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Abstract. China has suffered some of the effects of global
warming, and one of the potential implications of climate
warming is the alteration of the temporal–spatial patterns of
water resources. Based on the long-term (1960–2008) wa-
ter budget data and climate projections from 28 global cli-
mate models (GCMs) of the Coupled Model Intercompari-
son Project Phase 5 (CMIP5), this study investigated the re-
sponses of runoff (R) to historical and future climate vari-
ability in China at both grid and catchment scales using the
Budyko-based elasticity method. Results show that there is a
large spatial variation in precipitation (P ) elasticity (from 1.1
to 3.2) and potential evaporation (PET) elasticity (from−2.2
to −0.1) across China. The P elasticity is larger in north-
eastern and western China than in southern China, while the
opposite occurs for PET elasticity. The catchment proper-
ties’ elasticity of R appears to have a strong non-linear re-
lationship with the mean annual aridity index and tends to be
more significant in more arid regions. For the period 1960–
2008, the climate contribution to R ranges from −2.4 to
3.6 % yr−1 across China, with the negative contribution in
north-eastern China and the positive contribution in west-
ern China and some parts of the south-west. The results of
climate projections indicate that although there is large un-
certainty involved in the 28 GCMs, most project a consis-
tent change in P (or PET) in China at the annual scale. For
the period 2071–2100, the mean annual P is projected to
increase in most parts of China, especially the western re-
gions, while the mean annual PET is projected to increase in
all of China, particularly the southern regions. Furthermore,
greater increases are projected for higher emission scenarios.

Overall, due to climate change, the arid regions and humid
regions of China are projected to become wetter and drier
in the period 2071–2100, respectively (relative to the base-
line 1971–2000).

1 Introduction

Climate change has become increasingly significant (IPCC,
2013), and numerous studies have reported that climate
warming is likely leading to the alteration of the hydrological
cycle (Oki and Kanae, 2006; Jung et al., 2010). The dynamic
properties of the hydrological cycle are governed by the in-
teractions and feedbacks between atmospheric and land sur-
face hydrologic processes on a catchment scale. The poten-
tial consequences of anthropogenic climate change on the hy-
drological cycle have received significant attention over the
last 2 decades (Wang et al., 2012; IPCC, 2013).

Runoff (R), as a commonly adopted indicator of the hydro-
logic cycle, is critical to human lives and economic activities
(Milly et al., 2005). There is a great deal of previous work ex-
ploring the impact of climate variations on R, with the mo-
tivation stemming from the region’s vast resources (Chris-
tensen et al., 2004; Guo et al., 2009; Piao et al., 2010; Chen
et al., 2012; Harding et al., 2012; Wang et al., 2012; Y. P. Xu
et al., 2013), dangers of flooding (Kay et al., 2006, 2009, Kay
and Jones, 2012; Raff et al., 2009; Liu et al., 2013; Xiao et
al., 2013; Wang et al., 2013; Smith et al., 2014; Wu et al.,
2014, 2015), and agricultural water uses (Vano et al., 2010).
The most common practices in these previous studies are to
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use the hydrological models driven by the output from global
climate models (GCMs) to simulate the hydrological process
(e.g. R) under future climate change scenarios. However, the
key issue faced by such studies is the need to convert coarse-
resolution GCM outputs to local catchment-scale climatic
variables at a higher spatial resolution to serve as the input
to a hydrological model (Vano et al., 2015; Wu et al., 2015).
The impact assessments are resource-intensive and usually
subject to uncertainties related to the choice of hydrological
model, GCMs, emissions scenarios, and downscaling tech-
niques (Vano et al., 2014, 2015).

With the uncertainty in R due to climate change, sim-
ple tools able to provide robust estimates of this impact are
essential to support policy and planning decisions. Climate
elasticity, as an important indicator, provides a measure of
sensitivity of the changes in R due to the changes in cli-
mate. Schaake (1990) made the first attempt to introduce the
concept of elasticity and related the climate elasticity of R
to precipitation (P ). Since then numerous climate elastic-
ity methods have been developed for evaluating the hydro-
logic response to climate change all over the world (Schaake,
1990; Dooge et al., 1999; Sankarasubramanian et al., 2001;
Milly and Dunne, 2002; Fu et al., 2007; Zheng et al., 2009;
Ma et al., 2010; Yang and Yang, 2011; Yang et al., 2014;
Vano et al., 2015). Sankarasubramanian et al. (2001) pro-
vided a detailed category of climate elasticity methods for
modelling climate change impacts. One of the most common
methods is to analytically derive the sensitivity of R based
on the Budyko hypothesis, due to its clear theory and the fact
that it does not rely on a large amount of data (Yang and
Yang, 2011). More importantly, the Budyko-based elasticity
method can derive the climate elasticity and can also repre-
sent the impact of the catchment characteristics through the
parameters of the Budyko model. Accordingly, it is widely
applied for the assessment of the hydrologic impacts of cli-
mate change (Dooge et al., 1999; Zheng et al., 2009; Yang
and Yang, 2011; Yang et al., 2014).

China is a vast land, spanning many degrees of latitude
with complicated terrain, which results in a large regional
variation in climate elasticity. The investigation of the P elas-
ticity of R has been reported in many regions of China, such
as the Miyun Reservoir basin (Ma et al., 2010), Luan River
basin (X. Y. Xu et al., 2013), the headwater catchments of the
Yellow River basin (Zheng et al., 2009), Poyang Lake basin
(Sun et al., 2013), and Hai River and Yellow River basins
(Yang and Yang, 2011; Liu and McVicar, 2012). Recently
Yang et al. (2014) investigated the climate elasticity of R
for the 210 catchments of China based on the Budyko-based
elasticity approach. The results indicated that the P elastic-
ity exhibits a large regional variation, with a small range
in southern China, the Songhua River basin, and the north-
west and a large range in the Hai River basin, the Yellow
River basin, and the Liao River basin. Although the afore-
mentioned studies have certainly made advances in under-
standing the climate elasticity of R in China, our knowl-

edge about the responses of R to climate change over var-
ious temporal and spatial scales remains rather limited due
to the large regional variation in climate types and catchment
characteristics. The question of how climate change will af-
fect R over China in the future is also an important problem
to be addressed. Developing a more accurate and quantitative
understanding of the changing water resources over various
temporal and spatial scales under a changing environment is
therefore a high priority for China.

Based on the unique long-term (1960–2008) land sur-
face dataset of China and the climate projections from
28 GCMs of the Coupled Model Intercomparison Project
Phase 5 (CMIP5), the objectives of this research are (1) to
investigate the changes of R and climate variables and their
relationship at an interannual scale; (2) to quantitatively esti-
mate the climate elasticity and catchment properties’ elastic-
ity of R across China at both grid and catchment scales; and
(3) to predict climate change and the changes in R due to fu-
ture climate change for China from the CMIP5 projections at
both grid and catchment scales.

2 Data and methodology

2.1 Datasets

Monthly data of potential evaporation (PET) covering the
period 1960–2008 over China are provided by the Terres-
trial Hydrology Research Group of Princeton University
(Sheffield et al., 2006, 2012). The PET is estimated by
the Penman equation (Penman, 1948; Shuttleworth, 1993),
using the updated meteorological dataset obtained from
Sheffield et al. (2006, 2012). A long-term (1960–2008)
daily land surface dataset over China, including P , surface
runoff (RS), and baseflow (BS), with a 0.25◦ spatial reso-
lution, was obtained from the Land Surface Processes and
Global Change Research Group (Zhang et al., 2014). In this
dataset, P is driven by interpolating gauged daily precipi-
tation from 756 meteorological stations of the Chinese Me-
teorological Administration (CMA). RS and BS are derived
from the Variable Infiltration Capacity (VIC) model forced
by the gridded daily climate forcings (i.e. P , maximum and
minimum temperature, and wind speed). VIC model param-
eters, including the infiltration shape parameter, the second
and third soil layer depths, and the three parameters in the
base flow scheme, were estimated by using an optimization
algorithm of the multi-objective complex evolution of the
University of Arizona (Zhang et al., 2014). The simulated
monthly RS and BS match well with the observations at the
large river basins in China (Zhang et al., 2014). Compared
with the global product of a similar nature, this dataset pro-
vides a more reliable estimate of land surface variables over
China (Nijssen et al., 2001; Adam et al., 2006; Rodell et al.,
2004; Sheffield et al., 2006; Sheffield and Wood, 2007; Pan
et al., 2012). In this study, the data of P , RS, and BS are ini-
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Figure 1. Location of the main river basins in China. The numbers denote the river basins with increasing aridity index: (1) Southeast
Drainage (0.52); (2) Pearl River (0.64); (3) Yangtze River (0.81); (4) Southwest Drainage (1.19); (5) Huaihe River (1.19); (6) Heilongjiang
River (1.43); (7) Liaohe River (1.71); (8) Haihe River (2.14); (9) Yellow River (2.38); (10) Inner Mongolia River (4.41); (11) Qiangtang
River (4.70); (12) Qinghai River (6.68); (13) Xinjiang River (8.09), (14) Hexi River (8.63). The numbers in the parentheses indicate the
1960–2008 mean aridity index.

tially regridded onto 0.5◦ grids over China using the linear
interpolation method. All the daily data (P , RS, and BS) and
monthly data (PET) are then aggregated temporally for the
annual scale over China. The R was calculated by the sum
of RS and BS for each of the 0.5◦ grid points.

Climate projections from 28 CMIP5 GCMs (as shown
in Table 1) are provided by the Canadian Climate Data
and Scenarios (CCDS, http://climate-scenarios.canada.ca/
?page=main). These data, including simulations of surface
air temperature (T ), P , sea ice thickness, sea ice concen-
tration, snow depth, and near-surface wind speed, are sta-
tistically downscaled and regridded onto a common 1◦× 1◦

global grid by the CCDS. In this study, monthly P and
monthly T over China, including one historical simula-
tion for the period 1971–2000 and three emission scenarios
(RCP2.6, RCP4.5, and RCP8.5) for the future period 2071–
2100 from each of the 28 CMIP5 models and the multi-
model ensemble of 28 CMIP5 models, are used for the pro-
jections of climate change. The data are initially disaggre-
gated to 0.5◦ grids over China then corrected by using a
“delta change” method (Wu and Huang, 2016), on the basis
of the observed data of P and T as provided by the Climatic
Research Unit (CRU) of the University of East Anglia (Har-
ris et al., 2014).

Figure 2 shows the comparison of observed mean annual T
and P and the corresponding simulations from 28 CMIP5
models before and after bias correction for the 14 basins
in China. The basin number is consistent with that given in
Fig. 1. As shown, the uncorrected model simulations tend to
underestimate T and overestimate P for most of the basins,
with more uncertainties for the simulation of P than for T .

Compared to the uncorrected model results, the bias correc-
tion results represent large improvements and show a good
agreement with the observed values for these basins. There-
fore, the bias correction model simulations are acceptable for
the investigation of climate change projections in this study.

As the GCM data used only consist of P and T , the PET
of GCM is estimated by the Thornthwaite method (Thornth-
waite, 1948) and then corrected by a multiplicative bias cor-
rection method as follows:

PETcor,GCM,i = PETTh,GCM,i ×
PETPen,obs,i

PETTh,obs,i
, (1)

where PETcor,GCM,i and PETTh,GCM,i are bias-corrected an-
nual PET and the PET calculated from the Thornthwaite
method, respectively, for the ith grid point of the GCMs.
PETPen,obs,i and PETTh,obs,i are the 49-year (1960–2008) av-
erages of PET calculated from the Penman and Thornthwaite
methods, respectively, for the ith grid point.

Based on the T data from the CRU, the Thornthwaite
method is used to calculate PET to test the applicability of
Eq. (1). Figure 3 shows a comparison of annual PET calcu-
lated from the Penman method and that from the Thornth-
waite method corrected by Eq. (1) during the period 1960–
2008. It is clear that the corrected PET agrees well with the
PET from the Penman method, with the correlation coeffi-
cients of 0.94 and 0.958 at the catchment and grid scales,
respectively. This suggests that Eq. (1) can be acceptable for
the bias correction of PET in the GCMs.
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Table 1. CMIP5 GCMs used in this study. The GCM data were statistically downscaled and regridded onto a common 1◦× 1◦ global grid
from the Canadian Climate Data and Scenarios (CCDS).

No. Model Institution (country) Resolution

1 BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration,
1◦× 1◦

2 BCC-CSM1-1-m China

3 BNU-ESM
College of Global Change and Earth System Science, Beijing

1◦× 1◦
Normal University, China

4 CCSM4 National Center for Atmospheric Research, USA 1◦× 1◦

5 CESM1-CAM5 Community Earth System Model Contributors, USA 1◦× 1◦

6 CNRM-CM5
Centre national de Recherches Météorologiques/Centre

1◦× 1◦Européen de Recherche et Formation Avancée en Calcul
Scientifique, France

7 CSIRO-Mk3-6-0
Commonwealth Scientific and Industrial Research Organization

1◦× 1◦in collaboration with Queensland Climate Change Centre of
Excellence, Australia

8 CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 1◦× 1◦

9 EC-EARTH EC-EARTH consortium 1◦× 1◦

10 FGOALS-g2
LASG, Institute of Atmospheric Physics, Chinese Academy of

1◦× 1◦
Sciences and CESS, Tsinghua University, China

11 FIO-ESM The First Institute of Oceanography, SOA, China 1◦× 1◦

12 GFDL-CM3
13 GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, USA 1◦× 1◦

14 GFDL-ESM2M

15 GISS-E2-H
NASA Goddard Institute for Space Studies, USA 1◦× 1◦

16 GISS-E2-R

17 HadGEM2-AO
National Institute of Meteorological Research/Korea

1◦× 1◦
Meteorological Administration, South Korea

18 HadGEM2-ES
Met Office Hadley Centre (additional HadGEM2-ES

1◦× 1◦
realizations contributed by Instituto Nacional de Pesquisas
Espaciais), UK

19 IPSL-CM5A-LR
Institut Pierre-Simon Laplace, France 1◦× 1◦

20 IPSL-CM5A-MR

21 MIROC-ESM
Japan Agency for Marine-Earth Science and Technology,

1◦× 1◦
Atmosphere and Ocean

22 MIROC-ESM-CHEM
Research Institute (the University of Tokyo), and National
Institute for Environmental Studies, Japan

23 MIROC5
Atmosphere and Ocean Research Institute (The University of

1◦× 1◦Tokyo), National Institute for Environmental Studies, and Japan
Agency for Marine-Earth Science and Technology, Japan

24 MPI-ESM-LR Max-Planck-Institut für Meteorologie (Max Planck Institute for
1◦× 1◦

25 MPI-ESM-MR Meteorology), Germany

26 MRI-CGCM3 Meteorological Research Institute, Japan 1◦× 1◦

27 NorESM1-M
Norwegian Climate Centre, Norway 1◦× 1◦

28 NorESM1-ME
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Figure 2. Box plots of the simulation results of (a) mean annual T and (b) mean annual P and the bias correction results of (c) mean annual T
and (d) mean annual P from 28 GCMs for the period 1971–2000 in the 14 river basins. The boxes denote the interquartile model spread
(range between the 25th and 75th quantiles), with the horizontal line indicating the ensemble median and the whiskers showing the extreme
range of the 28 CMIP5 model simulations. The blue dotted lines denote the observed results of mean annual T and mean annual P for the
period 1971–2000. The basin number is consistent with that given in Fig. 1.

Figure 3. Comparison of annual PET calculated from the Penman method and the Thornthwaite method corrected by Eq. (1) during the
period 1960–2008 for (a) the 14 river basins and (b) all 0.5◦ grid points over China.

2.2 Sensitivity of runoff to climate and catchment
properties

The Budyko framework has been widely used to study basin-
scale water and energy balances. Two of the one-parameter
formulations of the Budyko curve proposed by Choud-
hury (1999) (Eq. 2; see also Yang et al., 2008) and Fu (1981)
(Eq. 3; see also Zhang et al., 2004) are expressed as

E = P
PET

(P n+PETn)1/n
, n ∈ (0,∞) (2)

E = P +PET−
(
P ω+PETω

)1/ω
, ω ∈ (1,∞), (3)

where n and ω are empirical parameters, representing the ef-
fects of other factors (e.g. land surface characteristics, the av-

erage slope, vegetation type or land use, and climate season-
ality) on the water–energy balance (Yang et al., 2008, 2014;
Roderick and Farquhar, 2011; D. Li et al., 2013). Yang et
al. (2008) calibrated the parameters n and ω using long-term
water balance data from 108 catchments from the non-humid
regions of China and found that these two empirical parame-
ters are linearly correlated.

Based on the Budyko hypothesis and assuming steady
state conditions, Roderick and Farquhar (2011) and Yang and
Yang (2011) derived the elasticity method to estimate the
contribution to R from the changes in climate (represented
by P and PET) and catchment properties as follows:
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dR
R
= εP ·

dP
P
+ εPET ·

dPET
PET

+ εn ·
dn
n
, (4)

where εP, εPET, and εn represent the elasticity coefficients
of P , PET, and catchment properties respectively and are ex-
pressed as

εP =
P

R

(
1−

∂E

∂P

)
(5)

εPET =−
PET
R

∂E

∂PET
(6)

εn =−
n

R

∂E

∂n
, (7)

where ∂E
∂P

, ∂E
∂PET , and ∂E

∂n
denote the first-order partial deriva-

tives of the Budyko equation with respect to P , PET, and
the parameter n. In this study, both Eqs. (2) and (3) are used
for the estimation of the elasticity of P , PET, and catchment
properties over China.

2.3 Trend estimate method

The Mann–Kendall (M–K) non-parametric test (Mann, 1945;
Kendall, 1975) is an effective tool for detecting the statisti-
cal significance of trends in the time series of meteorological
and hydrological variables (Yang et al., 2014; Wu and Huang,
2015). In this study, the M–K method is used to detect the
significance of monotonic trends in hydroclimatic time se-
ries. The non-parametric trend slope estimator developed by
Sen (1968) is used for the magnitude estimation of the trends
in a hydroclimatic time series.

3 Results

3.1 Interannual variability of climatic variables and
runoff

The standard deviations for annual P , PET, and R are com-
puted for each of the 0.5◦ grids in China, and the PET devi-
ation ratio (σPET/σP) and the R deviation ratio (σR/σP) are
calculated. The spatial distributions of PET deviation ratio
and R deviation ratio across China are displayed in Fig. 4a
and b. As shown, the PET deviation ratio is rather small in
most parts of China, especially the southern regions, while a
larger value is observed mainly in the Xinjiang region, where
there are greater aridity indices. Generally, atmospheric wa-
ter is enough to accommodate the limited PET in humid cli-
mates, which would lead to a limited response of PET to
P variability. Specifically, the interannual variability of PET
is more sensitive to that of P in arid climates (with water
limits) than in humid climates (with energy limits). In con-
trast to the PET deviation ratio, the R deviation ratio tends
to increase from arid climates to humid climates. The reason
for this is that, in arid climates, the catchment water supply is

Figure 4. Spatial distributions of (a) PET deviation ratio and
(b) R deviation ratio and (c) the relationship between R deviation
ratio and mean annual aridity index (φ) for all 0.5◦ grid points in
China.

very limited and gives priority to evaporation and soil storage
capability, which leads to little variation in R.

Figure 4c shows the relationship between the R deviation
ratio and mean annual aridity index (φ) for all 0.5◦ grids in
China. As indicated, φ is a major control for the R devia-
tion ratio under not very dry conditions (e.g. φ < 10); that is,
the R deviation ratio decreases with increased φ. However,
under very dry conditions (e.g. φ > 10) the R deviation ra-
tio becomes insensitive to φ, since in this case, other factors,
such as soil storage capacity, can also have a large impact on
the variation of R.
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Figure 5. Spatial distributions of the P elasticity of R across China from (a) Eq. (2) and (b) Eq. (3). Spatial distributions of the PET elasticity
of R across China from (c) Eq. (2) and (d) Eq. (3). Spatial distributions of the parameter elasticity of R across China from (e) Eq. (2) and
(f) Eq. (3).

3.2 Sensitivity of runoff to climate and catchment
properties

3.2.1 Climate elasticity

The P elasticity and PET elasticity of R based on Eqs. (2)
and (3) are estimated at each of the 0.5◦ grids in China.
As shown in Fig. 5, the spatial patterns of P elasticity and
PET elasticity from Eqs. (2) and (3) are almost the same
in all regions of China. There is a large spatial variation in
P elasticity and PET elasticity, i.e. ranging from 1.1 to 3.2
and from −2.2 to −0.1 across China, respectively. In partic-
ular, P elasticity is more significant in the north-eastern and
western areas than in southern China, which is in contrast
to PET elasticity. Figure 6 shows the relationship between φ
and climate (P and PET) elasticity. As shown, the P (PET)
elasticity first increases (decreases) and then decreases (in-
creases) with the increase of φ under not very dry condi-
tions (i.e. φ < 10). However, when φ becomes large enough

(e.g. φ > 10), both P and PET elasticity become insensitive
to φ.

The climate elasticity estimated for each of the 14 large
basins is shown in Table 2. The values of P elasticity are
in the range of 1.39–2.28, with a larger (∼ smaller) elastic-
ity in the Haihe River and Inner Mongolia River (Southwest
Drainage). A similar phenomenon is found for PET elastic-
ity, which suggests that Haihe River (Southwest Drainage) is
the most (least) sensitive to PET among the 14 basins. Over-
all the values of P elasticity and PET elasticity derived by
Eq. (2) are very close to those from Eq. (3), but the difference
between them tends to be larger for dry basins with increas-
ing aridity indices.

By using the estimates of climate elasticity derived by
Eq. (2), the change in R as a function of the percentage
change in P and PET is calculated for the 14 basins (Fig. 7).
The R is positively related to P and negatively related to
PET, and the magnitudes and patterns of the response of R to
changes in P and PET vary on different scales. Generally, the
R is more sensitive to climate in the Haihe River and Inner

www.hydrol-earth-syst-sci.net/22/1971/2018/ Hydrol. Earth Syst. Sci., 22, 1971–1991, 2018
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Table 2. The estimations of P elasticity, PET elasticity, and catchment properties’ elasticity of R in the 14 river basins of China based on
Eqs. (2) and (3). The basin number is consistent with that given in Fig. 1. The numbers in the parentheses indicate the 1960–2008 mean
aridity index.

Basin εP εPET εn or εω

no. Eq. (2) Eq. (3) Eq. (2) Eq. (3) Eq. (2) Eq. (3)

1 (0.52) 1.64 1.65 −0.64 −0.65 −0.24 −0.33
2 (0.64) 1.63 1.64 −0.62 −0.63 −0.41 −0.61
3 (0.81) 1.55 1.56 −0.55 −0.55 −0.57 −0.93
4 (1.19) 1.40 1.39 −0.40 −0.39 −0.73 −1.44
5 (1.19) 2.09 2.08 −1.08 −1.07 −1.03 −1.47
6 (1.43) 2.06 2.04 −1.05 −1.02 −1.25 −1.83
7 (1.71) 1.92 1.88 −0.91 −0.87 −1.35 −2.10
8 (2.14) 2.28 2.21 −1.29 −1.22 −1.89 −2.70
9 (2.38) 1.78 1.72 −0.79 −0.73 −1.53 −2.54
10 (4.41) 2.23 2.11 −1.22 −1.10 −2.78 −4.16
11 (4.70) 1.81 1.72 −0.82 −0.72 −2.17 −3.67
12 (6.68) 1.72 1.62 −0.73 −0.63 −2.28 −4.08
13 (8.09) 1.66 1.56 −0.65 −0.55 −2.26 −4.27
14 (8.63) 1.63 1.53 −0.64 −0.54 −2.26 −4.30

Mongolia River, while relatively weak sensitivity is found in
the Southwest Drainage and Yangtze.

3.2.2 Catchment properties’ elasticity

The spatial distributions of catchment properties’ elasticity
from Eqs. (2) and (3) are displayed in Fig. 5e and f. As
shown, the catchment properties’ elasticities for these two
equations are rather similar across China, and the values of
Eq. (3) are generally smaller than those from Eq. (2). Regard-
ing the spatial pattern, the catchment properties’ elasticity
is very weak (approximately equal to 0) in southern China
and some regions of north-eastern China, but it tends to be
more significant in some water-limited regions of north-west
China. Figure 6c shows the relationship between φ and the
parameter elasticity for all 0.5◦ grids in China. It suggests
that φ is a major control for catchment properties’ elasticity
across China; i.e. the catchment properties’ elasticity would
become stronger with increasing aridity indices. The catch-
ment properties’ elasticities estimated for the 14 large basins
are shown in Table 2. The catchment properties’ elasticity
shows a large spatial variation, ranging from−2.78 to−0.24
for Eq. (2) and from −4.3 to −0.33 for Eq. (3). Overall, the
changes in R are more sensitive to catchment properties in
arid basins with larger aridity indices, which is consistent
with the findings at the grid scale.

3.3 Climate change during 1960–2008

The annual trend magnitudes in P , R, PET, and aridity in-
dex during the period 1960–2008 are shown in Fig. 8a–d. As
indicated, both P and R show an increasing trend mainly in
the north-west and south-east regions and a decreasing trend
mainly in the central region and the North China Plain. A sig-

nificant increasing trend in PET is detected mainly in north-
eastern China and eastern China, while the decreases mainly
occur in most parts of western China. The aridity index tends
to show an increasing trend in most parts of China, indicating
an increasing risk of meteorological drought in these regions
during the past several decades. In contrast, the decrease of
aridity index is only found in some parts of western China.

3.4 Changes in runoff due to climate change
during 1960–2008

Using the estimates of climate elasticity from Eq. (2), the
contributions of P , PET, and climate (i.e. P and PET) to R in
China for the period 1960–2008 are calculated (as shown in
Fig. 8e–g). A positive contribution (up to 3.7 % yr−1) from P

to R is mainly recorded in western China, while a negative
contribution is found mainly in north-eastern China and the
North China Plain. Negative and positive contributions of
PET to R mainly occur in north-eastern China and western
China, respectively. The contribution of climate, i.e. the sum
of the contributions from P and PET, ranges from −2.4 to
3.6 % yr−1 across China. The spatial pattern of climate is
rather similar to that of P , showing a negative contribution
in north-eastern China and a positive contribution in west-
ern China and some parts of the south-east. In particular, the
largest positive contribution of climate occurs in the Tibetan
Plateau. The contributions of P , PET, and climate (i.e. P
and PET) to R in the 14 river basins for the period 1960–
2008 are shown in Table 3. A positive contribution of P is
detected in Southeast Drainage, Southwest Drainage, Qiang-
tang, Qinghai, Xinjiang and Hexi, while an opposite contri-
bution is found in other basins. In contrast, a negative con-
tribution of PET is found in most of the basins (except for
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Figure 6. The relationship between mean annual aridity index and
(a) P elasticity, (b) PET elasticity, and (c) parameter elasticity. The
blue points represent the case of Eq. (2), and the red points represent
the case of Eq. (3).

Qiangtang and Hexi). In general, there is an increased R in
Southeast Drainage, Southwest Drainage, Qiangtang, Qing-
hai, Xinjiang, and Hexi (from 0.06 to 1 % yr−1) and a de-
creased R in other basins (from −1.12 to −0.12 % yr−1).

3.5 Future climate change

Figure 9 shows the uncertainty range of the relative change
in mean annual P and PET in the basins for the period 2071–
2100 under the RCP2.6, RCP4.5, and RCP8.5 scenarios
as predicted by 28 CMIP5 models (relative to the base-
line 1971–2000). As shown, there is a large difference be-
tween different GCMs and emission scenarios, which high-
lights the uncertainty inherent in projections of climate
change. However, overall P is projected to increase in most
of the basins, and greater increases are projected for higher
emission scenarios. Meanwhile, greater increases tend to be
projected for more arid basins, suggesting a decreasing risk
of meteorological drought in the future. The average changes
(red dotted lines) of mean annual P for the 14 basins range
from 2.4 to 11.0 % in RCP2.6, from 4.2 to 16.0 % in RCP4.5,
and from 3.1 to 23.7 % in RCP8.5. The largest increase in the
RCP2.6 and RCP8.5 scenarios is found for the Qinghai River,
while the largest increase in the RCP4.5 scenario is projected
for the Hexi River. For PET, there is an increase projected
in all basins due to climate warming, with the largest and
smallest increases in the RCP8.5 and RCP2.6 scenarios, re-

spectively. However, a large uncertainty exists among the
GCMs, which is similar to that for P . Furthermore, the un-
certainty range tends to be larger with higher emission sce-
narios. The average changes (red dotted lines) of PET for
the basins range from 7.0 to 12.0 % in RCP2.6, from 13.5 to
22.2 % in RCP4.5, and from 27.9 to 49.8 % in RCP8.5. The
largest and smallest average increases are projected for the
Pearl River and Qiangtang River, respectively.

Figure 10 displays the multi-model ensemble median rel-
ative change in mean annual P and PET in China for the
period 2071–2100 (relative to the baseline 1971–2000). The
projected changes in P (or PET) have a similar spatial pat-
tern for the three emission scenarios; that is, P is projected
to show an increase in western China and the north-east,
and PET is projected to increase significantly in southern
China and some parts of the Tibetan Plateau, especially for
the RCP8.5 scenario. In addition, note that there are small
changes in P and significant increases in PET projected for
southern China. This would result in an increasing risk of
meteorological drought in the future.

3.6 Future changes in runoff due to climate change

Based on the estimates of elasticity from Eq. (2), the percent-
age changes in the contributions of annual P and PET, as
well as climate, to R from the 28 GCMs for the period 2071–
2100 are calculated for each of the 14 basins (relative to the
baseline 1971–2000). As shown in Fig. 11, the changes in P
contribution mainly follow the changes in P itself (Fig. 9).
A positive contribution from P is projected for most of the
basins, and larger contributions occur in more arid basins,
as well as in higher emission scenarios. Negative contribu-
tions of PET to R are projected for all basins due to the neg-
ative coefficients of PET elasticity. Smaller contributions of
PET are mainly found in the Southwest Drainage. In contrast,
larger contributions are projected mainly in the Huaihe River,
Haihe River, and Inner Mongolia River, where the percentage
decreases from the 28 models can be up to 25, 35, and 90 %
in the RCP2.6, RCP4.5 and RCP8.5 scenarios, respectively.

Climate change is projected to reduce the R in some hu-
mid basins, such as the Southeast Drainage and Pearl River,
where the average changes in the three emission scenarios
range from−22.83 to−3.0 % and from−23.6 to−3.5 %, re-
spectively (Fig. 11g–i). For other basins, particularly for arid
basins, the R is projected to increase due to climate change.
The largest average changes in R under the RCP2.6 and
RCP4.5 scenarios are found in the Qinghai River (12.85 and
16.18 %, respectively). For the RCP8.5 scenario, they are
found in the Qiangtang River (18.59 %). Note that there is an
obvious decrease in R (−17.59 %) projected for the Huaihe
River under the RCP8.5 scenario, which is mainly caused by
the larger negative contribution of PET.

Figure 12 shows the spatial distributions of the relative
changes in the contributions of annual P and PET as well
as climate to R in China for 2071–2100. This is based on the
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Figure 7. Contour plot of percentage R change due to the changes in P and PET for the 14 river basins. The P elasticity and PET elasticity
of R are estimated based on Eq. (2).

CMIP5 multi-model ensemble medians. Compared with the
baseline 1971–2000, the increases in R due to the changes
in P are projected in western China and some parts of north-
ern China, and this phenomenon is particularly significant in

the RCP8.5 scenario (up to 60.3 %). In contrast, the changes
in PET are projected to reduce the R in all of China, with the
larger decreases occurring mainly in the North China Plain,
north-eastern China, and some parts of western China. Over-
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Figure 8. Trend magnitudes in annual time series of (a) P , (b) R, (c) PET, and (d) aridity index for the period 1960–2008 and spatial
distributions of the contributions (unit: % yr−1) of (e) P , (f) PET, and (g) climate (i.e. P and PET) to R in China for the period 1960–2008.
The trend magnitudes are estimated by Sen’s method. Grey dots are shown as statistically significant positive/negative trends (p< 0.05).

all, climate change is projected to cause an obvious increase
(decrease) of R in western China (southern China) under any
emission scenario (Fig. 12g–i). This suggests that the arid re-
gions (humid regions) in China will become wetter (drier) in
the future.

4 Discussion

4.1 The estimation of elasticity

The Budyko-based elasticity method is applied to quan-
tify sensitivity of runoff to climate and catchment proper-
ties across China. Two Budyko models proposed by Choud-
hury (1999) and Fu (1981) are used for the comparison of the
estimation of the climate elasticity of R. The results suggest
that the climate elasticity is insensitive to the Budyko equa-
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Figure 9. Box plots of relative change (%) in mean annual P under (a) RCP2.6, (b) RCP4.5, and (c) RCP8.5 scenarios and in mean annual
PET under (d) RCP2.6, (e) RCP4.5, and (f) RCP8.5 scenarios calculated from 28 CMIP5 models in 14 basins for the period 2071–2100
(relative to the baseline 1971–2000). The boxes denote the interquartile model spread (range between the 25th and 75th quantiles), with the
horizontal line indicating the ensemble median and the whiskers showing the extreme range of the 28 CMIP5 model simulations. Red dotted
lines denote the average values of the multi-model ensemble. Blue dotted lines denote the 95 % significance levels’ range of the average
values of the multi-model ensemble. The basin number is consistent with that given in Fig. 1.

tions. The climate elasticity of R has been estimated in many
regions of China. For example, the values of P elasticity are
estimated as 2.4 for the Miyun Reservoir basin (Ma et al.,
2010), 2.6 for the Luan River basin (X. Y. Xu et al., 2013),
2.1 for the headwater catchments of the Yellow River basin
(Zheng et al., 2009), 1.4–1.7 for the Poyang Lake basin (Sun
et al., 2013), 1.7–3.1 for the Hai River basin (Xu et al., 2014),
1.1–2.0 for southern China, the Songhua River basin, and the
north-west, 2.1–4.8 for the Hai River basin, the Yellow River
basin, and the Liao River basin (Yang et al., 2014), and 1.6–
3.8 for the 63 catchments of China (Yang and Yang, 2011).
In addition, the PET elasticity is estimated as −1.04 for the
headwater catchments of the Yellow River basin (Zheng et
al., 2009) and from −1 to −0.2 for the Poyang Lake basin
(Sun et al., 2013). Those results are close to our results for
P elasticity ranging from 1.1 to 3.2 and for PET elastic-
ity ranging from −2.2 to −0.1 in China. It is worth not-
ing that the values of P elasticity tend to be larger in the
north-eastern and some parts of western China that are lo-
cated in arid climates. This is in good agreement with the
findings by Sankarasubramanian et al. (2001), which indi-
cated that a larger P elasticity occurs in more arid regions.
However, some parts of Xinjiang, which is more arid than

southern China, have smaller P elasticity. Meanwhile, some
parts of southern China, which is more humid than other re-
gions in China, have larger P elasticity (Fig. 5). In addition,
the Haihe River basin, located in a less arid climate than that
of the north-west, shows the largest P elasticity in China (Ta-
ble 2). A similar phenomenon is also introduced in Yang et
al. (2014). One of the major reasons for this difference may
be attributed to the impacts of human activities that alter the
patterns of R in these regions. In addition, uncertainties in
water budget data, such as the errors in the simulation of R
and in the estimation of PET, may also contribute to this dif-
ference.

The comparisons for the estimates of εn and εω suggest
that although the values of εn and εω are mainly dependent
on the parameters of Budyko models, the spatial pattern of εn
is consistent with that of εω at the 0.5◦ grid points over China
(Fig. 5e and f). Yang et al. (2008) indicated that the param-
eters n and ω from Eqs. (2) and (3) are linearly correlated.
We also conducted a regression analysis of εn and εω for all
0.5◦ grid points over China and found a strong linear correla-
tion between εn and εω(εω= 1.7061εn+ 0.0986, r2

= 0.96).
In addition, our results show thatR is more sensitive to catch-
ment properties (εn and εω) in the more arid regions (Fig. 5e
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Figure 10. The CMIP5 multi-model ensemble median relative change (%) in mean annual P under (a) RCP2.6, (b) RCP4.5, and (c) RCP8.5
scenarios and in mean annual PET under (d) RCP2.6, (e) RCP4.5, and (f) RCP8.5 scenarios in China for the period 2071–2100 (relative to
the baseline 1971–2000).

and f). The possible internal connection is that the arid re-
gions with less vegetation coverage and stronger evaporation
do not effectively hold the rainfall water that will be evapo-
rated, leading to the smaller proportion of rainfall for R.

4.2 Sensitivity analysis for PET calculation methods

We compare four PET calculation methods, including the
Penman method, the Thornthwaite method, the FAO-56
Penman–Monteith method (Allen et al., 1998), and the
Thornthwaite method corrected by Eq. (1), to test the ro-
bustness of the PET elasticity result subject to PET uncer-
tainties. In terms of mean annual PET as shown in Fig. 13a,
the Thornthwaite method gives relatively low PET among
the four methods, especially in arid basins (e.g. Qiangtang,
Qinghai, Xinjiang, and Hexi). This is in agreement with pre-
vious studies, which indicated that the Thornthwaite method
tends to underestimate PET in the arid areas (Hashemi and
Habibian, 1979; Malek, 1987; Garcia et al., 2004). In con-
trast, the mean annual PET values from the other three meth-

ods are quite consistent, especially the Penman method and
the Thornthwaite method corrected by Eq. (1). A similar re-
sult was also reported by Zeng and Cai (2016), which indi-
cated that estimations of water balance at both annual and
month scales are generally robust under various PET calcu-
lation methods (not including the Thornthwaite method). The
PET elasticity calculations from the four different PET data
for the 14 river basins are shown in Fig. 13b. The Thornth-
waite method yields stronger PET elasticity than the other
three methods in most of the basins, mainly due to the un-
derestimation of PET. However, the other three methods give
very similar results in all 14 basins. In summary, the esti-
mation of PET elasticity is robust according to the PET cal-
culations from the Penman method, the FAO-56 Penman–
Monteith method, and the Thornthwaite method corrected by
Eq. (1) but is not acceptable for the Thornthwaite method it-
self.

In general, the Thornthwaite method corrected by Eq. (1)
significantly improves the accuracy of PET (Figs. 3 and 13a).
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Figure 11. Box plots of relative change (%) in the contributions of annual P to R under (a) RCP2.6, (b) RCP4.5, and (c) RCP8.5 scenarios,
in the contributions of annual PET to R under (d) RCP2.6, (e) RCP4.5, and (f) RCP8.5 scenarios, and in the contributions of climate to R
under (g) RCP2.6, (h) RCP4.5, and (i) RCP8.5 scenarios calculated from 28 CMIP5 models in 14 basins for the period 2071–2100 (relative
to the baseline 1971–2000). The boxes denote the interquartile model spread (range between the 25th and 75th quantiles), with the horizontal
line indicating the ensemble median and the whiskers showing the extreme range of the 28 CMIP5 model simulations. Red dotted lines
denote the average values of the multi-model ensemble. Blue dotted lines denote the 95 % significance levels’ range of the average values of
the multi-model ensemble. The basin number is consistent with that given in Fig. 1.

However, it should be emphasized that the Thornthwaite
method is an empirical equation that neglects the effects of
atmospheric conditions, such as wind speed, humidity and
radiation (McVicar et al., 2012). In addition, Eq. (1) used for
the bias correction of PET is part of a delta method (Graham

et al., 2007; Sperna Weiland et al., 2010), which only con-
siders the average change but ignores the differences in the
standard deviation and the coefficient of variation between
the projection and baseline periods (Watanabe et al., 2012).
Therefore, a more physically based PET calculation method
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Figure 12. The CMIP5 multi-model ensemble median relative change (%) in the contributions of annual P to R under (a) RCP2.6,
(b) RCP4.5, and (c) RCP8.5 scenarios, in the contributions of annual PET to R under (d) RCP2.6, (e) RCP4.5, and (f) RCP8.5 scenar-
ios, and in the contributions of climate to R under (g) RCP2.6, (h) RCP4.5, and (i) RCP8.5 scenarios in China for the period 2071–2100
(relative to the baseline 1971–2000).

www.hydrol-earth-syst-sci.net/22/1971/2018/ Hydrol. Earth Syst. Sci., 22, 1971–1991, 2018



1986 C. Wu et al.: Responses of runoff to historical and future climate variability over China

Table 3. The contributions of P , PET, and climate (i.e. P and PET)
to R in the 14 basins of China for the period 1960–2008. The basin
number is consistent with that given in Fig. 1. The numbers in the
parentheses indicate the 1960–2008 mean aridity index.

Basin P PET P and
no. (% a−1) (% a−1) PET

(% a−1)

1 (0.52) 0.19 −0.13 0.06
2 (0.64) −0.03 −0.09 −0.12
3 (0.81) −0.07 −0.07 −0.14
4 (1.19) 0.14 −0.01 0.13
5 (1.19) −0.18 −0.27 −0.45
6 (1.43) −0.35 −0.31 −0.66
7 (1.71) −0.57 −0.34 −0.91
8 (2.14) −0.74 −0.38 −1.12
9 (2.38) −0.38 −0.04 −0.42
10 (4.41) −0.40 −0.26 −0.66
11 (4.70) 0.99 0.01 1.00
12 (6.68) 0.43 −0.01 0.42
13 (8.09) 0.84 −0.02 0.82
14 (8.63) 0.11 0.08 0.19

(such as the Penman method) needs to be considered to fully
understand the PET calculation uncertainties in the projec-
tions of climate change.

4.3 The projections of climate change and runoff

The hydrological impacts of climate change have been inves-
tigated in many regions of China, such as the Hanjiang basin
(Chen et al., 2007; Guo et al., 2009), the catchment of the
Loess Plateau (Wang et al., 2013), the Qingjiang River basin
(Chen et al., 2012), the Qiantang River basin (Y. P. Xu et al.,
2013), the Songhuajiang River basin (Su et al., 2015), the
south-eastern Tibetan Plateau (F. Li et al., 2013), the Pearl
River basin (Yan et al., 2015), the Xin River basin (Zhang
et al., 2016), the subcatchments of the Yangtze and Yellow
River basins (Xu et al., 2011), the Huang-Huai-Hai region
(Lu et al., 2012), and 10 major river basins in China (Wang
et al., 2012). There is a large uncertainty involved in these
impact studies, which results in a large difference in cli-
mate projections. For example, Wang et al. (2012) indicated
that the prevailing pattern of “north dry and south wet” in
China will likely be exacerbated under future climate warm-
ing. However, the results of most GCMs in this study suggest
that the arid regions and humid regions of China are pro-
jected to become wetter and drier in the future, respectively.
The main difference between the two studies is the use of dif-
ferent climate models, emission scenarios, and time periods.
This also demonstrates that the results of climate projections
should be taken with caution, since the regional climate sim-
ulations (especially of precipitation) from the GCMs are still
not robust at the present stage.

Figure 13. (a) Mean annual PET calculated from the four meth-
ods for the 14 river basins of China during the period 1960–2008.
(b) PET elasticity calculated from Eq. (2) based on the four PET
data for the 14 river basins of China during the period 1960–2008.
The basin number is consistent with that given in Fig. 1.

This study focuses on the hydrological change due to cli-
mate change (i.e. changes in P and PET), while the effects
of the variability of catchment properties (e.g. land cover
change, groundwater and river water extraction, urbaniza-
tion, irrigation) on the hydrology are overlooked here. Most
of the available GCMs lack key regional feedback processes
involving land use, such as forest plantations, irrigation, and
urbanization feedbacks that are critically important through-
out China (Piao et al., 2010). The projected changes in catch-
ment properties therefore need to be involved in the GCMs
to account for their hydrological impacts. In addition, recent
studies indicated that plant responses to increasing CO2 tend
to keep more water on land, hence resulting in a greater in-
crease inR (Milly and Dunne, 2016; Swann et al., 2016); that
is to say, the hydrological models (e.g. VIC model), without
the schemes of the plant stomatal responses to CO2, would
lead to an underestimation of R under high CO2. Therefore,
the implications of plants needing less water under high CO2
should be included in the assessment of hydrological impacts
of climate change.
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4.4 Uncertainties

Generally, a multitude of sources of uncertainty are involved
in the impact assessment of climate change. In this study, un-
certainty mainly comes from the GCMs, emission scenarios,
the elasticity method, and the estimation error of the water
budget data. To highlight the uncertainty from the GCMs, the
28 GCMs, as produced by different research institutes around
the world, are used for the comparison of climate change pro-
jections. There is a large difference in the projections of P
and PET among the 28 GCMs. In particular, the uncertainty
range of P tends to be larger for more arid regions, while
the uncertainty range of PET tends to be larger for more hu-
mid regions (Fig. 9). This highlights the impact of potential
misleading conclusions if only one climate model were to
be used for the impact assessments. The large uncertainty
driven by the GCMs in relation to the hydrological impacts
of climate change has been reported in many previous stud-
ies (Kay et al., 2009; Prudhomme and Davies, 2009; Chen et
al., 2011; Teng et al., 2012; Liu et al., 2013; Wu et al., 2014,
2015). It is worth noting that although the projected ranges
of P and PET show large variability in various GCMs, most
project a consistent change (i.e. increase) in P and PET for
the future period (Fig. 9). In contrast, the uncertainty from
the emission scenarios is smaller than that from the GCMs,
since the projected changes in P (or PET) show a similar
pattern under all emission scenarios (Fig. 9). The main differ-
ence is that the projected changes tend to be more significant
in higher emission scenarios.

The elasticity equation (i.e. Eq. 4) used in this study is
driven from the linear approximation of the Budyko equa-
tion (Eqs. 2 and 3) by neglecting the higher order. Such ap-
proximation would possibly lead to uncertainty in the esti-
mation of climate elasticity. Yang et al. (2014) indicated that
the error in the estimation of elasticity tends to increase with
increasing changes in P and PET, as well as the increased
parameter of the Budyko equation. Future research is needed
to quantify the effects of the errors on the estimation of elas-
ticity under various climate conditions.

In addition to uncertainty in PET calculation (as discussed
in Sect. 4.2), there are also uncertainties associated with the
estimates of other water budget components, such as R. As
shown in Fig. 14, the sensitivity of climate (i.e. P and PET)
elasticity to R varies considerably between basins and tends
to be larger in more humid basins. Moreover, PET elasticity
is more sensitive to changes in R compared with P elasticity
for all 14 basins. As indicated by Zhang et al. (2014), al-
though the R is realistically estimated for most of the basins
(especially for humid basins) in China with a small relative
error, there is still a large relative error for few arid basins
in western China due to the lack of meteorological observa-
tions. Therefore, the large errors in simulated R of the VIC
model may result in large uncertainties in the elasticity cal-
culation, particularly in western China. Also note that some
other natural water sources, such as snow and glaciers, which

Figure 14. Comparison of changes in (a) P elasticity and (b) PET
elasticity in response to changes in R for the 14 river basins of
China. The basin number is consistent with that given in Fig. 1.

may contribute to R, are overlooked in this study. Lute and
Abatzoglou (2014) highlighted the importance of extreme
snowfall events in shaping the interannual variability of the
water balance. The melting of snow and glaciers is generally
significant at a seasonal timescale in some high-altitude re-
gions of China. Neglecting the effects of snow and glaciers
would lead to a bias in the modelling of R for these regions.

5 Conclusion

In this study, the Budyko-based elasticity method was used
to investigate the responses of runoff to historical and fu-
ture climate variability over China at both grid and catch-
ment scales. The climate and catchment properties’ elastici-
ties of runoff were estimated based on the long-term (1960–
2008) land surface data from Zhang et al. (2014). Twenty-
eight GCMs with three emission scenarios from the CMIP5
were collected for the projections of climate change and its
contribution to runoff in China during the period 2071–2100.
The uncertainties associated with the estimates of PET, R,
and climate elasticity, as well as climate projections, are dis-
cussed in detail. The main findings are summarized as fol-
lows.

1. The interannual variability of PET is more sensitive to
that of P in more arid regions, while the opposite oc-
curs in the response of interannual variability of R to
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that of P . A large spatial variation exists in P elasticity
(from 1.1 to 3.2) and PET elasticity (from−2.2 to−0.1)
across China. The P elasticity is larger in north-eastern
and western China than in southern China, which is
opposite to that of PET elasticity. Among the 14 river
basins, the Haihe River and Southwest Drainage have
the largest and smallest climate elasticities, respectively.
The catchment properties’ elasticity of R is sensitive to
mean annual aridity indices and tends to be stronger in
more arid regions with increasing aridity indices.

2. For the period 1960–2008, the positive (negative) con-
tributions from P to R are mainly found in western
China (north-eastern China and the North China Plain),
and the positive (negative) contributions of PET mainly
occur in western China (north-eastern China). Over-
all, the climate contribution to R ranges from −2.4 to
3.6 % yr−1 across China during the period 1960–2008,
with a negative contribution in north-eastern China and
a positive contribution in western China and some parts
of the south-west. The largest positive and negative con-
tributions of climate occur in the Qiangtang and Haihe
River basins, respectively.

3. There is a large uncertainty in climate projections
among the 28 GCMs. Moreover, the uncertainty range
of the P (PET) projection tends to be larger for more
arid (humid) regions. However, most of the GCMs
project a consistent change in annual P or annual PET.
For the period 2071–2100, the P is projected to increase
in most parts of China, especially the western regions,
and the PET is projected to increase in all of China, par-
ticularly the southern regions. Furthermore, greater in-
creases are projected for higher emission scenarios. Due
to future climate warming, the arid regions and humid
regions of China are projected to become wetter and
drier in the period 2071–2100, respectively (relative to
the baseline 1971–2000).

The results of this study (especially of the climate change
projections) should be taken with caution, since uncertain-
ties in the results exist because of several issues, including
the different simulations of GCMs, the estimation error of
climate elasticity, and the estimation error in the water bud-
get components. A thorough investigation of the uncertainty
involved in the hydrologic effects of climate change in China
should be considered in future research.
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