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Abstract. In groundwater hydrology, two simple linear equa-
tions exist describing the relation between groundwater flow
and the gradient driving it: Darcy’s equation and the linear
reservoir. Both equations are empirical and straightforward,
but work at different scales: Darcy’s equation at the labo-
ratory scale and the linear reservoir at the watershed scale.
Although at first sight they appear similar, it is not trivial
to upscale Darcy’s equation to the watershed scale without
detailed knowledge of the structure or shape of the under-
lying aquifers. This paper shows that these two equations,
combined by the water balance, are indeed identical pro-
vided there is equal resistance in space for water entering the
subsurface network. This implies that groundwater systems
make use of an efficient drainage network, a mostly invisi-
ble pattern that has evolved over geological timescales. This
drainage network provides equally distributed resistance for
water to access the system, connecting the active groundwa-
ter body to the stream, much like a leaf is organized to pro-
vide all stomata access to moisture at equal resistance. As
a result, the timescale of the linear reservoir appears to be
inversely proportional to Darcy’s “conductance”, the propor-
tionality being the product of the porosity and the resistance
to entering the drainage network. The main question remain-
ing is which physical law lies behind pattern formation in
groundwater systems, evolving in a way that resistance to
drainage is constant in space. But that is a fundamental ques-
tion that is equally relevant for understanding the hydraulic
properties of leaf veins in plants or of blood veins in animals.

1 Introduction

One of the more fundamental questions in hydrology is how
to explain system behaviour manifest at catchment scale
from fundamental processes observed at laboratory scale. Al-

though scaling issues occur in virtually all earth sciences,
what distinguishes hydrology from related disciplines, such
as hydraulics and atmospheric science, is that hydrology
seeks to describe water flowing through a landscape that
has unknown or difficult-to-observe structural characteris-
tics. Unlike in river hydraulics or atmospheric circulation,
where answers can be found in finer grid 3-D integration of
equations describing fluid mechanics, in hydrology this can-
not be done without knowing the properties of the medium
through which the water flows. The subsurface is not only
heterogeneous, it is also virtually impossible to observe. We
may be able to observe its behaviour and maybe its proper-
ties, but not its exact structure. Groundwater is not a continu-
ous homogeneous fluid flowing between well-defined bound-
aries (as in open channel hydraulics), but rather a fluid flow-
ing through a medium with largely unknown properties. In
other words, the boundary conditions of flow are uncertain
or unknown. As a result, hydrological models need to rely on
effective, often scale-dependent, parameters, which in most
cases require calibration to allow an adequate representation
of the catchment. These calibration efforts typically lead to
considerable model uncertainty and, hence, to unreliable pre-
dictions.

But fortunately, there is good news as well. The structure
of the medium through which the water flows is not random
or arbitrary; it has predictable properties that have emerged
by the interaction between the fluid and the substrate. Sim-
ilar structures manifest themselves in the veins of vegeta-
tion, in infiltration patterns in the soil, and in drainage net-
works in river basins, emerging at a wide variety of spatial
and temporal scales. Patterns in vegetation or preferential in-
filtration in a soil can appear at relatively short, i.e. human,
timescales, but surface and subsurface drainage patterns, par-
ticularly groundwater drainage patterns, evolve at geological
timescales. Under the influence of strong gradients, these pat-
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terns can evolve more quickly, but even in groundwater sys-
tems with relatively small hydraulic gradients “high perme-
ability features™ appear to be present, regulating spring flow
(Swanson and Bahr, 2004).

There is a debate on the physical process causing pattern
formation. Most scientists agree that it has something to do
with the second law of thermodynamics, but what precisely
drives pattern formation is still debated. Terms in use are
maximum entropy production, maximum power, minimum
energy expenditure (e.g. Rodriguez-Iturbe et al., 1992, 2011;
Kleidon et al., 2013; Zehe et al., 2013; Westhoff et al., 2016),
and the “constructal law” (Bejan, 2015). However, this paper
is not about the process that creates patterns, but rather on us-
ing the fact that such patterns exist in groundwater systems
to explore the connection between laboratory and catchment
scale.

How to connect laboratory scale to system scale?

Dooge (1986) was one of the first to emphasize that hydrol-
ogy behaves as a complex system with some form of organi-
zation. Hydrologists have been surprised that in very hetero-
geneous and complex landscapes a relatively simple empiri-
cal law, such as the linear reservoir, can manifest itself. Why
is there simplicity in a highly complex and heterogeneous
system such as a catchment?

The analogy with veins in leaves, or in the human body,
immediately comes to mind. Watersheds and catchments
look like leaves. In a leaf, due to some organizing princi-
ple, the stomata, which take CO; from the air and combine it
with water to produce hydrocarbons, require access to a sup-
ply network of water and access to a drainage network that
transports the hydrocarbons to the plant. Such networks are
similar to the arteries and veins in our body where oxygen-
rich blood enters the cells, and oxygen-poor blood is re-
turned. The property of veins and arteries is “obviously” that
all stomata in the leaf, and cells in our body, have “equal”
access to water or oxygen-rich blood and can evacuate the
products and residuals, respectively. Having equal access to
a source or to a drain implies experiencing the same resis-
tance to the hydraulic gradient. If a human cell has too high
a resistance to the pressure exercised by the heart, then it is
likely to die off. Likewise, too low resistance could lead to
cell failure or erosion. As a result, the network evolves to an
optimal distribution of resistance to the hydraulic gradient.

In a similar way, drainage networks have developed on the
land surface of the Earth. Images from space show a wide va-
riety of networks, looking like fractals. Rodriguez-Iturbe and
Rinaldo (2001) connected these patterns to minimum energy
expenditure. Hergarten et al. (2014) used the concept of min-
imum energy dissipation to explain patterns in groundwater
drainage. Kleidon et al. (2013), however, showed that such
patterns are components of larger Earth system functioning at
maximum power, whereby the drainage system indeed func-
tions at minimum energy expenditure.
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In general, we see that patterns emerge wherever a liquid
flows through a medium, provided there is sufficient gradient
to build or erode such patterns. Likewise, such patterns must
be present in the substrate through which groundwater flows,
although these are generally not considered in groundwater
hydrology. If such patterns were absent, then the groundwa-
ter system would be the only natural body without patterns,
which is not very likely.

This paper is an opinion paper. The author does not pro-
vide proof of concept. It is purely meant to open up a debate
on how the linear drainage of an active groundwater body can
be connected to Darcy’s law. The discussion forum of this pa-
per contains an active debate between the author, reviewers
and commenters that provides more background.

2 The linear reservoir

At catchment scale, the emergent behaviour of the ground-
water system is the linear reservoir. Figure 1 shows a hy-
drograph of the Ourthe Occidentale in the Ardennes, which
on a semi-log paper shows clear linear recession behaviour,
overlain by short and fast rainfall responses by rapid sub-
surface flow, infiltration excess overland flow, or saturation
overland flow. The faster processes are generally non-linear,
but as the catchment dries out, the fast processes die out,
the recharge to the groundwater system stops, and only the
groundwater depletion remains. Even during depletion, short
runoff events may superimpose the depletion process with-
out additional recharge, in which case the depletion contin-
ues following a straight line on semi-logarithmic paper (see
Fig. 1).

This behaviour is very common in first order streams, and
even in higher order streams. In water resources management
it is well know that recession curves of stream hydrographs
can be described by exponential functions, which is congru-
ent with the linear reservoir of groundwater depletion. It fol-
lows from the combination of the water balance with the
linear reservoir concept. During the recession period there
appears to be a disconnect between the root zone system
that interacts with the atmosphere and the groundwater that
drains towards the stream network. These two separate “wa-
ter worlds” are well described by Brooks et al. (2010) and by
McDonnell (2014) and are substantiated by different isotopic
signatures. As a result, we see that during recession only the
groundwater reservoir is active.

If during recession, the catchment is only draining from
the groundwater stock, then the water balance can be de-
scribed by

dS,

@ -9

where S [L3] is the active groundwater storage and Qg
[L3T~!] is the discharge of groundwater to the stream net-
work.
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Figure 1. During the recession period, the Ourthe has a timescale of 1772 h for groundwater depletion, acting as a linear reservoir. Superim-
posed on the recession we see faster processes with much shorter timescales.

The linear reservoir concept assumes a direct proportional-
ity between the active (i.e. dynamic) storage of groundwater
and the groundwater flowing towards the drainage network:

where 7 is the timescale of the drainage process, which is
assumed to be constant. Combination with the water balance
leads to

Qs = Qo exp(—t/1),

where Qy is the discharge at t = 0. So the exponential reces-
sion, which we observe at the outfall of natural catchments,
is congruent with the linear reservoir concept. But how does
this relate to Darcy’s law, which applies at laboratory scale?

3 Upscaling Darcy’s law
Darcy’s law reads as follows:

dx

where v is the discharge per unit area, or filter veloc-
ity [LT~!]; k is the conductance [LT1]; @ is the hydraulic
head [L]; and x [L] is the distance along the stream line. In
a drainage network, these streamlines generally form semi-
circles, perpendicular to the lines of equipotential, draining
almost vertically downward from the point of recharge and
subsequently upward when seeping to the open drain (see
Fig. 2 for a conceptual sketch).

Henry Darcy (1803-1858) found this relationship under
laboratory conditions, but the law also appears to work fine in
regions with modest slopes, where one or more layers can be
identified with conductivities representative for the sediment
properties of these layers. In such relatively flat areas, upscal-
ing from the laboratory scale to a region with well-defined
layer structure appears to work rather well. This is clear from
the many groundwater models, such as MODFLOW, that do
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well at representing hydraulic heads. However, such regional
groundwater models are generally calibrated solely on water
levels (hydraulic head) and seldom on flow velocities, trans-
port of solutes, or flows, leading to equifinality in the deter-
mination of spatially variable k values.

Swanson and Bahr (2004) identified preferential flow even
in mildly sloping terrain. Therefore it is reasonable to assume
that under stronger gradients preferential flow becomes more
prominent. In sloping areas, the hypothesis is that the subsur-
face is organized and cannot be assumed to consist of layers
with relatively homogeneous properties. Under the influence
of a stronger hydraulic gradient, drainage patterns occur in
the substrate more or less following the hydraulic gradient
along the streamlines. This happens everywhere in nature
where water flows through an erodible or soluble material.
An initial disturbance leads to the evolution of a drainage
network that facilitates the transport of water through the
erodible material. Initial disturbances can be cracks, sedi-
mentation patterns, animal burrows, former root channels,
etc. The formation of the network can be by physical ero-
sion and deposition (breaking up, transporting, and settling
particles) but can also be by chemical activity (minerals go-
ing into solution or precipitating). The latter is the dominant
process in groundwater flow. The precipitation that enters the
groundwater system through preferential infiltration (Brooks
et al., 2009; McDonnell, 2014) is low in mineral composition
and hence aggressive to the substrate. The minerals that we
find in the stream during low flow (when the river is fed by
groundwater) are the erosion products of the drainage net-
work being developed. In the mineral composition of the
stream we can see pattern formation at work and from the
transport of chemicals by the stream we may derive the rate
at which this happens.

In contrast to the physical drainage structures that we can
see on the surface (e.g. river networks, seepage zones on
beaches), sub-surface drainage structures are hard to observe.
But they are there. On hillslopes, individual preferential sub-
surface flow channels have been observed in trenches, but
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Figure 2. Conceptual sketch of an unconfined phreatic groundwater body draining towards a surface drain. H is the head of the phreatic

water table with respect to the nearest open water.

complete networks are hard to observe without destroying
the entire network.

The hypothesis is that under the ground a drainage sys-
tem evolves that facilitates the transport of water to the sur-
face drainage network in the most efficient manner. As was
demonstrated by Kleidon et al. (2013) an optimal drainage
network maximizes the power of the sediment flux, which
involves maximum dissipation in the part of the catchment
where erosion takes place and minimum energy expenditure
in the drainage network. This finding is in line with the find-
ings of Rodriguez-Iturbe and Rinaldo (2001, p. 253), who
found that minimum energy expenditure defines the structure
of surface drainage. Although a surface drainage network has
2-D characteristics on a planar view, the groundwater system
has a clear 3-D drainage structure. The boundary where open
water and groundwater interact also has a complex shape.
This is the boundary where the groundwater seeps out at at-
mospheric pressure, indicated in Fig. 2 by the dotted blue
line. This boundary of interaction follows the stream network
and moves up and down with the water level of the stream.
To describe this 3-D drainage network conceptually, we can
build on the analogy with a fractal-like (mostly 2-D) struc-
ture of a leaf or a river drainage network, but it is not the
same.

Fractal networks can be described by width functions that
determine the average distance of a point to the network.
Let’s call this distance W. Let’s now picture a cross section
over a catchment with an unconfined phreatic groundwater
body draining towards an open water drain (see Fig. 2 for
a conceptual sketch). At a certain infinitesimal area dA of the
catchment, the drainage distance to the sub-surface network
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is W. The head difference to the nearest open drain is H.
Darcy’s equation then becomes

H H
W_rg

v=k

)

where rg [T] is the resistance against drainage. This way of
expressing the resistance is similar to the aerodynamic resis-
tance and the stomatal resistance of the Penman—Monteith
equation. It is the resistance of the flux to a difference
in head. So, instead of assuming a constant width to the
drainage network, we assume a constant resistance to flow.
This is in fact the purpose of veins in systems like leaves or
body tissues, such as lungs or brains or muscles. The veins
make sure that the resistance of liquids to reach stomata in
the leaf, or cells in living tissue, is optimal and equal through-
out the organ. But also in innate material, where gravity and
erosive powers have been at work for millennia, the sys-
tem is evolving towards an equally distributed resistance to
drainage, much in line with the minimum expenditure theory
of Rodriguez-Iturbe and Rinaldo (1997).

Building on Darcy’s equation, an infinitesimal area dA of
a catchment drains as follows:

dQg =TdA.

Interestingly, this drainage (recharge to the groundwater) is
downward, so that we can assume that dA lies in the hori-
zontal plane. If we integrate the discharge over the area of
the catchment that drains on the outfall, and assuming a con-
stant resistance, we obtain
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_ 1 HA S,
ng/vdAz— HdA = — = —=,
A rgJa Tg rgh
where n [-] is the average porosity of the active groundwa-
ter body (which is the groundwater body above the drainage
level). We see that the areal integral of the head H equals the
volume of saturated substrate above the level of the drain.
Multiplied by the porosity, this volume equals the amount of
groundwater stored above the drainage level, which equals
the active storage of groundwater S,. Comparison with the
linear reservoir provides the following connection between
the system timescale 7, the resistance rg, and the average
porosity n:
w
T= ?n =rgn.
As a result, we have been able to connect the timescale of
the linear reservoir to the key properties of Darcy’s equation,
being the average porosity, the conductance and the distance
to the sub-surface drainage structure, or better, to the aver-
age porosity and the resistance to drainage. This resistance to
drainage is assumed to be constant in space, but will evolve
over time, as the fractal structure expands. However, at a hu-
man timescale, this expansion may be considered to be so
slow that the system can be assumed to be static.

4 Discussion and conclusion

In groundwater flow, connecting the laboratory scale to the
system scale requires knowledge on the structure, shape, and
composition of the medium that connects the recharge in-
terface to the drain. Here we have assumed that, much like
we see in a homogenous medium, the flow pattern follows
streamlines perpendicular to the lines of equal head, form-
ing semicircle-like streamlines. This implies that flow in the
upper part of the streamlines is essentially vertical and that
integration of Darcy’s law over the cross section of a stream
tube takes place in the horizontal plane, and not in a plain
perpendicular to the gradient of the hillslope.

The second assumption is that, over time, patterns have
evolved along these streamlines by erosion of the substrate.
It is then shown that if the resistance to flow between the
recharge interface and the drainage network is constant over
the area of drainage, the linear reservoir equation follows
from integration. This constant resistance to the hydraulic
gradient is similar to what we see in leaves or body tissue.

What are the evolutionary dynamics of the drainage net-
work? It is likely that the drainage network makes use of
cracks and fissure present in the base rock, but subsequently
expands and develops by minerals going into solution. As
a result, these networks never stop developing, continuously
refining and expanding the fractal structure. In relatively
young catchments such structures may not be fully devel-
oped. By sampling the chemical contents of springs and base
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flow at the outfall of catchments, we may be able to deter-
mine the rate of growth of the drainage network, and — if the
mineral content of the substrate is known — the origin of the
erosion material. I think it is an interesting venue of research
to study the expansion of such networks as a function of the
mineral composition of the groundwater feeding the stream
network, possibly supported by targeted use of unique trac-
ers.

This paper does not provide an explanation for the fact that
in recharge systems groundwater drains as a linear reservoir.
In fact, it raises more fundamental questions: if a catchment
has exponential recession, congruent with a linear reservoir,
then what causes the resistance to entering the drainage net-
work to be constant? What is the process of drainage pattern
formation? If the sub-surface forms fractal-like structures,
then which formation process lies behind it? The reason why
this property evolves over time is still to be investigated, but
it is likely that the reason should be sought, in some way or
another, in the second law of thermodynamics.

We know from common practice that in mildly sloping
areas, groundwater models that spatially integrate Darcy’s
equation are quite well capable of simulating piezometric
heads. We also know that predicting the transport of pollu-
tants in such systems is much less straightforward, requiring
the assumption of dual porosities (which are in fact patterns).
In more strongly sloping areas, such numerical models are
much less efficient at describing groundwater flow. This can,
of course, be blamed on the heterogeneity of the substrate,
but one could also ask oneself the question of whether direct
application of Darcy’s law is the right approach at this scale.
If under the stronger gradient of a hillslope preferential flow
patterns have developed, then we should take the properties
of these patterns into account. Fortunately, nature is kind and
helpful. It has provided us with the linear reservoir that we
can use as an alternative for a highly complex 3-D numerical
model that has difficulty reflecting the dual porosity of pat-
terns that we cannot observe directly, but of which we can
see its simple signature: the linear reservoir with exponen-
tial recession. Hopefully groundwater modellers are going to
make use of that property, particularly in larger scale mod-
elling studies.
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