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Abstract. The Saint-Venant equations are commonly used
as the governing equations to solve for modeling the spa-
tially varied unsteady flow in open channels. The presence
of uncertainties in the channel or flow parameters renders
these equations stochastic, thus requiring their solution in a
stochastic framework in order to quantify the ensemble be-
havior and the variability of the process. While the Monte
Carlo approach can be used for such a solution, its compu-
tational expense and its large number of simulations act to
its disadvantage. This study proposes, explains, and derives
a new methodology for solving the stochastic Saint-Venant
equations in only one shot, without the need for a large num-
ber of simulations. The proposed methodology is derived
by developing the nonlocal Lagrangian–Eulerian Fokker–
Planck equation of the characteristic form of the stochas-
tic Saint-Venant equations for an open-channel flow process,
with an uncertain roughness coefficient. A numerical method
for its solution is subsequently devised. The application and
validation of this methodology are provided in a compan-
ion paper, in which the statistical results computed by the
proposed methodology are compared against the results ob-
tained by the Monte Carlo approach.

1 Introduction

Unsteady open-channel flows are a common occurrence in
hydrology and hydraulics problems. They arise as a result of
the movement of water waves in natural or artificial channels
(Sturm, 2001). Understanding and tracing the movement of
such water waves along the channels is of great importance in

addressing engineering flow problems, including flood fore-
casting, flood control, hydrograph generation, and several
others (Chow, 1959). The technique used to approximate and
trace such water waves is known as flood routing, and the
governing equations that are commonly used to solve for the
unsteady flows in flood routing problems are known as the
Saint-Venant equations (Chanson, 2004).

Various uncertainties may add to the complexity of solving
the Saint-Venant equations (Gates and AlZahrani, 1996a; Er-
can and Kavvas, 2012a) and these may correspond to several
factors. Physical conditions of open channels may be uncer-
tain due to their high degree of variability (Sturm, 2001). One
example is Manning’s roughness coefficient, which greatly
depends on the channel vegetation, bed material, bedforms,
and even on the position of the free water surface (Chow,
1959; Sturm, 2001; Ercan and Kavvas, 2012a). With the un-
certainties in quantifying or characterizing these factors, the
roughness coefficient becomes extremely difficult to estimate
(Sturm, 2001), rendering it uncertain. Channel geometric pa-
rameters may also be uncertain. This includes the channel
bed slope (Ercan and Kavvas, 2012a) and the channel cross
section geometry, the latter of which may exhibit significant
spatial variability across a river due to its irregular form and
due to the changes it may undergo along the direction of flow
(Chow, 1959). Other uncertainties may also arise from lateral
inflows and initial conditions due to their spatial and/or tem-
poral variability (Liang and Kavvas, 2008), as well as from
the upstream boundary conditions due to the temporal vari-
ability of the inflows into the channel.

As a result of such uncertainties, the channel and flow
parameters may be considered spatially and/or temporally
random at the local scale of a river cross section, rendering
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the system behavior uncertain (Gates and AlZahrani, 1996a).
Therefore, deterministically solving the Saint-Venant equa-
tions in this case would no longer be providing a representa-
tive solution to the flood routing problem being considered.
In fact, in this study the governing partial differential equa-
tions (PDEs), i.e., the Saint-Venant equations, will be trans-
formed into stochastic PDEs because the channel and flow
parameters are now stochastic and can be described as ran-
dom functions (Liang and Kavvas, 2008). This means that
the dependent variables that will be solved for by these equa-
tions (e.g., flow velocity and depth) will also be spatiotem-
poral random functions. Hence, instead of solving for the de-
terministic values of the dependent variables, the goal will be
to solve for their statistical properties (Van Kampen, 1976),
which can be obtained at designated discrete time–space po-
sitions.

Two popular methods can be used for such a stochastic so-
lution to nonlinear problems: the finite-order analysis and the
Monte Carlo (MC) approach. Applying the expectation op-
erator, or any other statistical moment operator, to nonlinear
difference equations with stochastic parameters may result
in nonlinear expressions that are difficult, or even impossi-
ble, to simplify into terms involving the known moments of
the model parameters and the unknown moments of the de-
pendent variables (Gates and AlZahrani, 1996a). Finite-order
analysis overcomes this by performing a Taylor series expan-
sion of the difference equations about the expected values
of the parameters, from which higher-order terms are trun-
cated. For example, truncating the Taylor series after the first-
order term is known as the first-order approximation, which
is a good approximation when the system nonlinearity is not
too high, and when the stochastic parameters have relatively
small coefficients of variation (Dettinger and Wilson, 1981).
However, with highly nonlinear problems, instead of using
higher-order approximations of the finite-order method, it
may be required and more efficient to use full-distribution
methods such as the MC approach (Dettinger and Wilson,
1981).

The MC approach is well-known for simulating differen-
tial equations with stochastic parameters, and is used to de-
termine the distributions of the unknown stochastic depen-
dent variables (Freeze, 1975; Smith and Freeze, 1979; Bellin
et al., 1992). This method involves repeatedly solving the
governing equations in a deterministic fashion, varying the
stochastic parameters for each run, in order to obtain a set
of several realizations for each of the dependent variables.
When a sufficient number of realizations is obtained, they
can be used to determine the required statistical properties,
including the mean system behavior and the standard devia-
tion (Gates and AlZahrani, 1996b). Therefore, the MC simu-
lations require two models: one which generates realizations
for the stochastic parameters, and another (finite-difference
model) which deterministically solves the governing flow
equations for each realization (Gates and AlZahrani, 1996b).
The MC approach is generally accepted as the most robust

approach for uncertainty evaluation, as well as the bench-
mark for comparing other new methods (Scharffenberg and
Kavvas, 2011). The full distribution characteristics may be
estimated using the MC approach, which is more intuitive
than the finite-order methods (Gates and AlZahrani, 1996a).
However, the main drawback of the MC approach is its com-
putational expense due to the usual running of a large number
of simulations of the process under study in order to obtain
accurate results (Dettinger and Wilson, 1981).

To bypass the need for solving the unsteady open-channel
flow governing equations several times, a new methodology
is proposed in this study in order to solve for the expected
system behavior and variability in only one simulation. This
methodology involves upscaling the governing stochastic
differential equations from the point scale (at which they are
originally valid) to the field scale. Ensemble averaging has
been a common approach to upscale hydrologic equations
that are linear (Gelhar and Axness, 1983; Kitanidis, 1988;
Rubin and Dagan, 1989; Kapoor and Gelhar, 1994; Kavvas
and Karakas, 1996; Wood and Kavvas, 1999a, b) or nonlin-
ear (Mantoglou and Gelhar, 1987; Tayfur and Kavvas, 1994;
Horne and Kavvas, 1997; Dogrul et al., 1998), in which case
these equations are averaged to become deterministic differ-
ential equations. These developed deterministic differential
equations use statistical descriptions, such as the mean and
variance, to represent the values of the stochastic parame-
ters (Liang and Kavvas, 2008). However, most of the stud-
ies performing the ensemble averaging technique on non-
linear conservation equations used the regular perturbation
method, which includes linearization assumptions and which
only works for small fluctuations in the dependent variables
(Kavvas, 2003). Other techniques that have been applied,
which are not limited by small fluctuations, include the de-
composition method (Serrano, 1995), a combination of vol-
ume averaging with nonlinear dynamics (Duffy, 1996; Duffy
and Cusumano, 1998), as well as the theory of fractals and
multifractals (Puente, 1996). Nonetheless, due to some lim-
itations of such methods when used for stochastic nonlin-
ear hydrologic processes, the upscaling method used in this
study is chosen to be that of Kavvas (2003).

Kavvas (2003) developed general ensemble average con-
servation equations (to second order) for nonlinear and linear
hydrologic processes in order to determine their probabilistic
and mean behavior. The “master key” equations developed
may be used on any stochastic hydrologic process after being
rewritten as one or more linear/nonlinear stochastic ordinary
differential equations (ODEs). This utilization leads to a spe-
cial Lagrangian–Eulerian form of the Fokker–Planck equa-
tion (LEFPE) that models the time–space evolution of the
probability density of the dependent variables of any nonlin-
ear/linear stochastic dynamic process (Kavvas, 2003). Such
a methodology has been successfully applied to many hy-
drologic processes, including unsaturated water flow (Kim
et al., 2005b), root-water uptake (Kim et al., 2005a), solute
transport (Liang and Kavvas, 2008), snow accumulation and
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melt (Ohara et al., 2008), unconfined groundwater flow (Ca-
yar and Kavvas, 2009a, b), and kinematic open-channel flow
(Ercan and Kavvas, 2012a, b).

Noting that the characteristic forms of the Saint-Venant
equations are nonlinear ODEs, it is proposed in this study
to apply to them their corresponding master key equation
from Kavvas (2003). From this operation the corresponding
LEFPE of the Saint-Venant open-channel flow equations is
obtained, thus providing the ability to model the uncertain-
ties of the channel and flow parameters and to compute their
effect on the behavior of the system. Therefore, under the
appropriate initial and boundary conditions, the probability
density functions (PDFs) of the dependent variables can be
computed (to exact second order) through the LEFPE, and
the ensemble behavior of the system can be described.

The advantages of using the LEFPE in tackling the flood
routing problem greatly echo those of the classical Fokker–
Planck equation (FPE). In fact, the LEFPE directly solves
for the PDFs of the dependent variables of the system in both
time and space, it is linear in the variable being solved for
(i.e., in the PDF), and unlike the many simulations usually
performed for the MC approach, the LEFPE produces the
complete ensemble model results with only one single simu-
lation. As such, the LEFPE provides not only the mean and
variance of the process but also a complete description of the
evolution of the dependent variables’ PDFs in a computation-
ally efficient manner. Note that the LEFPE does not make any
linearization assumptions, it works with a wide-ranging pa-
rameter space, and the only assumption about the physical
process it makes is the finite correlation time for the process
(Ercan and Kavvas, 2012a).

Therefore, following from the above discussion, the main
objective of this study is to apply the upscaling method based
on the LEFPE approach in Kavvas (2003) to the characteris-
tic form of the stochastic Saint-Venant equations in order to
derive a new methodology that solves for the probability den-
sity of the dependent flow variables, and that quantifies the
expected behavior and variability of the system in one shot,
instead of running a large number of simulations.

2 Saint-Venant equations for unsteady open-channel
flow

The Saint-Venant equations, also known as the spatially var-
ied unsteady flow equations (Sturm, 2001), are the two gov-
erning equations used to describe an unsteady open-channel
flow problem that will be solved using the hydraulic rout-
ing technique (Chow, 1959; Viessman et al., 1977; Sturm,
2001). They consist of the continuity equation and the mo-
mentum equation which are used simultaneously in order
to solve for the two unknowns (velocity and depth, or dis-
charge and depth). The naming of these equations comes
from the French mathematician Adhémar-Jean-Claude Barré
de Saint-Venant who published the equations describing one-

dimensional unsteady open-channel flow in 1871 (Barré de
Saint-Venant, 1871).

Several assumptions are made when deriving these equa-
tions (Viessman et al., 1977; Sturm, 2001), including unidi-
rectional flow and uniform cross-sectional velocity, hydro-
static pressure, small channel bed slope, steady state esti-
mation of friction loss, and incompressible flow. Following
these assumptions, the Saint-Venant equations for unsteady
open-channel flow of an incompressible fluid in a rectangu-
lar, prismatic channel (with no lateral inflow/outflow) may be
written as follows (Viessman et al., 1977):

Continuity y
∂V

∂x
+V

∂y

∂x
+
∂y

∂t
= 0, (1)

Momentum
∂V

∂t
+V

∂V

∂x
+ g

∂y

∂x
= g (S0− Sf) , (2)

where V is the average flow velocity, y is the flow depth,
x is the position, t is the time, S0 is the slope of the chan-
nel bottom, Sf is the friction slope, and g is the accelera-
tion of gravity. When these assumptions are no longer valid,
the derived Saint-Venant equations will show some limita-
tions. Such limitations occur, for example, if the flow is not
one-dimensional (e.g., in flood plains or large rivers), if the
pressure is non-hydrostatic (e.g., presence of sharp geomet-
ric variations/bends or hydraulic jumps), if there are sharp
discontinuities (e.g., those caused by weirs or gates), or if
there are channel irregularities (Litrico and Fromion, 2009).
Therefore, keeping those limitations in mind is crucial for
the appropriate implementation of the derived Saint-Venant
equations.

2.1 Solution methods for the Saint-Venant equations

Since closed-form solutions to the Saint-Venant equations
have not been obtained due to the presence of nonlinear
terms, it has not been possible to solve these equations an-
alytically except when extreme simplifications are applied
(Sturm, 2001; Chaudhry, 2008). As a result, several nu-
merical techniques have been developed in order to solve
the Saint-Venant equations deterministically in their full
form, without major simplifications. The most frequently
used of these techniques are finite-difference methods (Ab-
bott and Ionescu, 1967; Fread, 1973; Beam and Warming,
1976; Fennema and Chaudhry, 1986; Garcia and Kahawita,
1986; Venutelli, 2002), which solve the governing equa-
tions explicitly or implicitly along a fixed or adaptive x–t
grid (Szymkiewicz, 2010). Finite-element methods are also
available for solving such unsteady flow equations (Coo-
ley and Moin, 1976; Szymkiewicz, 1991, 1995; Hicks and
Steffler, 1995), though they are usually considered to be
more effective for two- and three-dimensional flow prob-
lems (Szymkiewicz, 1991). While the standard finite-element
method may not be the most suitable or satisfactory method
for solving unsteady flow problems (Szymkiewicz, 2010),
the modified finite-element method (Szymkiewicz, 1995)
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seems to be as effective and robust in solving such problems
as the high-order finite-difference methods.

Furthermore, another approach to solve the Saint-Venant
equations may be utilized after realizing that these equa-
tions are hyperbolic PDEs (Chaudhry, 2008). This approach
is known as the method of characteristics (MOC; Abbott,
1966), which is one of the earliest and most exact meth-
ods for solving hyperbolic PDEs (Tannehill et al., 1997), and
which was used early on for solving the Saint-Venant equa-
tions (Amein, 1966; Woolhiser and Liggett, 1967; Lai, 1988).
The MOC may be used to transform a hyperbolic PDE into
a system of ODEs, which may be simpler to solve (Sturm,
2001). These ODEs are usually divided into two equations:
the characteristic equation (i.e., the ODE describing the char-
acteristic path), and the compatibility equation (i.e., the ODE
that describes the process behavior along that characteris-
tic path) (Hoffman, 2001). After this transformation by the
MOC, the finite-difference approximations of the derivatives
can then be applied to the characteristic form of the hyper-
bolic PDE, instead of applying them to its original form.
Note that in time and one-space dimensions, the character-
istic equations represent curves in the x–t plane along which
information propagates through the solution domain (Hoff-
man, 2001), and along which discontinuities in the deriva-
tives of the dependent variables propagate (Sturm, 2001).

From the several techniques available to solve for the
Saint-Venant equations, the MOC is chosen for this study.
This is because, as was mentioned in Sect. 1, the upscaling
technique based on the LEFPE approach in Kavvas (2003)
can be applied to hydrologic processes that are written as
one or more ODEs. As such, it is imperative for the progres-
sion of this study to transform the Saint-Venant equations
into their characteristic form in order to write them as a sys-
tem of ODEs. With two characteristic directions, the Saint-
Venant equations are transformed by the MOC into a sys-
tem of four ODEs: two characteristic equations and two cor-
responding compatibility equations. When finite-difference
approximations are applied to the characteristic form of the
Saint-Venant equations, the results can be numerically com-
puted along an irregular x–t grid formed by the intersec-
tion points of the characteristic curves (Gates and AlZahrani,
1996a).

2.2 Characteristic form of the Saint-Venant equations

Through a linear combination of the continuity and momen-
tum equations (Eqs. 1 and 2), the characteristic equations for
unsteady open-channel flow of an incompressible fluid in a
rectangular, prismatic channel with no lateral inflow can be
written as follows (Sturm, 2001):

Positive characteristic curve (C1)

dx1

dt
= V + c. (3)

Flow process condition to be satisfied along C1(
d(V + 2c)

dt

)
1
= g

(
S0,1− Sf,1

)
. (4)

Negative characteristic curve (C2)

dx2

dt
= V − c. (5)

Flow process condition to be satisfied along C2(
d(V − 2c)

dt

)
2
= g

(
S0,2− Sf,2

)
, (6)

where c is the wave celerity which is equal to
√
gy for a rect-

angular channel, and S0,2 is equal to S0(x2, t) (similarly for
the other S variables). The remaining variables are defined as
in Eqs. (1) and (2).

Equations (3) and (5) represent two different velocity ex-
pressions defining the two characteristic directions of the
Saint-Venant equations: the former defining the positive
characteristic curve (C1) with speed V + c, and the latter
defining the negative characteristic curve (C2) with speed
V − c. Equations (4) and (6) represent the compatibility
equations for Eqs. (3) and (5), respectively. Each compatibil-
ity equation for the flow process behavior should be satisfied
along its corresponding characteristic curve. The subscripts
in Eqs. (3) to (6) are used to differentiate between the two
total derivative operators which correspond to the two differ-
ent speeds along C1 and C2. As such, Eqs. (3) to (6) are seen
to describe the change of two functions along two different
paths: a function V + 2c that varies along C1, and another
function V − 2c that varies along C2. These functions are
known as the Riemann invariants (Chaudhry, 2008).

Therefore, the MOC transforms the two governing PDEs
into a system of four ODEs that are differentiated with re-
spect to time only, and no longer with respect to space. This
transformation provides the ability to use the upscaling tech-
nique based on the LEFPE approach in Kavvas (2003) on the
Saint-Venant equations in order to derive this study’s pro-
posed methodology involving the ensemble-averaged equa-
tions of stochastic unsteady open-channel flow.

3 Ensemble-averaged equations for the stochastic
unsteady open-channel flow

In this section, a new methodology for solving the stochastic
Saint-Venant equations will be introduced and derived, and
a numerical discretization scheme will be devised for it as
well. The proposed methodology aims at obtaining the sta-
tistical properties of the dependent variables of the unsteady
open-channel flow system in only one simulation, as opposed
to the large number of simulations usually involved in the
MC approach. The following derivation involves assuming
the Manning’s roughness coefficient as an uncertain param-
eter, but similar steps can be followed even when the uncer-
tainty is assumed to arise from other parameters.
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3.1 Development of the Fokker–Planck solution
methodology for the Saint-Venant equations

Following Kavvas (2003), a system of point-scale conserva-
tion equations can be written for a dynamical system as fol-
lows:

∂H (x, t)

∂t
= η(H ,A,f ;x, t), (7)

whereH (x, t) is the vector of all state variables of the hydro-
logic system of equations; A(x, t) is the tensor of parameters;
f (x, t) is the vector of forcing functions; η is a function of
H , A, and f ; x is the vector of spatial locations, and t is the
time. The initial condition for the above system is given as

H (x,0)=H 0. (8)

Under a second-order cumulant expansion, the general
Lagrangian–Eulerian form of the Fokker–Planck equa-
tion (LEFPE) for the previously defined dynamical system
was developed in Kavvas (2003, Eq. 25) to exact second or-
der (i.e., to the order of the covariance time of η) as shown
below:

∂P (H (xt , t) ; t)

∂t
=−

∂

∂Hj
{P (H (xt , t) ; t)

〈
ηj (H (xt , t) ,A(xt , t) ,f (xt , t))

〉
+

t∫
0

dsCovo

[
∂ηj (H (xt , t) ,A(xt , t) ,f (xt , t))

∂Hi
;

ηi (H (xt−s, t − s) ,A(xt−s, t − s) ,f (xt−s, t − s))
]



+
1
2

∂2

∂Hj∂Hi

2P (H (xt , t) ; t)

t∫
0

dsCovo
[
ηj (H (xt , t) ,

A(xt , t) ,f (xt , t)) ;ηi (H (xt−s, t − s) ,A(xt−s, t − s) ,
f (xt−s, t − s))

]}
(9)

where P(H (xt , t); t) is the probability density function of
the vector of state variables (H ) at location xt and at time t ,
the operator 〈•〉 is the ensemble average operator, s is a
time displacement, and Covo[•] is the time-ordered covari-
ance function as shown in the below equation (Van Kampen,
1974):

Covo
[
ηj (x, t1) ;ηi (x, t2)

]
=
〈
ηj (x, t1)ηi (x, t2)

〉
−
〈
ηj (x, t1)

〉
〈ηi (x, t2)〉 . (10)

Note that in Eq. (9), the real space location xt is known,
whereas the Lagrangian location xt−s is unknown. This La-
grangian location can be determined from the known loca-
tion xt by using a Lie operator as defined in Kavvas and
Karakas (1996):

xt−s =
←−
exp

− t∫
t−s

dτ 〈vl (xτ ,τ )〉
∂

∂xl

xt , (11)

where
←−
exp is the time-ordered exponential, and vl is deter-

mined from the characteristic curve equation corresponding
to a particular hydrologic/hydraulic conservation equation.
In the three-dimensional flow case, l takes on the values 1–
3. A first-order approximation of Eq. (11) can be written as
follows (Kavvas and Karakas, 1996):

xt−s = xt −

t∫
t−s

dτ 〈v (xτ ,τ )〉 , (12)

where v= [v1, v2, v3] in the general three-dimensional flow
case.

Solving the LEFPE, Eq. (9), under the appropriate initial
and boundary conditions provides the spatiotemporal evolu-
tion of the PDF of the vector of state variables (H ) for any
hydrologic system expressed in terms of Eqs. (7) and (8),
thus providing the ensemble behavior and variability of the
process with only one simulation. In addition, it is important
to note that the LEFPE, a parabolic PDE, is a deterministic
equation that is linear in its unknown variable P(H (xt , t),
t), unlike the original hydrologic system which would usu-
ally be stochastic and nonlinear. As such, the LEFPE pro-
vides great advantages in simplifying the stochastic solution
of the hydrologic system being considered.

Since the LEFPE was developed for a system of ODEs
(Eq. 7), and since the characteristic form of the Saint-Venant
equations is a system of four nonlinear ODEs (Eqs. 3 to 6),
it is proposed to apply to these equations the correspond-
ing LEFPE after making some substitutions and adjustments.
First, the friction slope (Sf) is computed using Manning’s for-
mula (Sturm, 2001). Then, the Riemann invariants are de-
fined as follows:

V + 2c = α, (13)
V − 2c = β. (14)

As such, Eqs. (3) to (6) can be written as a system of four
ODEs in terms of four state variables (x1, x2, α, β):

dx1

dt
=

3
4
α (x1, t)+

1
4
β (x1, t)≡ η1,t (x1, t)= η1,t (15)

(
dα
dt

)
1
= gS0 (x1, t)−

gn2 (x1, t)

k2 ·

1
4
[
α (x1, t)+β (x1, t)

]2
R4/3 (α (x1, t) ,β (x1, t) ,b;x1, t)

≡ ηα,t (x1, t)= ηα,t (16)

dx2

dt
=

1
4
α (x2, t)+

3
4
β (x2, t)≡ η2,t (x2, t)= η2,t (17)

(
dβ
dt

)
2
= gS0 (x2, t)−

gn2 (x2, t)

k2 ·

1
4
[
α (x2, t)+β (x2, t)

]2
R4/3 (α (x2, t) ,β (x2, t) ,b;x2, t)

≡ ηβ,t (x2, t)= ηβ,t (18)

where R denotes the hydraulic radius, n denotes Manning’s
roughness coefficient, and k denotes the conversion factor
between SI and US units for Manning’s formula. Note that
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the width of the channel (b) is not a function of x or t since
the equations are derived for a prismatic channel. Moreover,
g and k are also not functions of x or t since they are con-
stants. Equations (15) to (18) are now in the form of Eq. (7),
with an η function defined for each of the four ODEs, as
shown on their right-hand side. As such, it is clear that for a
vector of state variables H = [x1, x2, α, β], there is a vector
of functions η= [η1,t , η2,t , ηα,t , ηβ,t ]. The subscripts for the
η functions shown in Eqs. (15) to (18) represent the follow-
ing: subscript 1 represents the positive characteristic direc-
tion (C1), subscript 2 represents the negative characteristic
direction (C2), subscript α represents the compatibility equa-
tion along C1, and subscript β represents the compatibility
equation along C2.

Note that in equations to follow, the η functions will be in-
terchangeably represented by one of their two forms shown
on the right-hand side of Eqs. (15) to (18), whereas P(x1,
x2, α, β, t) may be substituted by P for simplicity. Such ty-
pographical simplifications will be used in order to reduce
the used space and to increase the readability and simplic-
ity of large equations. Therefore, considering some of the
above typographical simplifications, and applying the gen-
eral LEFPE in Eq. (9) to Eqs. (15) to (18), the LEFPE for the
Saint-Venant equations that would solve for the multivariate
PDF of the hydrologic state vector can be written to exact
second order as shown in Eq. (19) below.

∂P (x1,x2,α,β; t)

∂t
=

−
∂

∂x1


P (x1,x2,α,β; t)



〈
η1,t (x1, t)

〉
+

t∫
0

dsCovo

[
∂η1,t (x1, t)

∂x1
;η1,t−s (x1, t − s)

]
+

t∫
0

dsCovo

[
∂η1,t (x1, t)

∂x2
;η2,t−s (x2, t − s)

]
+

t∫
0

dsCovo

[
∂η1,t (x1, t)

∂α
;ηα,t−s (x1, t − s)

]
+

t∫
0

dsCovo

[
∂η1,t (x1, t)

∂β
;ηβ,t−s (x2, t − s)

]





−
∂

∂x2


P (x1,x2,α,β; t)



〈
η2,t (x2, t)

〉
+

t∫
0

dsCovo

[
∂η2,t (x2, t)

∂x2
;η2,t−s (x2, t − s)

]
+

t∫
0

dsCovo

[
∂η2,t (x2, t)

∂x1
;η1,t−s (x1, t − s)

]
+

t∫
0

dsCovo

[
∂η2,t (x2, t)

∂α
;ηα,t−s (x1, t − s)

]
+

t∫
0

dsCovo

[
∂η2,t (x2, t)

∂β
;ηβ,t−s (x2, t − s)

]





−
∂

∂α


P (x1,x2,α,β; t)



〈
ηα,t (x1, t)

〉
+

t∫
0

dsCovo

[
∂ηα,t (x1, t)

∂α
;ηα,t−s (x1, t − s)

]
+

t∫
0

dsCovo

[
∂ηα,t (x1, t)

∂x1
;η1,t−s (x1, t − s)

]
+

t∫
0

dsCovo

[
∂ηα,t (x1, t)

∂x2
;η2,t−s (x2, t − s)

]
+

t∫
0

dsCovo

[
∂ηα,t (x1, t)

∂β
;ηβ,t−s (x2, t − s)

]





−
∂

∂β


P (x1,x2,α,β; t)



〈
ηβ,t (x2, t)

〉
+

t∫
0

dsCovo

[
∂ηβ,t (x2, t)

∂β
;ηβ,t−s (x2, t − s)

]
+

t∫
0

dsCovo

[
∂ηβ,t (x2, t)

∂x1
;η1,t−s

(
x1,t−s , t − s

)]
+

t∫
0

dsCovo

[
∂ηβ,t (x2, t)

∂x2
;η2,t−s (x2, t − s)

]
+

t∫
0

dsCovo

[
∂ηβ,t (x2, t)

∂α
;ηα,t−s

(
x1,t−s , t − s

)]




+

1
2
∂2

∂x2
1

2P (x1,x2,α,β; t)

t∫
0

dsCovo
[
η1,t (x1, t) ;η1,t−s (x1, t − s)

]
+

1
2
∂2

∂x2
2

2P (x1,x2,α,β; t)

t∫
0

dsCovo
[
η2,t (x2, t) ;η2,t−s (x2, t − s)

]
+

1
2
∂2

∂α2

2P (x1,x2,α,β; t)

t∫
0

dsCovo
[
ηα,t (x1, t) ;ηα,t−s (x1, t − s)

]
+

1
2
∂2

∂β2

2P (x1,x2,α,β; t)

t∫
0

dsCovo
[
ηβ,t (x2, t) ;ηβ,t−s (x2, t − s)

]
+ other cross-covariance dispersion terms. (19)

Note that the LEFPE has the form of an advection–
diffusion equation. In Eq. (19), the first four terms on the
right-hand side represent the advection terms, while the re-
maining terms represent the diffusion terms. Within the ad-
vection terms, the expected values of the η functions are
the mean advection coefficients, while the integrals of the
ordered covariance functions added to them are the advec-
tion correction terms. However, it was shown in a study by
Kavvas and Wu (2002), which used a similar approach but
was applied to solute transport, that the advection correction
terms are negligible when compared to the mean advection
term. As a result, the magnitudes of the expectations of the
η functions are much larger than those of the integral terms
in the advection portion of the LEFPE, thus allowing the re-
moval of these integral terms. As an example, this simplifica-
tion can be mathematically represented for the first advection
term as shown in Eq. (20) below, and is similarly applied to
the other advection terms.〈
η1,t

〉
� Covo

[
∂η1,t

∂x1
;η1,t−s

]
,

〈
η1,t

〉
� Covo

[
∂η1,t

∂α
;ηα,t−s

]
,

〈
η1,t

〉
� Covo

[
∂η1,t

∂x2
;η2,t−s

]
,

〈
η1,t

〉
� Covo

[
∂η1,t

∂β
;ηβ,t−s

]
. (20)

Moreover, note that the cross-covariance dispersion terms
have not been explicitly written in Eq. (19). These terms in-
volve the ordered covariance between two different η func-
tions, ηi and ηj , where i 6= j . Examples of those include:

Covo
[
η1,t (x1, t) ;η2,t−s (x2, t − s)

]
,

Hydrol. Earth Syst. Sci., 22, 1993–2005, 2018 www.hydrol-earth-syst-sci.net/22/1993/2018/



A. Dib and M. L. Kavvas: Ensemble modeling of stochastic unsteady open-channel flow – Part 1 1999

Covo
[
η1,t (x1, t) ;ηβ,t−s (x2, t − s)

]
. (21)

However, all of the four η functions (η1,t ; η2,t ; ηα,t ; ηβ,t ) are
functions of the state stochastic variables (x1; x2; α; β). It
has been shown in Liang and Kavvas (2008) that the covari-
ance between any two of the different η functions is substan-
tially smaller in magnitude when compared to the autocovari-
ance of the η function of any one state variable. This leads to
another simplification in which all cross-covariance terms,
similar to those in Eq. (21), are neglected and removed from
the main equation. Such an approximation may break down
when the functions are similar, in the sense of their behavior
or even the existence of periodicity with close frequencies.
In such cases, the cross-covariance terms of the two η func-
tions may become closer in magnitude to the autocovariance
values, possibly invalidating their neglection. As a result of
these simplifications, Eq. (19) can be written as shown in
Eq. (22).

∂P (x1,x2,α,β; t)

∂t
=−

∂

∂x1

{
P
〈
η1,t (x1, t)

〉}
+

1
2
∂2

∂x2
1

2P

t∫
0

dsCovo
[
η1,t (x1, t) ;η1,t−s (x1, t − s)

]
−

∂

∂x2

{
P
〈
η2,t (x2, t)

〉}
+

1
2
∂2

∂x2
2

2P

t∫
0

dsCovo
[
η2,t (x2, t) ;η2,t−s (x2, t − s)

]
−
∂

∂α

{
P
〈
ηα,t (x1, t)

〉}
+

1
2
∂2

∂α2

2P

t∫
0

dsCovo
[
ηα,t (x1, t) ;ηα,t−s (x1, t − s)

]
−
∂

∂β

{
P
〈
ηβ,t (x2, t)

〉}
+

1
2
∂2

∂β2

2P

t∫
0

dsCovo
[
ηβ,t (x2, t) ;ηβ,t−s (x2, t − s)

] (22)

Until this point, there has been no approximation regarding
the covariance expressions in the diffusion coefficients of
Eq. (22). However, note that the η functions describe mo-
tions occurring in opposite directions, in a similar manner
to how α may describe a forward propagation motion and
β may describe a backward propagation motion, based on
their equations. Such backward and forward propagation di-
rections would be expected to have a relatively weak cor-
relation. As a result of this, and as a result of the order of
magnitude analysis performed in Liang and Kavvas (2008),
one final simplification can be applied to the LEFPE. This
simplification involves the approximation that the ηi random
functions have short memory with respect to t , and thus may
be approximated as delta-correlated. As a result, the covari-
ance integral term for any of the four functions can be written
as follows (where δ(s) is the Dirac delta function):

t∫
0

dsCovo
[
ηi,t ;ηi,t−s

]
=

t∫
0

Covo
[
ηi,t ;ηi,t−s

]
δ(s)ds

= Var
[
ηi,t
]
. (23)

Note that under the approximation of a delta-correlated co-
variance, the nonlocal LEFPE reduces to the classical FPE
(as it will be called henceforth), which is simpler to apply.
Including all of the simplifications discussed above, Eq. (19)
can be written as shown in Eq. (24).

∂P (x1,x2,α,β; t)

∂t
=

−
∂

∂x1

{
P
〈
η1,t (x1, t)

〉}
+

1
2
∂2

∂x2
1

{
2PVar

[
η1,t (x1, t)

]}
−

∂

∂x2

{
P
〈
η2,t (x2, t)

〉}
+

1
2
∂2

∂x2
2

{
2PVar

[
η2,t (x2, t)

]}
−
∂

∂α

{
P
〈
ηα,t (x1, t)

〉}
+

1
2
∂2

∂α2

{
2PVar

[
ηα,t (x1, t)

]}
−
∂

∂β

{
P
〈
ηβ,t (x2, t)

〉}
+

1
2
∂2

∂β2

{
2PVar

[
ηβ,t (x2, t)

]}
(24)

The validity of the preceding approximations will be checked
when the results of the proposed FPE methodology are com-
pared against the corresponding results obtained from the
MC approach. With the final version of the FPE being ready,
the last step is to determine the detailed expressions of the
expectations and variances of the η functions in Eq. (24). Af-
ter expanding these expressions based on their equivalence
as denoted in Eqs. (15) to (18), and after some manipulation,
Eq. (24) may be written as follows:

∂P (x1,x2,α,β; t)

∂t
=−

∂

∂x1

{
P

[
3
4
〈α (x1, t)〉+

1
4
〈β (x1, t)〉

]}
−

∂

∂x2

{
P

[
1
4
〈α (x2, t)〉+

3
4
〈β (x2, t)〉

]}
−
∂

∂α

{
P

[
gS0−

g

4k2

(
2
b

)4/3 〈
n2 (x1, t) ·

[
α (x1, t)+β (x1, t)

]2
·

{
8gb

[α (x1, t)−β (x1, t)]2 + 1
}4/3

〉]}

−
∂

∂β

{
P

[
gS0−

g

4k2

(
2
b

)4/3 〈
n2 (x2, t) ·

[
α (x2, t)+β (x2, t)

]2
·

{
8gb

[α (x2, t)−β (x2, t)]2 + 1
}4/3

〉]}

+
∂2

∂x2
1

{
P

[(
9
16

)
Var[α (x1, t)]+

(
1
16

)
Var[β (x1, t)]

+

(
3
8

)
Cov[α (x1, t) ,β (x1, t)]

]}
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+
∂2

∂x2
2

{
P

[(
1

16

)
Var[α (x2, t)]+

(
9

16

)
Var[β (x2, t)]

+

(
3
8

)
Cov[α (x2, t)β (x2, t)]

]}
+
∂2

∂α2

{
P

[
g2

16k4

(
2
b

)8/3

Var
[
n2 (x1, t)

·
[
α (x1, t)+β (x1, t)

]2
·

{
8gb[

α (x1, t)−β (x1, t)
]2 + 1

}4/3


+
∂2

∂β2

{
P

[
g2

16k4

(
2
b

)8/3

Var
[
n2 (x2, t)

·[α (x2, t)+β (x2, t)]2
·

{
8gb

[α (x2, t)−β (x2, t)]2 + 1
}4/3

]]}
. (25)

Denoting the advection terms with F and the diffusion terms
with D, Eq. (25) can be written in a simplified form as fol-
lows:

∂P (x1,x2,α,β; t)

∂t
=−

∂

∂x1
F1P −

∂

∂x2
F2P −

∂

∂α
FαP −

∂

∂β
FβP

+
∂2

∂x2
1
D1P +

∂2

∂x2
2
D2P +

∂2

∂α2DαP +
∂2

∂β2DβP. (26)

Equation (26) is the final analytical form of the FPE method-
ology proposed in this study for the probabilistic solution of
the stochastic Saint-Venant equations in one simulation. The
advection–diffusion form of Eq. (26) is clear, in which the
F terms are the advection coefficients, and the D terms are
their corresponding diffusion coefficients. With the mathe-
matical equations for the FPE methodology being derived,
the next step is to find a numerical scheme with which
Eq. (26) may be computed.

3.2 Numerical solution for the proposed
Fokker–Planck equation methodology

In order to apply the derived FPE methodology, the FPE
represented in Eq. (26) must be solved using an appro-
priate numerical scheme. In general, finite-difference and
finite-element methods, among others, have been widely
used to solve FPEs numerically. Many studies have com-
pared several such methods to determine how they perform
against each other in solving different FPEs. In their study,
Pichler et al. (2011) looked at the central finite-difference
method, the alternating directions implicit (ADI) method, as
well as finite-element methods. They mentioned that finite-
difference methods are computationally more economical
than finite-element methods as the number of dimensions in-
creases. Park and Petrosian (1996) performed a comparison
between the Chang and Cooper (1970) scheme, the schemes
presented in Larsen et al. (1985), and some implicit schemes
(including a fully implicit mid-point difference method).
They also studied the semi-implicit forms of these schemes
(e.g., the Crank–Nicholson scheme). They concluded that,

among these schemes, the best finite-difference method for
solving their FPEs was the Chang–Cooper scheme, as it was
the most robust and most stable over a wide range of param-
eters among the other methods tested in their study.

In fact, the Chang–Cooper scheme has been cited as one
of the most widely known schemes for solving the classical
FPE numerically. In their paper, Chang and Cooper (1970)
developed a practical numerical differencing scheme for the
solution of the one-dimensional classical FPE. This scheme
uses a centered difference for the diffusion term, a weighted
difference for the advection term, and requires that the
quasi-equilibrium solution to the FPE be satisfied exactly at
any given time along the mesh nodes. The Chang-Cooper
scheme, which has first-order convergence in space and time,
is a widely used scheme that ensures the non-negativity of
the solution, the conservation of the probability mass (in the
absence of any external sources or sinks), and the exact rep-
resentation of the analytical solution upon equilibration. As
a result, the Chang–Cooper scheme is highly accurate with
a relatively small number of required mesh nodes. While
Chang and Cooper (1970) developed and applied that scheme
to a one-dimensional FPE, Kim et al. (2005a) generalized
and applied the Chang–Cooper scheme to a two-dimensional
FPE. In a similar manner, for the case of this study, an at-
tempt is made to generalize the Chang–Cooper scheme to
the four-dimensional FPE shown in Eq. (26).

First, Eq. (26) is rewritten as follows:

∂P (x1,x2,α,β; t)

∂t
=−

∂

∂x1

[
F1P −D1

∂

∂x1
P

]
−

∂

∂x2

[
F2P −D2

∂

∂x2
P

]
−
∂

∂α

[
FαP −Dα

∂

∂α
P

]
−
∂

∂β

[
FβP −Dβ

∂

∂β
P

]
=−

∂

∂x1
J1−

∂

∂x2
J2−

∂

∂α
Jα −

∂

∂β
Jβ . (27)

Equation (27) is in the form of the continuity equation, in
which the J parameters may be interpreted as the probabil-
ity flux or probability current, whereas P (i.e., the proba-
bility density function) is considered as the state variable.
This equation can then be discretized in the following im-
plicit manner:

P n+1
i,j,k,l −P

n
i,j,k,l

1t
=−

J n+1
1;i+ 1

2 ,j,k,l
− J n+1

1;i− 1
2 ,j,k,l

1x1

−

J n+1
2;i,j+ 1

2 ,k,l
− J n+1

2;i,j− 1
2 ,k,l

1x2

−

J n+1
α;i,j,k+ 1

2 ,l
− J n+1

α;i,j,k− 1
2 ,l

1α

−

J n+1
β;i,j,k,l+ 1

2
− J n+1

β;i,j,k,l− 1
2

1β
, (28)
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where i: 0, 1, 2, . . . , NI denotes the domain of x1 in the di-
rection of theC1 curve; j : 0, 1, 2, . . . ,NJ denotes the domain
of x2 in the direction of the C2 curve; k: 0, 1, 2, . . . , NK de-
notes the domain of α; l: 0, 1, 2, . . . , NL denotes the domain
of β; and n: 0, 1, 2, . . . denotes the domain of time t . Follow-
ing the Chang–Cooper scheme, the expression for computing
variables between two nodes (e.g., at i+ 1/2) is defined by
the following expression, which is an analogue for the other
dimensions:

P n+1
i+ 1

2 ,j,k,l
=

(
1− λn+1

1;i

)
P n+1
i+1,j,k,l + λ

n+1
1;i P

n+1
i,j,k,l, (29)

where λ is a weighting factor. In the one-dimensional case,
Chang and Cooper (1970) developed the expression of the
weighting factor in a manner that would ensure the non-
negativity of the PDF solution and that would give proper
equilibration. In a similar manner, the same steps are fol-
lowed for this study in order to derive the expression for λ.
This expression, corresponding to Eq. (29), is shown below
and is an analogue for the other dimensions:

λn+1
1;i =

Dn
1;i+ 1

2 ,j,k,l
−

(
Dn

1;i+ 1
2 ,j,k,l

−1x1F
n

1;i+ 1
2 ,j,k,l

)
exp

[
1x1

F n
1;i+ 1

2 ,j,k,l

Dn
1;i+ 1

2 ,j,k,l

]

1x1F
n

1;i+ 1
2 ,j,k,l

{
exp

[
1x1

F n
1;i+ 1

2 ,j,k,l

Dn
1;i+ 1

2 ,j,k,l

]
− 1

} . (30)

Moreover, following the Chang–Cooper scheme, the expres-
sion for the J parameter in the x1 direction may be derived
to be represented as follows:

J n+1
1;i+ 1

2 ,j,k,l
=

F n
1;i+ 1

2 ,j,k,l

(
1− λn+1

1;i

)
−

Dn
1;i+ 1

2 ,j,k,l

1x1

P n+1
i+1,j,k,l

+

F n
1;i+ 1

2 ,j,k,l
λn+1

1;i +

Dn
1;i+ 1

2 ,j,k,l

1x1

P n+1
i,j,k,l . (31)

Equation (31), and its analogous equations for the other di-
mensions, can then be substituted into the discretized FPE,
Eq. (28), in order to provide the implicit finite-difference
form of the FPE methodology, shown in Eq. (32) below,
which can be numerically solved. Note that in the expression
of Eq. (32), each subscript (i, j , k, l) that is not followed by
a +1/2 or −1/2 is dropped from the expressions of F and
D for readability purposes; e.g., F n

2;i,j+ 1
2 ,k,l

is simplified and

written as F n
2;j+ 1

2
.
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Note that the derived FPE discretized in Eq. (32) was orig-
inally described and represented using the characteristic
method. As a result, the computed values of the state vari-
ables at a new time step would be solved at the intersection
of the characteristic curves C1 and C2 (see Eqs. 3 and 5). In
a similar manner, the values of P to be solved for in Eq. (32)
should be those corresponding to the positions of intersec-
tion between C1 and C2, i.e., when x1= x2. Hence, addi-
tional simplifications can be applied to Eq. (32), including
x1= x2= x and 1x1=1x2=1x. As such, since the vari-
ables x1 and x2 are now represented by one variable x, which
is the intersection position, their corresponding i and j sub-
script representations can be merged into a single represen-
tation, h, thus reducing the equation from four to three di-
mensions (x, α, β). Therefore, the PDF Pi,j,k,l can now be
represented as Ph,k,l , where h represents the domain of the
intersection position x. However, note that this does not af-
fect the computations of the F , D, and λ parameters for x1
and x2 since each one has its own different expression for its
calculation. With the above changes, Eq. (32) can finally be
rewritten as shown in Eq. (33).
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Equation (33) is the discretized version of the FPE that repre-
sents the proposed methodology of this study. A comparison
of Eqs. (25) and (26) provides the expressions for the F and
D parameters, while Eq. (30) and its analogues for the other
dimensions provide the expressions for the λ parameters, all
of which would then complete the solution of Eq. (33). This
equation has to be solved implicitly in order to compute the
ensemble behavior and variability of a hydrologic system de-
fined by the stochastic Saint-Venant equations, and it does
that by solving for the joint PDF of the state variables within
the x–α–β domain. Equation (33) provides an effective ap-
proach to solve for the ensemble behavior and variability of
the stochastic unsteady open-channel flow in a rectangular,
prismatic channel under uncertain roughness coefficient, by
running only one simulation. This proposed FPE methodol-
ogy can also be expanded to problems with uncertainties in
other channel or flow parameters. The performance of the
proposed FPE methodology is evaluated in a companion pa-
per by Dib and Kavvas (2018) which compares its results to
those obtained by the MC approach.

4 Summary and conclusions

This study proposed a new methodology to model the ex-
pected behavior and variability of a system described by the
stochastic open-channel flow equations. The governing equa-
tions that were used to represent the flood routing problem in
this study are the continuity and momentum equations, other-
wise known as the Saint-Venant equations. Many uncertain-
ties can add to the complexity of solving the Saint-Venant
equations in engineering routing problems. These uncertain-
ties may include uncertainties in the channel’s physical and
geometric properties, as well as uncertainties in the lateral
inflows and upstream boundary conditions, all of which ren-
der the Saint-Venant equations stochastic. As such, the de-
pendent variables that will be solved for by these equations
will also become stochastic, thus requiring that their statis-
tical properties be solved for at specific time–space loca-
tions. Therefore, with uncertain parameters, the Saint-Venant
equations have to be solved within a stochastic framework in
order to quantify the ensemble behavior and variability of
the system being considered. While the Mote Carlo method
is a viable approach for the solution of such a stochastic
unsteady open-channel flow problem, its computational ex-
pense and its large number of simulations act to its disadvan-
tage. Hence, a new methodology was proposed in this study
by which the statistical properties of the dependent variables
of the considered hydrologic problem may be obtained in
only one single simulation.

The proposed FPE methodology derived in this study
involved upscaling the governing stochastic differential
equations by developing their corresponding Lagrangian–
Eulerian Fokker–Planck Equation (LEFPE), thus transform-
ing the original stochastic equations into the framework
of a deterministic differential equation. The determinis-
tic LEFPE that describes the time–space evolution of the
probability density function of the unsteady open-channel
flow state variables, was developed following the method
in Kavvas (2003) after the governing Saint Venant equa-
tions were transformed into their characteristic form by using
the method of characteristics. Through simplifications, this
LEFPE was reduced to a classical FPE that could be solved
deterministically for the evolution of the probability density
of the state variables of the system. The obtained linear FPE
was, then, discretized in an implicit manner following Chang
and Cooper (1970). This provided the equations that may be
solved numerically, through only one simulation, in order to
determine the ensemble behavior and variability of a system
described by the stochastic open-channel flow equations. The
application and validation of this methodology, applied to an
open-channel flow problem with an uncertain roughness co-
efficient, is provided in a companion paper by Dib and Kav-
vas (2018), in which the statistical results of the proposed
FPE methodology are compared against the results obtained
by the MC approach.
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The open-channel flow problem considered in this study
was for a rectangular, prismatic channel under an uncertain
roughness coefficient. However, the proposed methodology
can be expanded to problems which assume uncertainties that
arise from other flow or channel parameters. For instance,
when parameters such as the channel bed slope or the chan-
nel width are assumed to be uncertain, their corresponding
representations in the equations will simply have to be in-
cluded in the expectation and variance expressions of the ad-
vection and diffusion coefficients for the α and β directions.
When lateral inflows/outflows exist and are uncertain, ad-
ditional terms corresponding to the lateral inflows/outflows
will have to be added to the Saint-Venant equations, and will
subsequently appear in the derived FPE. These additional
terms will also have to be included inside the expectation and
variance expressions. Hence, future research could entail in-
vestigating the uncertainties due to the channel slope, chan-
nel cross section, lateral inflows, and initial and boundary
conditions. Moreover, any number of such uncertainties may
be incorporated into this methodology at the same time by
simultaneously applying their corresponding changes to the
necessary equations. Therefore, applying the proposed FPE
methodology to systems which include more than one source
of uncertainty could be a further extension of the methodol-
ogy in its attempt to effectively describe such highly nonlin-
ear and stochastic systems.
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