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Abstract. Flooding in Canada is often caused by heavy rain-
fall during the snowmelt period. Hydrologic forecast cen-
ters rely on precipitation forecasts obtained from numeri-
cal weather prediction (NWP) models to enforce hydrolog-
ical models for streamflow forecasting. The uncertainties
in raw quantitative precipitation forecasts (QPFs) are en-
hanced by physiography and orography effects over a di-
verse landscape, particularly in the western catchments of
Canada. A Bayesian post-processing approach called rain-
fall post-processing (RPP), developed in Australia (Robert-
son et al., 2013; Shrestha et al., 2015), has been applied to as-
sess its forecast performance in a Canadian catchment. Raw
QPFs obtained from two sources, Global Ensemble Forecast-
ing System (GEFS) Reforecast 2 project, from the National
Centers for Environmental Prediction, and Global Determin-
istic Forecast System (GDPS), from Environment and Cli-
mate Change Canada, are used in this study. The study pe-
riod from January 2013 to December 2015 covered a major
flood event in Calgary, Alberta, Canada. Post-processed re-
sults show that the RPP is able to remove the bias and re-
duce the errors of both GEFS and GDPS forecasts. Ensem-
bles generated from the RPP reliably quantify the forecast
uncertainty.

1 Introduction

Quantitative precipitation forecasts (QPFs) obtained from
numerical weather prediction (NWP) models are one of the

main inputs to hydrological models when used for stream-
flow forecasting (Ahmed et al., 2014; Coulibaly, 2003; Cuo
et al., 2011; Liu and Coulibaly, 2011). A deterministic fore-
cast, representing a single state of the weather, is unreliable
due to known errors associated with the approximate sim-
ulation of atmospheric processes and errors in defining ini-
tial conditions for a NWP model (Palmer et al., 2005). A
single estimate of streamflow using a poor- or high-quality
precipitation forecast would have a significant impact on de-
cision support, such as management of water structures, is-
suing warnings of pending floods or droughts, or scheduling
reservoir operations. In recent years, there has been grow-
ing interest in moving toward probabilistic forecasts, suit-
able for estimating the likelihood of occurrence of any fu-
ture meteorological event, thus allowing water managers and
emergency agencies to prepare for the risks involved during
low- or high-flow events, at least a few days or weeks in ad-
vance (Palmer, 2002). The precipitation forecasts, however,
are constrained by major limitations surrounding the techni-
cal difficulties and computational requirements involved in
perturbing initial conditions and physical parametrization of
the NWP model. The QPFs, ensemble or deterministic, have
to be post-processed prior to use as reliable estimates of any
observations (e.g., streamflow).

In the last decade, several post-processing methods reliant
on statistical models have been proposed. The basic idea is
to develop a statistical model by exploiting the joint rela-
tionship between observations and NWP forecasts, to esti-
mate the model parameters using past data, and to reproduce
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post-processed ensemble forecasts of the future (Roulin and
Vannitsem, 2012; Robertson et al., 2013; Chen et al., 2014;
Khajehei, 2015; Shrestha et al., 2015; Khajehei and Morad-
khani, 2017; Schaake et al., 2007; Wu et al., 2011; Tao et
al., 2014). The range of complexity in the post-processing
approaches varies from regression-based approaches to para-
metric or nonparametric models based on meteorological
variables (wind speed, temperature, precipitation etc.) and
specific applications. Precipitation is known to have com-
plex spatial structure and behavior (Jha et al., 2015a, b).
Thus it is much more difficult to forecast than other atmo-
spheric variables because of nonlinearities and the sensitive
processes involved in its generation (Bardossy and Plate,
1992; Jha et al., 2013). From the perspective of a hydrologic
forecast center, the post-processing approach should be ef-
fective while involving few parameters. For instance, the US
National Weather Service River Forecast System has been
using an ensemble pre-processing technique that constructs
ensemble forecasts through the Bayesian forecasting system
by correlating the normal quantile transform of QPFs and
observations (Wu et al., 2011). In order to introduce space–
time variability of the precipitation forecast in the ensemble,
the post-processed forecast ensemble is reordered based on
historical data using the Schaake shuffle procedure (Clark et
al., 2004; Schaake et al., 2007). This pre-processing tech-
nique requires a long historical hindcast database as it re-
lates single NWP forecasts to corresponding observations. In
Australia, Robertson et al. (2013) developed a Bayesian post-
processing approach called rainfall post-processing (RPP) to
generate precipitation ensemble forecasts. The approach was
based on combining the Bayesian Joint Probability approach
of Wang et al. (2009) and Wang and Robertson (2011) with
the Schaake shuffle procedure (Clark et al., 2004). In con-
trast to the ensemble pre-processing technique, the RPP ap-
proach of Robertson et al. (2013) has been described with
few parameters and it can better deal with zero value prob-
lems in NWP forecasts (Tao et al., 2014) and observations.
The RPP approach has been successfully applied to remove
rainfall forecast bias and quantify forecast uncertainty from
NWP models in Australian catchments (Bennett et al., 2014;
Shrestha et al., 2015).

Recent developments in post-processing techniques and
the advantage of generating ensembles, and thus estimating
uncertainty, are well established in the literature. In an op-
erational context, however, forecast centers in Canada tend
to use deterministic forecasts in hydrologic models to obtain
streamflow forecasts. The main reasons for this are the higher
spatial and temporal resolution of the deterministic forecasts
over the ensemble QPFs and the associated computational
complexities in dealing with ensemble members. The added
advantages of using ensemble forecasts over deterministic
forecasts have been addressed in many previous studies (e.g.,
Abaza et al., 2013; Boucher et al., 2011). When the compu-
tational facilities are available, using a set of QPFs obtained
from different NWP models run by different agencies (such

as the European Centre for Medium-Range Weather Fore-
casts, the Japan Meteorological Agency, the National Cen-
ter for Environmental Prediction (NCEP), the Canadian Me-
teorological Center) seems to be a preferred choice (Ye et
al., 2016; Zsótér et al., 2016; Qu et al., 2017; Hamill, 2012).

The main hypothesis we want to test in this study is
whether the RPP approach can be directly applied to Cana-
dian catchments or any modification is required. Based on
this hypothesis, the aims of this study are to (a) evaluate the
performance of RPP in improving cold regions’ precipita-
tion forecasts; (b) compare the ensembles generated from
applying RPP to the deterministic QPFs obtained from the
Global Ensemble Forecasting System (GEFS) and the Global
Deterministic Forecast System (GDPS) (referred to as cali-
brated QPFs); and (c) investigate forecast performance dur-
ing an extreme precipitation event like that of 2013 in Al-
berta, Canada. The methodology and description of the study
area and datasets are presented in Sect. 2. Section 3 presents
methodology, followed by results in Sect. 4 and discussion
and conclusion in Sect. 5.

Although the current study uses the RPP approach previ-
ously published in Robertson et al. (2013) and Shrestha et
al. (2015), there are many novel aspects of this study, which
are listed below.

i. Robertson et al. (2013) demonstrated the application of
the RPP approach at rain gauge locations in a catchment
in southern Australia. In the present study, we are apply-
ing RPP at the subcatchment level using subcatchment-
averaged forecasts and observations, which is similar to
the work presented in Shrestha et al. (2015).

ii. The physiography and orography effects over western
catchments of Canada significantly differ from the Aus-
tralian catchments considered in Shrestha et al. (2015).
In their analysis, Shrestha et al. (2013) considered
10 catchments in tropical, subtropical, and temperate
climate zones with catchment areas ranging from 87 to
19 168 km2 distributed in different parts of Australia.
Each catchment was further divided into smaller sub-
catchments and RPP was applied in each of them. In
the present study, we focus on only a specific region
of Canada with a cold and snowy climate, consisting
of 15 subcatchments with areas ranging from 734 to
2884 km2. We apply RPP to each subcatchment using
the forecast and observation data lying within it. The
size of the subcatchment plays an important role in es-
timating the subcatchment-averaged forecast and obser-
vations.

iii. The results from different NWP models are known to
vary due to approximations involved in the simulation
of atmospheric processes and applied initial and bound-
ary conditions, etc. In the present study, we used two
precipitation forecasts obtained from the Global En-
semble Forecast System (GEFS) Reforecast Version 2
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Table 1. Description of precipitation forecasts.

Data NWP Variable Ensembles/ Time period Daily/ Lead time Spatial Forecast
source name deterministic subdaily (days) resolution (km) hour

NCEP GEFS Precipitation Control run 2013–2015 Daily 5 days 50 km 00:00 UTC
ECCC GDPS Precipitation Deterministic 2013–2015 Daily 5 days 25 km 00:00 UTC

data, from the National Centers for Environmental Pre-
diction, and the Global Deterministic Forecast Sys-
tem (GDPS), from Environment and Climate Change
Canada (ECCC). Shrestha et al. (2013) used forecasts
from only one NWP model, the Australian Commu-
nity Climate and Earth-System Simulator. Further, we
compare the performance of RPP applied to GEFS and
GDPS forecasts in order to decide which forecast is best
suited to our study area.

iv. Although QPFs from the GDPS are routinely used at
the forecast centers in Canada, the application of GEFS
to catchments in western Canada is not known, to
the best of our knowledge (also confirmed from data
provider, Gary Bates at NOAA, personal communica-
tion, 21 March 2017).

v. In their analysis, Shrestha et al. (2013) considered 3-
hourly forecasts for 615 days only. In the current study,
3 years of daily forecasts are used without any gap. The
longer data record is recommended as it can help in in-
ferring the parameters of RPP more accurately.

vi. In the present study, we explicitly look at an extreme
precipitation event that happened in Calgary 2013 and
evaluate the performance of the RPP approach in gener-
ating ensembles, which was not done in previous works
(Shrestha et al., 2015; Robertson et al., 2013).

vii. To the best of our knowledge, this is the first time an
approach for generating ensembles from a deterministic
QPF is tested in any Canadian catchment explicitly for
the benefit of forecast centers. As part of the National
Sciences and Engineering Research Council Canadian
Floodnet 3.1 project, the first author visited flood fore-
cast centers in western Canada. One of the common
concerns raised by forecasters was the need for gener-
ating ensembles in order to assess risk associated with
streamflow forecasts provided to the public. The con-
clusions from the present study will be highly relevant
and beneficial for flood forecast centers in Canada.

2 Study area and datasets

The selected study area is southern Alberta, located in west-
ern Canada (Fig. 1a). The Rocky Mountains are located
at the southern boundary with the United States and the

western boundary with British Columbia, with the Canadian
Prairies region extending toward the southeastern portion of
the province. Topography plays a major role in generating
cyclonic weather systems common to Alberta. The Oldman,
Bow, and Red Deer River basins, all located at the foothills
of the Canadian Rocky Mountain range, are subjected to ex-
treme precipitation events. In June 2013 a major flood oc-
curred in this region, resulting from the combined effect of
heavy rainfall during mountain snowpack melt over partially
frozen ground (Pomeroy et al., 2016; Teufel et al., 2016).
Some river basins received 1.5 × 1 : 100-year rainfall, esti-
mated to be 250 mm rain in 24 h. The 2013 flood affected
most of southern Alberta from Canmore to Calgary and be-
yond, causing evacuation of around 100 000 people and a re-
ported cost of damage of infrastructure exceeding CAD 6 bil-
lion (Milrad et al., 2015). The spatial distribution of con-
vective precipitation and orography make it difficult for any
NWP model to successfully predict the summertime convec-
tive precipitation in Alberta. The NWP forecasts at the time
predicted less (about half of the actual amount) rainfall dur-
ing this event (AMEC, 2014).

The dataset used in this study consists of observed and
forecast daily precipitation over the period of 2013 to 2015,
including the heavy precipitation event causing the major
flood of 2013. Observed data were obtained from the En-
vironment and Climate Change Canada precipitation gauges.
Two precipitation forecasts, GEFS and GDPS, were obtained
from National Centers for Environmental Prediction and En-
vironment and Climate Change Canada respectively. A de-
scription of both forecasts is presented in Table 1. The spa-
tial resolution of GEFS forecasts is 0.47◦ latitude, 0.47◦ lon-
gitude. GEFS contains 11 forecast members including one
control run and 10 ensembles. The control run uses the same
model physics but without perturbing the analysis or model.
The ensembles are obtained by perturbing the initial con-
ditions slightly (WMO, 2012). The forecast is available at
00:00 UTC at an interval of 3 h for the first 3 days and then
6-hourly up to 8 days. It is worth pointing out here that in
the GEFS data, the forecasts at hours 3, 9, 15, and 21 are 3 h
accumulations, whereas the forecasts at 6, 12, 18, and 24 h
are 6 h accumulations for forecasts valid for days 1 to 3. In
order to obtain a 24 h (daily) forecast for days 1, 2, and 3, we
need to consider the summation of forecasts valid at hours 6,
12, 18, and 24 for a given day. For days 4 and 5, forecasts are
only available for 6, 12, 18, and 24 h (i.e., there is no forecast
for the 3 h accumulation). The control run of GEFS for a pe-
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riod of 3 years (1 January 2013 to 31 December 2015) with
a lead time of 5 days is used in the present analysis.

GDPS precipitation forecasts are obtained from the Cana-
dian NWP model, the Global Environmental Multiscale
Model. The forecasts are available at approximately 0.24◦

latitude, 0.24◦ longitude spatial resolution at an interval of
3 h for forecast lead times up to and beyond 2 weeks. Pre-
cipitation forecasts are accumulations from the start of the
forecast period. To obtain a forecast for a specific day, for ex-
ample day 2, the precipitation forecast at the end of day 1 has
to be subtracted from the precipitation forecast at the end of
day 2. Three years of continuous GDPS forecasts from 1 Jan-
uary 2013 to 31 December 2015 with lead times of 5 days at
00:00 UTC are used in the present analysis.

There are three major rivers passing through the study
area: Bow, Oldman, and Red Deer rivers (Fig. 1b). Based on
the world map of Peel et al. (2007), the study area is classified
as having a warm summer, humid continental climate. The
Köppen–Geiger classification system presented for Canada
in Delavau et al. (2015) shows that our study area falls within
the KPN42 (Dfb – snow, fully humid precipitation, warm
summer), KPN43 (Dfc – snow, fully humid precipitation,
cool summer), and KPN 62 (ET polar tundra). All of the three
river basins are part of the South Saskatchewan River basin,
which flows eastward towards the Canadian Prairies. The
combined basin area is approximately 101 720 km2 (AEP,
2017). For the purpose of hydrological prediction, the River
Forecast Centre in Alberta uses 15 subcatchments (marked
with numbers 1 to 15 in Fig. 1b) to delineate the study area,
with drainage areas as indicated in Table 2.

The distribution of precipitation gauges and forecast lo-
cations is uneven in the various subcatchments (Fig. 1b).
For hydrological modeling purposes, average precipitation
over each subcatchment is calculated using an inverse-
distance weighting method (Shepard, 1968), considering
four neighboring gauges. Subcatchment 2 receives the high-
est subcatchment-averaged annual precipitation, while sub-
catchment 13 receives the lowest average annual precipita-
tion during the 3-year study period (Table 2). In each sub-
catchment, an area-weighted forecast is calculated by con-
sidering the portion of the forecast grid that overlaps with
the subcatchment.

Figure 2 shows the comparison of raw QPFs and ob-
served precipitation in subcatchments 10 and 11 for GEFS
and GDPS with a lead time of 1 day for 2013. The large peak
observed (Fig. 2a–d) is the result of a major rainfall event
responsible for severe flooding in Alberta in June 2013. Fig-
ure 2 indicates that there is a substantial bias between the raw
QPFs and observations. Raw QPFs from GEFS and GDPS
consistently underestimate peak events and medium precip-
itation amounts, which is of concern to hydrologic forecast
centers predicting streamflow peak volume and timing.

3 Methodology

3.1 Post-processing approach

We use the RPP to post-process the precipitation forecasts.
The RPP was developed by Robertson et al. (2013) and
successfully applied to a range of Australian catchments
(Shrestha et al., 2015). Detailed descriptions of the RPP can
be found in the above references; here we present a brief
overview of the method.

The input to the post processing approach is observations
(zo) and raw QPFs (zrf). A log-sinh transformation is applied
to both observations and raw precipitation forecasts:

ẑo =
1
βo

ln(sinh(αo+βozo)) , (1)

ẑrf =
1
βf

ln(sinh(αf+βfzrf)) , (2)

where ẑo and ẑrf are transformed observation and raw fore-
casts; αo and βo are parameters used in the transformation of
zo; and αf and βf are parameters used in the transformation of
zrf. It is assumed that the transformed variables (ẑo and ẑrf)

follow a bivariate normal distribution p(ẑo, ẑrf)∼N(µ, 6),
in which µ and 6 are defined as follows:

µ=

[
µẑo
µẑrf

]
and (3)

6 =

[
σ 2
ẑo

ρẑoẑrfσẑoσẑrf

ρẑoẑrfσẑoσẑrf σ 2
ẑrf

]
, (4)

where µẑo and σẑo represent the mean and standard devia-
tion of ẑo respectively; µẑrf and σẑrf represent the mean and
standard deviation of ẑrf respectively; ρẑoẑrf is the correlation
coefficient between ẑo and ẑrf. Thus, there are nine parame-
ters (αo, βo, µẑo , σẑo , αf, βf, µẑrf , σẑrf , ρẑoẑrf ) to model the
joint distribution of raw QPFs and observations. We infer a
single set of model parameters that maximizes the likelihood
of posterior parameter distribution using the shuffled com-
plex evolution algorithm (Duan et al., 1994). All model pa-
rameters are reparametrized to ease the parameter inference.
Once the parameters are inferred, the forecast is estimated us-
ing the bivariate normal distribution conditioned on the raw
forecast. The random sampling from the conditional distribu-
tion generates the ensemble of forecasts. The forecast values
are then transformed to the original space using the inverse
of Eqs. (1) and (2).

Since the forecasts are generated at each location for each
lead time separately, the space–time correlation in the ensem-
ble members will be unrealistic. The Schaake shuffle (Clark
et al., 2004) is then applied to adjust the space–time correla-
tions in the ensemble, similar to what was observed in the
historically observed data. The Schaake shuffle calculates
the rank in the observed data and preserves the same rank
in the sorted, new ensemble forecast. Our application of the
Schaake shuffle is briefly described here.
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Figure 1. Location of the study basin in Alberta, Canada, showing (a) topography, a major driver of different precipitation mechanisms, and
(b) the study area with locations of observed and forecast data.

Table 2. Description of subcatchments in the study area. Italics is used to highlight maximum and minimum values in the corresponding
columm.

Subcatchment Name Area Subcatchment-averaged total
(km2) annual precipitation (mm)

ID Year 2013 Year 2014 Year 2015

1 Up Oldman Willow 2664 808 699 514
2 Crows nest Castle 1848 1206 1196 909
3 Little Red Deer 2574 608 587 458
4 Mid Red Deer 1398 614 549 458
5 James Raven 1464 715 655 541
6 Up Red Deer 2723 897 662 571
7 Low Bow Local Bearspaw 734 628 533 409
8 Up Bow Banff Cascade 2884 663 806 659

9
Mid Bow Local Ghost

1063 871 689 540
Jumpingpound

10 Canmore Ghost Waiparous 1642 900 723 544
11 Spray Kananaskis 1445 1136 983 821
12 Fish Threepoint Low Elbow 1405 646 516 487
13 Low Sheep Highwood 1111 502 440 371
14 Trap Peki Stim 890 587 691 559
15 Up Highwood Sheep Elbow 2153 1062 784 693
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Figure 2. Comparison of weighted-area raw QPFs with subcatchment-averaged observations for the year 2013 in subcatchments 10 and 11.
Raw GEFS data are plotted in (a) and (b), while (c) and (d) show raw GDPS data, along with observations.

1. For a given forecast date, an observation sample (date
and amount of data) of the same size as that of the en-
semble is selected from the historical observation pe-
riod.

2. The observation sample data for each lead time are
ranked. Similarly, the data from the forecast ensemble
for each lead time are ranked.

3. A date from the observation sample is randomly se-
lected and the ranks of the observation data for the se-
lected date for all lead times are identified.

4. For a given lead time, we select the forecast (from the
forecast ensemble) that has the same rank as that of the
selected observation.

5. In order to construct an ensemble trace across all lead
times, step 3 is repeated for all lead times.

6. Steps 3 to 5 are repeated as many times as the size of
ensembles.

The above procedure is extended for both temporal and spa-
tial correlation in this study.

An important feature of the RPP is the treatment of (near)
zero precipitation values, which are treated as censored data
in the parameter inference. This enables the use of the con-
tinuous bivariate normal distribution for a problem, which is
otherwise solved using a mixed discrete–continuous proba-
bility distribution (e.g., Wu et al., 2011).

3.2 Verification of the post-processed forecasts

We assess the processed forecast in terms of deterministic
metrics, such as percent bias defined as percent deviation
from the observations (bias, %), mean absolute error (MAE
in mm), and a probabilistic metric, a continuous rank prob-
ability score (CRPS), at each site for the forecast period (t).
The percent bias is estimated as follows:

Bias=

t∑
1
zf−

t∑
1
zo

t∑
1
zo

· 100, (5)

where zf could either be raw (zrf) or post-processed forecasts
(zpf), and zo represents observation.

MAE measures the closeness of the forecasts and observa-
tions over the forecast period.

MAE=
1
t

t∑
1

|zf− zo| (6)

In the case of the ensemble forecast, we use the mean value
of forecasts in the calculation of both the bias and the MAE.
A low value of both bias and MAE indicates that the fore-
casts are closer to observations. A percent bias close to zero
indicates that forecasts are unbiased.

The CRPS is a probabilistic measure to relate the cumula-
tive distribution of the forecasts and the observations:

CRPS=

∞∫
−∞

(
Fzf(t)−Fzo(t)

)2 dt , (7)
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where Fzf is the cumulative distribution function of ensemble
forecasts and Fzo is the cumulative distribution function of
observations, which turns out to be a Heaviside function (1
for values greater than the observed value, otherwise 0). In
the case of the deterministic forecast, the CRPS reduces to
the MAE. The forecast is considered better when the CRPS
values are close to zero.

The relative operating characteristic (ROC) curves are
used to assess the forecast’s ability to discriminate precipi-
tation events in terms of hit rate and false alarm rate. Given a
precipitation threshold, the hit rate refers to the probability of
forecasts that detected events smaller or larger in magnitude
than the threshold; the false alarm rate refers to the proba-
bility of erroneous forecasts or false detection (Atger, 2004;
Golding, 2000). If the ROC curves (plot between hit rate ver-
sus false alarm rate) approach the top left corner of the plot,
the forecast is considered to have a greater ability to discrim-
inate precipitation events. The discrimination ability of the
forecast is considered low when the ROC curves are close to
the diagonal.

To compare the spread in forecast ensembles against the
observations, we perform spread–skill analysis by plotting
the ensemble spread versus the forecast error (e.g., Nester et
al., 2012). The ensemble spread is defined as the mean abso-
lute difference between the ensemble members and the mean.
The absolute difference between the observations and the en-
semble mean is defined as the forecast error. For each lead
time in the cross-validation period, we compute the ensem-
ble spread and forecast error for 1000 ensemble forecasts,
sort them in increasing order, group the values in 10 classes,
and calculate the average spread and error in each class.

3.3 Statistical treatment of forecasts

Because of the short record of data (3 years only), few ex-
treme events may significantly affect the verification scores.
Therefore it is desirable to understand the effect of the sam-
pling variability on the verification scores. Accounting for
sampling variability in calculating the verification scores
adds confidence that results are robust and likely to apply
under operational conditions (Shrestha et al., 2015). We cal-
culate sampling uncertainty through a bootstrap procedure
(e.g., Shrestha et al., 2013). The first 1095 pairs (3 years
of data) of forecast–observations are sampled with replace-
ment from the original forecast–observation pairs, with re-
placement and verification scores calculated (discussed in
Sect. 3.1 below). These steps are repeated 5000 times to ob-
tain a distribution of the verification score, from which 5 and
95 % confidence intervals are calculated.

3.4 Experimental setup

Post-processing is applied to precipitation forecasts in 15
subcatchments, making use of the subcatchment-averaged
precipitation forecast data for the total study duration (i.e.,

2013 to 2015 for GEFS and GDPS), for each day of forecast
at 00:00 UTC up to a lead time of 5 days. We apply a leave-
1-month-out cross-validation approach. The simulation runs
in two modes: inference and forecast. In the inference mode,
for example, 36 months of precipitation forecast and obser-
vations are used to estimate the model parameters. Once pa-
rameters are estimated, the simulation runs in forecast mode
to generate 1000 ensembles (or realizations) of precipitation
forecasts for the month that was left out of the calibration.
The process is repeated 36 times to generate forecasts for
2013 to 2015.

4 Results

4.1 Evaluation of calibrated QPFs

Figure 3 presents the percent bias and CRPS in five subcatch-
ments for both GEFS and GDPS forecasts. Out of 15 sub-
catchments considered in this study, the maximum and min-
imum total annual subcatchment-averaged precipitation for
the years 2013 to 2015 occurred in subcatchments 2 and 13,
respectively (see Table 2); subcatchments 7 and 8 have mini-
mum and maximum size, respectively. The four selected sub-
catchments covered the middle and southern portions of the
study area; therefore we include subcatchment 4 to facili-
tate discussion on the performance of calibrated QPFs in the
northern portion of the study area. The percent bias for all 15
subcatchments is provided in Fig. S1a.

Based on visual inspection of bias plots (Fig. 3a–e), the
bias in the calibrated QPF is close to zero in almost all five
subcatchments (except at lead time 4 in the subcatchment 8),
indicating that overall, the RPP is able to reduce the bias in
the raw QPF. As shown in Fig. S1b, the inability of calibrated
RPP in reproducing a peak precipitation event at lead time 4
in subcatchment 8 resulted in a large bias. The anomaly can
be attributed to the fact that subcatchment 8 has the largest
area and only a few observation stations lie inside the sub-
catchment. In the case of GEFS forecasts for the lead time
of 1 day, the raw QPFs have an average bias ranging from
−30 % (in subcatchment 2) to around 100 % (in subcatch-
ment 13). In all subcatchments, the bias increases slightly
from days 1 to 2, then drops on day 3 and on days 3 to 5
either increases or remains almost constant. An increase in
bias in the first 2 days’ lead time can be attributed to the
spin-up of the NWP model. Spin-up is expected to influence
only the first day or two. In the case of GDPS, the bias in the
raw QPF is close to zero (except in subcatchments 2 and 8,
where bias is negative) for the 1-day lead time, but the bias
increases up to as high as 50 % (subcatchment 13) for a lead
time of 5 days. The 5 and 95 % confidence interval around
the raw QPF also increases slightly with lead time, indicat-
ing that the forecast for a lead time of 1-day will have higher
confidence (hence a narrow shaded area) than for the later
days, which is intuitive. It may be argued that the variations
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Figure 3. Subcatchment-averaged bias (%) in the raw QPFs and calibrated QPFs for individual daily forecasts as a function of lead time
for subcatchments 2, 4, 7, 8, and 13 (a–e, respectively); panels (f–j) show subcatchment-averaged CRPS (mm day−1) in the raw QPFs and
calibrated QPFs for daily precipitation as a function of lead time. The shaded region represents 5 and 95 % confidence intervals generated
using a bootstrap approach. Note the different scales on the vertical axes.

in bias in different subcatchments can be attributed to topog-
raphy and physiographic characteristics. It is worth pointing
out that in this study, we are not considering spatial non-
stationarity because the goal is to set up a simple Bayesian
model that relates the subcatchment precipitation forecasts
and the observations. Accounting for the topography and el-
evation in the probabilistic model increases the complexity
significantly and it is unlikely that the forecast performance
will increase given the length of data used to infer the model
parameters. Thus, we are not concerned with linking topog-
raphy and corrections in the forecasts.

The subcatchment-averaged CRPSs of raw and calibrated
QPFs are shown in Fig. 3f–j. It is worth mentioning that for
the deterministic forecast, the CRPS reduces to the MAE;
thus the plots for raw QPFs (Fig. 3f–j) show the MAE. For
simplicity, we therefore refer to the MAE of raw QPFs as
its CRPS. The CRPSs estimated on the calibrated QPFs are
based on 1000 ensembles generated from the RPP approach.
In the case of GEFS, and similar to the bias plots (Fig. 3a–e),
we notice that the CRPS first increases then decreases and in-
creases again after a lead time of 4 days in the raw QPFs. The
CRPS based on the calibrated QPFs, however, consistently
increases (except for subcatchment 2), indicating that as the
lead time increases, deviation between forecasts and obser-
vation will be larger. In the case of GDPS, the CRPS of raw
QPFs varies between 1 and 2.2 mm day−1 for a lead time of 1

day, almost linearly increasing up to 3 mm day−1 for forecast
lead times of 5 days. The RPP approach reduces the CRPS
significantly for each lead time in all subcatchments (except
at a lead time of 4 in subcatchment 8). The reason for de-
viation in the CRPS at a lead time of 4 in subcatchment 8
is not trivial; however it can be attributed to RPP’s inability
to capture a peak precipitation event as shown in Fig. S1b.
Overall the calibrated QPF has a lower CRPS than the raw
QPF, which demonstrates that the RPP is able to improve the
raw QPF across all lead times. The CRPSs of other subcatch-
ments are presented in Fig. S1c.

To assess the calibrated forecasts’ ability to discrimi-
nate between low (< 0.2 mm) and high precipitation events
(> 5 mm) for all lead times, Fig. 4 presents the ROC curves
for the years 2013 to 2015. We only present results for lead
times of 1, 3, and 5 days for calibrated GEFS and GDPS
forecasts for subcatchment 11. The results of other subcatch-
ments are presented in Fig. S2a–d. For GEFS (Fig. 4a and b),
the ROC curves for days 1, 3, and 5 increasingly move away
from the top left corner of the plot, suggesting that fore-
casts for shorter lead times have slightly higher discrimina-
tive ability than those for longer lead times. GDPS shows
similar behavior (Fig. 4c and d), indicating that forecasts at
longer lead times are less skilful than those at shorter lead
times. Both GEFS and GDPS forecasts for a lead time of
1 day suggest that the forecast discrimination is stronger
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Figure 4. Relative operating characteristic (ROC) curves at lead
times of 1, 3, and 5 days for calibrated QPFs for events of pre-
cipitation less than 0.2 mm and events of precipitation greater than
5 mm for subcatchment 11. Panels (a) and (b) show ROC curves of
calibrated GEFS, and panels (c) and (d) show ROC curves of cali-
brated GDPS. In the calculation of ROC, the daily data from 2013
to 2015 are used.

for higher rainfall events (> 5 mm), where ROC curves are
closer to the left corner of the plot (Fig. 4c and d) than for
smaller precipitation events (< 0.2 mm).

Figure 5 indicates the forecast error versus spread of the
ensembles for calibrated GEFS and GDPS forecasts with
lead times of 1, 3, and 5 days for subcatchment 11. For days 3
and 5, most of the points seem to fall on the diagonal (1 : 1
line), suggesting good agreement between the forecast error
and the spread across all the lead times. For day 1, the devia-
tion of the points from the diagonal (1 : 1 line) is higher, in-
dicating a larger bias for day 1 compared to days 3 and 5. To
explore this further, we calculated the frequency of observed
data lying within the 10–90 % confidence boundary of cal-
ibrated QPFs. Figure 6 shows that in the case of calibrated
GEFS, the calculated frequency of observed data for a lead
time of 1 to 5 days varies between 0.78 and 0.88. However,
for calibrated GDPS, the frequency lies between 0.87 and
0.9. Figure 6 demonstrates that as the lead time increases, the
frequency of observed data lying within the [0.1–0.9] confi-
dence boundary is higher.

4.2 Performance of calibrated QPFs during an extreme
event

As mentioned in Sect. 2, a severe flood event occurred
from 20 to 24 June 2013 in Calgary (located near the out-
let of subcatchment 7; see Fig. 1b). Therefore we examine
subcatchment-averaged precipitation obtained from raw and
calibrated QPFs against observed data. From the historical
observed data, we notice that most peak precipitation events

tend to occur over the mountains (i.e., in subcatchments 10
and 11). To consider both the peak precipitation event re-
sponsible for triggering the 2013 flood and also the series of
smaller precipitation events before and after the peak event,
we select a 1-month period from 10 June to 10 July 2013.
Results for the 1-day lead time in subcatchments 10 and 11
(Fig. 6) relative to observed data suggest there were a se-
ries of high precipitation events on day 10, 11, and 12, with
almost negligible precipitation on the remaining days rela-
tive to these peak events (with the exception of some small
events on days 26 and 29). In both subcatchments 10 and
11, raw GEFS forecasts show significantly less precipitation
compared to the observations from days 10 to 12 (see Fig. 7a
and b). On the remaining days, raw GEFS consistently fore-
casts higher magnitudes of precipitation relative to the ob-
servations. The raw GDPS forecast also shows significantly
lower magnitudes of precipitation relative to that observed
during the peak event (days 10 to 12; Figs. 7c and d). The
GDPS forecast shows overprediction of a smaller event on
day 26 and underprediction on day 29. For the remaining
days, the raw GDPS forecast closely matches observed pre-
cipitation. The shaded area for the calibrated QPF in the case
of both GEFS and GDPS indicates the range of precipitation
forecasts obtained from 1000 ensemble forecast members. In
both subcatchments 10 and 11, the subcatchment-averaged
calibrated QPFs (shaded area) are able to capture peak pre-
cipitation and the smaller events (except for day 10 in cali-
brated GEFS).

We have also evaluated the ability of the calibrated QPFs
to discriminate between events and non-events for large rain-
fall events (> 5 mm) from 10 June to 10 July 2013. The ROC
curves for lead times of 1, 3, and 5 days for both calibrated
GEFS and GDPS in subcatchment 11 (Fig. 8) indicate that
the calibrated GEFS (lead times of 1 and 3 days) and cali-
brated GDPS (lead time of 1 and 5 days) have a greater abil-
ity to discriminate between events and non-events.

5 Discussion and conclusion

Based on the results presented, the RPP shows promising
performance for catchments in cold and snowy climates, such
as that in western Canada. Bias-free precipitation is a vi-
tal component, among other inputs, for improved stream-
flow forecasts from hydrological models. For raw GEFS and
GDPS, the RPP approach was able to reduce the bias in the
calibrated QPFs to close to zero. The bias calculated from
raw GEFS forecasts shows an almost similar bias, with slight
variations, from lead times of 1 to 5 days. The GDPS fore-
cast, however, showed an expected trend of increasing bias
with increasing lead time. The advantage of applying the
RPP approach was that, irrespective of the nature of the in-
herent bias in the raw forecasts, overall, the calibrated QPFs
were bias-free.
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Figure 5. Scatterplots of forecast error versus spread of the 100 ensembles of calibrated QPFs for lead times of 1, 3, and 5 days for
subcatchment 11.

Figure 6. Frequency of observations lying within the 10th and 90th percentile of calibrated GEFS and calibrated GDPS.

The calibrated QPFs have significantly reduced CRPS val-
ues in all subcatchments in both GEFS and GDPS forecasts.
Furthermore, the ensembles produced from the determinis-
tic QPF were mostly able to capture the peak precipitation
events within the study area (i.e., June 2013). It is noted that
in the absence of ensembles, a hydrological model would
take only the raw QPF and would therefore not forecast the
resulting streamflow correctly during a major flood event.
Ensemble precipitation forecasts would enable uncertainty
bands to be produced around the forecast streamflow sim-
ulated from a hydrological model, thus increasing the chance
of properly assessing the associated risks associated with
sudden, high precipitation events.

ROC curves for calibrated QPFs showed that GEFS fore-
casts have a greater ability to discriminate between events
and non-events for both low and high precipitation across
all lead times. The discrimination ability of GDPS forecasts,
however, reduces significantly with increasing lead time.

In conclusion, this study assessed the performance of a
post-processing approach, RPP, developed in Australia, to a
catchment in Alberta, Canada. The RPP approach was ap-
plied to two sets of raw forecasts, GEFS and GDPS, ob-
tained from two different NWP models for the same periods
in 2013 and 2015. In each case, 1000 post-processed fore-
cast ensembles were created. Post-processed forecasts were
demonstrated to have low bias and higher accuracy for each
lead time in 15 subcatchments covering a range of topo-
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Figure 7. Comparison of time series of precipitation obtained from subcatchment-averaged raw QPFs, subcatchment-averaged observations,
and subcatchment-averaged calibrated QPFs in subcatchments 10 and 11. The shaded area represents the range of values obtained from 1000
post-processed ensembles. Panels (a) and (b) show results of calibrated GEFS, and panels (c) and (d) show results of calibrated GDPS.

Figure 8. Relative operating characteristic (ROC) curves at lead
times of 1, 3, and 5 days for calibrated QPFs for precipitation events
greater than 5 mm for subcatchment 11 during 10 June to 10 July
2013, with (a) and (b) showing ROC curves of calibrated GEFS
and GDPS, respectively.

graphical conditions, from mountains to western plains, in-
ducing different precipitation mechanisms. Unlike raw fore-
casts, the post-processed forecast ensembles are able to cap-
ture peak precipitation events, which resulted in a major
flood event in 2013 within the study area. Future work will
involve applying RPP to other Canadian catchments, under
different climatic conditions such as coast, plains, and the
lake-dominated Boreal Shield, among others. The influence
of the density of rain gauges and perhaps the use of a gridded
reanalysis product for the observation dataset are left for fu-
ture investigations. The authors aim to test the post-processed
precipitation forecasts for streamflow forecasting in different
Canadian catchments in future work.

Data availability. The observed data used in this research can
be obtained by submitting a data request to Alberta River Fore-
cast Center and Environment and Climate Change Canada. The
precipitation forecast, GEFS, can be directly downloaded from
the website of NOAA (https://www.esrl.noaa.gov/psd/forecasts/
reforecast2/). The GDPS forecast can be obtained by submitting a
data request to Environment and Climate Change Canada.
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