics derived from observations: mean and variation

of annual and monthly values and autocorrelation functions
of daily and monthly values of the specific variables. Re-
sults demonstrating comparison between statistical proper-
ties of the observed and simulated series are shown in the
Supplement for spring months and for several selected sta-
tions (Figs. S1S–S8).

Figures S1 and S8 demonstrate the ability of the developed
weather generator to reproduce annual and monthly mean
values of air temperature, precipitation and humidity deficit.
Figure S8 demonstrates good correspondence between the
distributions of the observed and modelled precipitation, as
well as Fig. S2, in which a good match between the observed
and the modelled coefficient of variation can be seen. De-
spite some bias, the model errors do not appear to be sys-
tematic. The ability of the generator to preserve the spatial
structure of the weather variables was examined by evaluat-
ing the spatial correlation curves (Fig. S7) for temperature
and precipitation, which demonstrate a close match for both
daily temperature and precipitation.

4.3 Forecast verification

4.3.1 Ensemble (model-based) and operational
(data-driven) deterministic forecasts

We verified the two types of the ensemble forecasts (ESP-
based and WG-based) and compared them with each other
and with the operational forecasts of water inflow into the
Cheboksary Reservoir for April–June 1982–2016. To make
a deterministic forecast, the forecasted inflow characteris-
tics were averaged over the corresponding ensembles (51-
member in the case of the ESP-based forecast and 1000-
member for the WG-based forecast) to produce a single-
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Table 1. Statistics of the operational (Op.) and the ensemble (ESP and WG) deterministic forecasts of inflow into the Cheboksary Reservoir
for April–June in 1982–2016.

Inflow Obs. Mean Mean error Bias∗ RMSE

characteristics Op. ESP WG Op. ESP WG Op. ESP WG Op. ESP WG

W (km3) 33.4 32.9 32.3 33.5 −0.5 −1.1 0.1 −1 % −3 % 0 % 6.52 5.06 5.19
Qmax(m3 s−1) 9355 NA 9463 9958 NA 108 603 NA 1 % 6 % NA 1970 2244
Nq (days) 35.9 NA 35.9 36.1 NA 0 0.2 NA 0 % 1 % NA 8.0 8.8
Nqmax (days) 17.0 NA 16.2 17.1 NA −0.8 0.1 NA −5 % 1 % NA 7.4 8.2

∗ The measure abbreviations are defined in Table S1. NA – not available for the corresponding forecasts.

Figure 4. Errors of the ESP-based (a) and operational (b) forecasts of the April–June volume of water inflow into the Cheboksary Reservoir.
(Solid lines present boundaries of the acceptable error, which equalled ±0.674σW , where σW = 9.61 km3 is the standard deviation of the
observed inflow volume.)

value forecast of the desired characteristic: W , Qmax, Nq ,
Nqmax . Operational forecasts of inflow volume for the same
April–June periods of 1982–2016 were obtained from offi-
cial Roshydromet forecast bulletins (reports). All forecasts
were analysed to assess the forecast performance measures:
the mean absolute error, the bias and the RMSE. The results
are presented in Table 1.

First, the deterministic forecasts of the inflow in April–
June were compared to the operational forecasts for 1982–
2016. As shown in Table 1, the mean error of the opera-
tional forecasts appears to be quite low (around 1 %) and
close to those of the ESP and WG ensemble average values.
However, the operational forecasts’ RMSE values are signif-
icantly higher than those of the ESP and WG forecasts and
account for almost 70 % of the observed inflow volume vari-
ability σW = 9.61 km3. For the ESP- and WG-based forecasts
these values are around half of σW .

Figure 4 compares the inflow volume forecast errors of the
operational forecasts (Fig. 4a) with the ESP-based forecast
errors (Fig. 4b). The shaded area in the figures represents the
area of the acceptable error [−0.674σW ; 0.674σW ]= [−6.48;
6.48 km3]. In Russian operational forecasting practice, a
forecast is considered acceptable if its error falls into this
area, and the forecast acceptability is calculated as the ratio
of the acceptable forecasts to the whole number of forecasts.
According to the assumption of the Gaussian distribution
of the forecast errors, 50 % of the forecasts by climatology
should fall into this interval. It can be seen from Fig. 4 that
5 of the 35 ESP-based forecasts (in 1985, 1994, 2002, 2005
and 2011) and every third (12 of 35) operational forecasts
were not acceptable; i.e. the ESP-based forecast acceptabil-
ity is 89 % and that of the operational forecast is 66 %. Note
that the unacceptable forecasts in both cases occurred in the
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Figure 5. Normalized Taylor diagram of ESP-based (in blue) and
WG-based (in red) forecasts of the inflow volume W (circles), the
maximum inflow discharge Qmax (triangles), the number of days
with the inflow discharge above the mean Nq (squares) and the
number of days with the inflow discharge above the maximum
Nqmax (diamonds).

years when the spring precipitation amount was notably dif-
ferent from the corresponding climatic mean.

To compare the ESP-based and the WG-based forecasts,
we present them in the form of a Taylor diagram (Fig. 5;
Taylor, 2001), which combines three forecast characteristics
in one chart, namely, the forecast standard deviation, RMSE
and the correlation coefficient between the observed and the
forecasted values of the inflow characteristics. The values of
all characteristics are normalized by dividing the RMSE by
the standard deviation of the observations. This normaliza-
tion provides a demonstration of the forecast efficiency ex-
pressed in fractions of the observed standard deviation. As
long as the forecast RMSE is less than the standard deviation
of the observations, the forecast can be considered efficient
against climatology.

It can be seen from Fig. 5 that the ESP-based forecasts of
W ,Qmax andNqmax are slightly better correlated with the ob-
servations than the WG-based forecasts. Pearson’s r values
of the ESP-based forecasts are over 0.8 for all characteris-
tics, except for Nq . Forecasts of Nq are less correlated with
the observations, with r values for ESP-based and WG-based
forecasts equal to 0.73 and 0.63, respectively. Forecasts of
Qmax and Nqmax show normalized RMSE values around 58–
67 % of the standard deviation of the corresponding observed
characteristics.

For the purpose of reservoir management, it is often cru-
cial to determine whether the expected inflow characteris-
tic will exceed the corresponding mean value. To verify
the methodology’s capability of predicting this exceedance,
the observations and forecasts were converted into binary
vectors, with a value of 0 representing the event of non-
exceedance of the mean annual value and a value of 1 repre-
senting the event occurrence. For example, for W , the event Ta
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occurs with the exceedance of mean inflow volume during
April–June. The forecast binary measures assessed with the
use of the contingency tables and described in Table S1 are
shown in Table 2.

The forecasts show good detection estimates (even perfect
forQmax) for both model-based methodologies. However, as
the frequency bias is high, this might be the result of overpre-
diction, as with the high values of the FAR and KSS. For W
and Qmax, the forecast accuracy with a HSS of around 60 %
is better than the accuracy of random chance; this means that
the forecast is capable of detecting the occurrence of rare ex-
treme events, which is shown by high values of the SEDI.
Overall, the presented binary verification measures demon-
strate a slight advantage of the ESP-based forecasts over the
WG-based forecasts, though the differences are not substan-
tial.

Binary measures of the operational forecasts of inflow vol-
ume are worse than those of the model-based forecasts. For
instance, only 69 % of the observed events (exceedance of
mean inflow volume) are correctly forecasted by the current
operational methodology, and its accuracy relative to that of
random chance is less then 50 %. The ability of a user to de-
tect rare events on the basis of the operational forecast is also
much lower than with the help of ensemble forecasts.

Thus, both continuous (Table 1) and binary (Table 2)
model-based forecasts of inflow volume appear to be more
preferable, in general, than the corresponding operational
forecasts. However, as one can see from Fig. 4, there were
several years when the operational forecasts were more accu-
rate (in terms of the absolute error) than the ensemble ones.
We found that most often the operational forecast outper-
forms the model-based forecast in those years when the mod-
elled initial snow water equivalent (SWE) on the forecast is-
sue date notably differed from the observed SWE. Since the
latter is the main factor affecting the freshet volume, more
accurate (observed) initial snow conditions used in Eq. (2)
resulted in a more accurate forecast than the one initiated
from the simulated SWE.

4.3.2 Freshet of 2017: testing the ensemble
methodology

In the beginning of spring 2017, the basin’s pre-melt con-
ditions were close to climatology: snow water storage was
10 to 15 % above the long-term mean value, and soil wa-
ter content and freezing depth were close to the correspond-
ing mean values. However, the weather conditions during the
spring freshet formation appeared to be significantly differ-
ent from climatology. Anomalous warm and sunny weather
that settled over the basin in the first half of March led to the
commencement of snowmelt and river stage ascent at least
half a month earlier than the mean dates. The last decade
of months of March was, on the contrary, cold and damp,
and the precipitation amount was twice above normal for this
period. As a result, by the end of March the inflow volume

(5.13 km3) into the reservoir exceeded mean March inflow
by 32 %. Periods of intense snowmelt interchanged with cold
spells and a large amount of precipitation, including snowfall
during April and May 2017 (a number of stations even regis-
tered snowfall in June). Such diversity in weather conditions
during the snowmelt period and their difference from the cli-
matology resulted in a rather untypical regime of inflow into
the Cheboksary Reservoir.

The ESP-based forecasting technique was tested in oper-
ational mode during the freshet period of 2017. The fore-
casts were issued on 1, 15 and 27 March for the period from
1 April till 30 June. Figure 6 shows daily forecast ensembles
for this period compared to the observed inflow data.

Figure 6 shows the outcome of the anomalous weather
conditions that led to an earlier increase of the inflow in mid-
March (see Fig. 6a), which was not captured by the mean en-
semble hydrograph of the forecast issued on 1 March. How-
ever, several scenarios of the ensemble show the behaviour of
inflow to be similar to that observed. The forecast issued on
27 March showed the ongoing increase in inflow discharge;
however the colder weather conditions led to inflow stabi-
lization, not captured by the forecast. One can see visible
improvement of the mean ensemble hydrograph issued on
27 March (Fig. 6b) compared with the one issued on 1 March
(Fig. 6a).

Box plots of the ESP-based forecasts of different inflow
characteristics are presented in Fig. 7. All forecasts of in-
flow volume showed low errors (Fig. 7a), unlike the maxi-
mum discharge forecasts (Fig. 7b); however, the Qmax fore-
cast range envelops the observed maximum inflow discharge.
Both forecasts of number of days over thresholds showed
low errors (Fig. 7b and d); e.g. just before the beginning of
April we correctly forecasted a low freshet with the absence
of days when inflow discharge exceeds the mean maximum
discharge for the period of observations.

In 2017, Roshydromet also issued a forecast of spring wa-
ter inflow into the Cheboksary Reservoir on the basis of the
methodology presented above (Fig. 8). In contrast with the
results presented in Table 1 and Fig. 4, which demonstrate
the general advantage of the ESP-based forecasts over the
operational forecasts for 1982–2016, in 2017, the operational
forecast of the inflow volume appears to be better. A possi-
ble explanation is again found in the simulation errors of the
pre-melt SWE used as initial conditions for the ESP-based
forecast.

4.3.3 Probabilistic forecast

In this section, the operational forecast, which is issued in
deterministic form only, is not discussed.

One of the main advantages of ensemble forecasting is the
ability to assess the uncertainty that is nested in the future
possible behaviour of the hydrological system. The resulting
ensemble is used to create cumulative distribution functions
(CDFs) of the desired characteristic in j th forecast as
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Figure 6. The ESP-based forecast of daily inflow discharge for the period from 1 April till 30 June 2017 issued on 1 March (a) and
27 March (b). The thin blue lines represent the ensemble of the forecasted hydrographs, the bold blue line represents the mean ensemble
hydrograph and the red line represents the observed hydrograph of inflow into the Cheboksary Reservoir.

Figure 7. Box plots of the ESP-based forecast of the inflow volume (a), the number of days with the inflow discharge above the mean
observed discharge (b), the maximum inflow discharge (c) and the number of days with inflow discharge above the mean maximum ob-
served discharge (d) for the period from 1 April till 30 June 2017. The solid horizontal line shows the observed value of the corresponding
characteristic.

FM(j)=

m∑
i=1

fi(j), m= 1. . ., M; j = 1, . . ., N, (4)

where M refers to the forecast probability bins on the inter-
val [0; 1], N is the total number of forecasts and fi is the
probability of forecast in mth bin.

CDFs of the forecasted inflow volume W for the pe-
riod from 1 April to 30 June of 35 years (1982–2016) are
shown in Fig. 9. Three CDFs are combined in each plot:
two CDFs of forecasts calculated under ESP-based and WG-
based weather scenarios and the CDF of the observed inflow

volume in the specific year (CDFs of observations can be rep-
resented as the Heaviside step function). One can see from
Fig. 9 that for most of the years, the inflow is not far from the
most probable one; in other words, the CDF of the forecasts
crosses the CDF of observations at around 50 % probability.
For almost all years observed inflow lies within the range of
the ensemble. Exceptions are 1994, 2002, 2005 and 2011;
i.e. once every 8–9 years, on average, the ensemble forecast
range does not cover the observed inflow because of large
forecast errors.

To quantify the ability of forecasts to predict the probabil-
ity of an event occurring within the pre-assigned inflow cate-
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Table 3. Ranked probability score and skill score for the forecasts.

Inflow RPSESP RPSS (ESP vs. RPSWG RPSS (WG vs. RPSSmodified
characteristics climatology) climatology) (WG vs.

ESP)

W 0.33 0.38 0.38 0.28 −0.16
Qmax 0.43 0.28 0.49 0.20 −0.13

Figure 8. The ESP-based and operational forecasts of volume of
water inflow into the Cheboksary Reservoir for the period from
1 April till 30 June 2017 (the line indicates the observed value).

gories, we used the RPS measure. The forecast efficiency was
measured by the RPSS criterion, relating the verified forecast
to streamflow climatology (both RPS and RPSS formulations
are presented in Table S1).

Both forecasts demonstrate a moderate improvement over
climatology: according to the RPSS value, around 30 % on
average both for W and for Qmax (Table 3). Probably, ac-
counting for a seasonal weather forecast and conditioning
historical weather patterns on this forecast could result in a
greater improvement over the streamflow climatology; how-
ever a reliable seasonal weather forecast for the study region
is not available.

In addition, we compared the ESP-based and the WG-
based forecasts by setting the former one as a reference fore-
cast. The modified RPSS is formulated in this case as

RPSSmodified = 1−
RPSWG

RPSESP
. (5)

As one might expect from a comparison of the unmodified
RPSS measures, the modified one showed that the WG fore-
casts are less skilful than the ESP, with modified RPSS values
of −0.16 for W and −0.13 for Qmax.

To compare quantiles of the forecasted characteristics with
the quantiles of the corresponding observations, we used the
predictive Q–Q plot (Laio and Tamea, 2007). As one can see
from Fig. 10a, the predictive Q–Q plot of the inflow volume
forecasts demonstrates good agreement with the distribution
of the observations. This is fairly consistent for both method-
ologies and for all quantiles, but for rare events there is an
underestimation of the predictive uncertainty, expressed as

an offset from the 1 : 1 line in the upper right corner of the
plot. For the maximum inflow discharge (Fig. 10b), one can
see overprediction in both methodologies. However, the be-
haviour of ESP-based and WG-based forecasts of rare events
is different in terms of predictive uncertainty. In particular,
the WG-based forecasts of the events of low exceedance
probability appear to be closer to the 1 : 1 line.

Additionally, comparisons between the ensemble forecasts
of both types can be made based on the reliability and dis-
crimination diagrams presented in Figs. S9–S12.

Overall, all presented measures of the probabilistic fore-
cast performance are slightly better for the ESP-based fore-
casts than for the WG-based forecasts, though the differences
are not significant and hardly interpretable. At the same time,
verification measures obtained from the large ensemble of
the WG-based forecasts are expected to be more statistically
reliable, which is demonstrated in the next section for the two
measures, CDF and RPSS.

4.3.4 Ensemble size effect on the verification measures:
two examples

It can be seen from Fig. 9 that the CDFs appear to be close
to each other for both ensemble methodologies used. How-
ever, the sample variance of the CDF is significantly dif-
ferent due to a different number of scenarios in the ensem-
bles: 51 in the ESP-based ensemble compared to 1000 in
the WG-based ensemble. To illustrate this difference, we as-
sessed confidence bands for CDFs derived from both fore-
casting approaches. Two-sided confidence bands were ex-
pressed through the Dvoretzky–Kiefer–Wolfowitz inequality
as (e.g. Massart, 1990)

P

(
sup
x∈R

∣∣∣F̂n(x)−F(x)∣∣∣≥ ε)≤ 2exp
(
−2nε2

)
, (6)

where F(x) and F̂n(x) are the CDF’s ordinate and its empir-
ical estimation from a sample of size n, respectively; ε is the
constant depending on the significance level α as

ε =

√
1

2n
ln
(

2
1−α

)
. (7)

For the pre-assigned confidence probability p= (1−α), the
upper (U(x)) and the lower (L(x)) confidence bands of the
empirical CDF F̂n(x) are defined from Eqs. (5) and (6) as
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Figure 9. Cumulative probability distribution functions for W in April–June for all years between 1982 and 2016. The green line represents
the observed inflow, the blue line represents the ESP-based forecast and the red line represents the WG-based forecast.

Figure 10. Predictive quantile–quantile plots for inflow volume (a) and inflow discharge (b) forecasts.

U(x)=min[F̂ (x)+ ε,1] (8)

L(x)=max[F̂ (x)− ε,0]. (9)

Figure 11 demonstrates the difference between 95 % confi-
dence intervals of the ESP-based inflow volume forecast as
compared to the corresponding intervals of the WG-based
forecast. We believe that the presence of the mentioned dif-
ference should be taken into account by the ensemble fore-
cast developers when they use statistical verification mea-
sures for the assessment of forecast performance, as well as
by the users when they interpret the forecasts.

One can conclude from Table 3 that the RPSS criterion
demonstrates the advantage of the ESP-based probabilistic
forecast over the WG-based one as compared to climatology.

However, it is important to take into account that the RPSS
measure is strongly dependent on ensemble size and nega-
tively biased (see, for instance, Müller et al., 2005; Weigel et
al., 2007). A de-biased estimate of the RPSS can be formu-
lated as by Weigel et al. (2007):

RPSSD = 1−
RPS

RPSref+D
, (10)

where D is the correction term depending on the ensemble
size, the climatological probabilities and the number of cate-
gories. For a very large ensemble size, the correction term D

converges toward zero and the RPSSD converges towards the
RPSS.
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Figure 11. Cumulative probability distribution functions for W in April–June for selected years between 1982 and 2016 for the ESP-based
forecast (a–c) and the WG-based forecast (d–f). The shaded area presents the interval of 95 % confidence probability.

Figure 12. Negative bias of the RPSS estimate in dependence on
the ensemble size and the RPSS value.

Figure 12 demonstrates the dependence of the RPSS bias
on sample size built with the use of the approximation of D
presented in Weigel et al. (2007).

One can see from this Fig. 12 that using the 51-member
ensemble (i.e. the ESP-based ensemble), the bias can reach
tens of percent depending on the RPSS estimate. Using the
1000-member ensemble, the bias is close to zero.

5 Conclusions

The paper describes the flow forecasting methodology and
the preliminary results of its application to the long-term
forecasting of the water inflow into the Cheboksary Reser-

voir, one of the eleven major river reservoirs of the Volga-
Kama reservoir cascade. The methodology is based on a ver-
sion of the semi-distributed hydrological model ECOMAG
that allows an ensemble of inflow hydrographs to be gener-
ated using two different sets of weather ensembles for the
lead time period: observed weather data, constructed on the
basis of the ESP methodology, and synthetic weather data,
simulated by a weather generator. As mentioned in the Intro-
duction, we studied the following: (1) whether there is any
advantage of the developed ensemble forecasts in compar-
ison with the currently issued operational forecasts of wa-
ter inflow into the Cheboksary Reservoir, and (2) whether
there is any noticeable improvement in the probabilistic fore-
casts when using the WG-simulated ensemble compared to
the ESP-based ensemble.

Our findings can be summarized as follows.

1. For the 35-year period starting from the reservoir fill-
ing in 1982, both continuous and binary model-based
ensemble forecasts (issued in deterministic form) out-
performed the operational forecasts (currently used in
practice) of the April–June inflow volume. However, for
several years (including 2017), the operational forecasts
were more accurate in terms of the absolute error. We
found that the larger errors of the ensemble forecasts
in these years resulted from the errors in the modelled
initial snow water equivalent on the forecast issue date
compared with the observed SWE. The prospects for
improving the ensemble forecasts are in the assimilation
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of the observation data (accounting for their reliability)
on the forecast issue date. The model-based ensemble
approach allows for the number of the forecasted inflow
characteristics to be increased in comparison with the
operational forecast. In addition to the inflow volume
for the period of April–June, both the ESP-based and the
WG-based methodology provided acceptable forecasts
of the maximum inflow discharge, the number of days
with the inflow discharge above the mean observed dis-
charge and the number of days with the inflow discharge
above the mean maximum observed discharge for this
period. Thus, the ensemble methodology enhances the
information content of the forecast in comparison with
the operational one.

2. Overall, all the presented measures of the deterministic
and probabilistic forecast performance are slightly bet-
ter for the ESP-based forecasts than for the WG-based
forecasts, though the differences are not significant and
hardly interpretable. At the same time, the verification
measures obtained from the large ensemble of the WG-
based forecasts appear to be more statistically reliable
than the measures obtained from the ensemble size lim-
ited to the number of the historical years.

Currently we are in the process of fine-tuning the presented
forecast methodology for its practical tests during the freshet
of 2018.

In terms of outlook, it would be beneficial to develop the
further research and the corresponding procedures along the
following lines.

1. The initial (on the forecast issue date) basin conditions
can be refined through the assimilation of the available
observation data (starting with the snow observations)
into the hydrological model. Ensemble Kalman filtering
is seen as a promising procedure for this (e.g. McMillan
et al., 2013; Huang et al., 2017).

2. Medium-range and seasonal weather forecasts can be
used for developing the additional families of the
weather scenarios (both the ESP-based and the WG-
based) following e.g. methods presented by Verkade et
al. (2013) and Crochemore et al. (2016). This will allow
the hydrological forecast lead time to be increased.
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