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Abstract. Effective monitoring and prediction of flood and
drought events requires an improved understanding of how
and why surface water expansion and contraction in re-
sponse to climate varies across space. This paper sought to
(1) quantify how interannual patterns of surface water ex-
pansion and contraction vary spatially across the Prairie Pot-
hole Region (PPR) and adjacent Northern Prairie (NP) in the
United States, and (2) explore how landscape characteristics
influence the relationship between climate inputs and sur-
face water dynamics. Due to differences in glacial history,
the PPR and NP show distinct patterns in regards to drainage
development and wetland density, together providing a di-
versity of conditions to examine surface water dynamics. We
used Landsat imagery to characterize variability in surface
water extent across 11 Landsat path/rows representing the
PPR and NP (images spanned 1985–2015). The PPR not
only experienced a 2.6-fold greater surface water extent un-
der median conditions relative to the NP, but also showed
a 3.4-fold greater change in surface water extent between
drought and deluge conditions. The relationship between sur-
face water extent and accumulated water availability (pre-
cipitation minus potential evapotranspiration) was quanti-
fied per watershed and statistically related to variables rep-
resenting hydrology-related landscape characteristics (e.g.,

infiltration capacity, surface storage capacity, stream den-
sity). To investigate the influence stream connectivity has on
the rate at which surface water leaves a given location, we
modeled stream-connected and stream-disconnected surface
water separately. Stream-connected surface water showed a
greater expansion with wetter climatic conditions in land-
scapes with greater total wetland area, but lower total wet-
land density. Disconnected surface water showed a greater
expansion with wetter climatic conditions in landscapes with
higher wetland density, lower infiltration and less anthro-
pogenic drainage. From these findings, we can expect that
shifts in precipitation and evaporative demand will have un-
even effects on surface water quantity. Accurate predictions
regarding the effect of climate change on surface water quan-
tity will require consideration of hydrology-related land-
scape characteristics including wetland storage and arrange-
ment.

1 Introduction

Surface water dynamics have strong implications for ecosys-
tem functioning and human land use including biogeochem-
ical balances (Hoffmann et al., 2009), species distribution
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(Boschilia et al., 2008; Calhoun et al., 2017), hydrologic con-
nectivity (Heiler et al., 1995; Pringle, 2001), and agricultural
productivity (Mokrech et al., 2008; Gornall et al., 2010). Nat-
ural variability in surface water extent, however, makes gath-
ering timely, accurate information, a challenge (Poff et al.,
1997; Beeri and Phillips, 2007). While satellite imagery can
be used to map variability in surface water extent over time,
predicting future changes in surface water extent (e.g., in re-
sponse to changes in climate, land use, or natural disasters)
requires improving our understanding of how the landscape
influences surface water extent over time and space. The
relative importance of hydrologic processes and flow paths
across a landscape (e.g., surface storage, infiltration, evapo-
transpiration, runoff) can be expected to influence the tim-
ing, duration and extent of surface water for a given location
(Euliss Jr. and Mushet, 1996; LaBaugh et al., 1998; van der
Kamp et al., 1999).

Winter (2001) presented the concept of hydrologic land-
scapes as a means to classify landscape units based on their
hydrologic attributes (land-surface form, geology and cli-
mate). These attributes, it is argued, could then be used to
predict the partitioning of water into storage, infiltration,
evapotranspiration, and runoff (Wagener et al., 2007). In
many landscapes storage is minimal and when rainfall in-
tensity is greater than both the rate of soil infiltration and
the soil moisture deficit, runoff via overland and subsurface
flows will dominate, contributing to increased stream dis-
charge (Eamus et al., 2006). These landscapes could be de-
scribed as exhibiting a low potential for surface water ex-
pansion. Alternatively, in landscapes with low topographic
gradients and poorly developed drainage networks, runoff
events rarely deplete available surface storage. In these land-
scapes, although stream discharge may elevate, much of the
surplus water remains as surface water (Shaw et al., 2012;
Kuppel et al., 2015). These landscapes show a high poten-
tial for surface water expansion with evapotranspiration often
the primary mechanism for water loss (Winter and Rosen-
berry, 1998). Landscapes with a tendency to accumulate sur-
face water are relatively common across the globe and in-
clude former glacial landscapes including the Prairie Pothole
Region (PPR) (Sass and Creed, 2008; Shaw et al., 2012),
parts of China (Yao et al., 2007) and Russia (Stokes et al.,
2007), and permafrost regions (Smith et al., 2007), as well
as low-gradient landscapes including the Argentine Pampas
(Kuppel et al., 2015), the Pantanal in Brazil (Hamilton et al.,
2002), and the Orinoco Llanos in Columbia and Venezuela
(Hamilton et al., 2004). Although such landscapes have pre-
viously been shown to experience surface water expansion
in response to increased precipitation (Huang et al., 2011;
Kuppel et al., 2015; Vanderhoof et al., 2016) or melting ice
(Stokes et al., 2007; Yao et al., 2007), we are unaware of
studies that have explicitly compared surface water expan-
sion and contraction between landscapes of differing surface
water expansion potential.

The PPR and adjacent Northern Prairie (NP), which span
the upper Midwest of the US, occur within and beyond the
last glacial maximum, respectively, and together represent a
range in the potential for surface water expansion. The PPR is
characterized by a high density of depressional wetland and
lake features (Zhang et al., 2009), a relic of glacial retreat
(Flint, 1971). Most wetlands are relatively small (< 1 ha)
depressions, underlain by glacial till with low permeabil-
ity, and occur within a landscape matrix of natural grass-
land and agriculture (Winter and Rosenberry, 1995; Zhang
et al., 2009; Cohen et al., 2016). This is in contrast to the
adjacent NP which includes ecoregions such as the North-
western Great Plains (Montana, western North and South
Dakota) and the Central Irregular Plains (southern Iowa and
northern Missouri), which lack the high density of small wet-
lands and show a well-developed drainage network due to
their occurrence outside of the last maximum glacial extent
(USGS, 2013). The NP and PPR are also characterized by
substantial spatial and interannual variability in air tempera-
ture and precipitation (Bryson and Hare, 1974). Variations in
temperature and moisture content of competing air masses
results in a strong north–south temperature and east–west
precipitation gradient. The precipitation-evaporation deficit
is least in the east (i.e., Minnesota and Iowa), and increases
to the west (i.e., Montana) (Kantrud et al., 1989; Millet et
al., 2009). This variability in climate has a strong influence
on water levels across the region. In the PPR in spring, wet-
land depressions receive water from both precipitation and
snowmelt. In the summer, water level is controlled by direct
precipitation, evaporation, and wetland vegetation transpira-
tion (Winter and Rosenberry, 1995; LaBaugh et al., 1998;
Carroll et al., 2005), with evapotranspiration typically domi-
nating water loss (Rosenberry et al., 2004).

Monitoring variation in water levels across the PPR has
been of high interest as it is a key factor in flood abatement,
water quality, biodiversity, carbon management, and aquifer
recharge (Gleason and Tangen, 2008). Water level data at
Devils Lake, North Dakota, for example, have been collected
as far back as 1867 and provide a regional indicator of hy-
drological conditions (LaBaugh et al., 1998; Wiche, 1996).
Efforts have been expanded to map interannual changes in
surface water extent across the PPR at a landscape scale us-
ing remotely sensed imagery (Kahara et al., 2009; Niemuth
et al., 2010; Vanderhoof et al., 2016). However, while sub-
stantial interannual variation in water level has been docu-
mented across the PPR (Huang et al., 2011; Vanderhoof et
al., 2016), and primarily attributed to interannual variation in
temperature and precipitation (Johnson et al., 2005; Zhang
et al., 2009), such surface water patterns have to date been
minimally characterized for the remainder of the NP. In addi-
tion to interannual patterns of temperature and precipitation,
we would also expect that surface water extent will depend
on landscape parameters such as infiltration capacity, storage
capacity, and drainage characteristics (Euliss and Mushet,
1996; LaBaugh et al., 1998; van der Kamp et al., 1999). Spa-
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tial models incorporating some of these factors can provide
additional insights into the risk of flood and drought events
across the region (Niemuth et al., 2010).

The PPR, in conjunction with adjacent NP, provides an
ideal physiographic example in which to analyze the influ-
ence of landscape characteristics on surface water expan-
sion and contraction. Although the interaction between wa-
ter level and climate has been studied extensively at select
locations within the PPR (e.g., Cottonwood Lake) (Winter
and Rosenberry, 1998; Huang et al., 2011), minimal research
has sought to understand spatial variability in the relation-
ship between climate and surface water extent. Our research
questions addressed in this study are:

1. How do interannual patterns of surface water expansion
and contraction vary spatially across the Prairie Pothole
Region and adjacent Northern Prairie of the US?

2. How do landscape characteristics influence the relation-
ship between climate inputs and surface water dynam-
ics?

The successful exploration of this spatial patterning and
landscape-scale statistical functions will inform hydrologic
and biogeochemical modeling and has implications for biodi-
versity/habitat modeling and management (e.g., Allen et al.,
2016; Golden et al., 2017)

2 Methods

In this study, we used Landsat imagery to map surface water
extent under dry, average, and wet conditions across portions
of the PPR and adjacent NP. We compared the expansion and
contraction of surface water extent between the PPR and ad-
jacent NP. As stream-connected surface water can leave a lo-
cation easily as stream flow, stream-connected and discon-
nected surface water were analyzed separately. We then used
a two-level modeling approach to investigate the influence of
landscape variables on surface water dynamics. In the first
stage, surface water extent per watershed was statistically
related to accumulated water availability, defined as precip-
itation (P ) minus potential evapotranspiration (PET). This
first stage produced the dependent variable for the second
model, the slope of the relationship between surface water
extent and climate inputs per hydrological unit (a watershed)
or the Surface Water Climate Response (SWCR). The SWCR
was then regressed against independent variables represent-
ing landscape characteristics (e.g., infiltration capacity, sur-
face storage capacity, stream density, long-term climate nor-
mals). This approach allowed us to explore what landscape
characteristics drive spatial variability in the relationship be-
tween surface water extent and climate.

2.1 Study area

Our study area consisted of 11 Landsat path/rows (total
area= 308 439 km2) in the US portion of the PPR and
adjacent NP (Fig. 1). The PPR across North and South
Dakota, western Minnesota, northern Iowa, and northern Ne-
braska, is dominated by the North and Northwest Glaciated
Plains. This ecoregion is characterized by landscape fea-
tures formed during its recent glacial history. Drift plains,
large glacial lake basins, and shallow river valleys sup-
port row crop agriculture. Grasslands and livestock graz-
ing dominate areas where glaciers left deposits of uneven
glacial till (Sayler et al., 2015). The PPR is dominated by
cultivated crops (59 %), herbaceous land cover (18 %), and
hay/pasture (10 %) (Homer et al., 2015). Adjacent to the
PPR, the Northwestern Great Plains, across western North
and South Dakota, is a semiarid unglaciated plain which
tends to have shallow soils with a clay texture not conducive
to growing crops and instead dominated by livestock graz-
ing across grasslands (Sayler et al., 2015). To the southeast
of the North Glaciated Plains lies the Western Corn Belt and
the Central Irregular Plains in Iowa and Nebraska. Glacial till
forms the parent material for most of the soil in Western Corn
Belt and the northern part of the Central Irregular Plains,
within the study area. Level and gently rolling hills and fer-
tile soils support agriculture (Sayler et al., 2015). The NP is
dominated by herbaceous land cover (47%) with cultivated
crops (28 %) and hay/pasture (9 %) is also common (Homer
et al., 2015). Using the precipitation averages (1981–2010)
defined by the Parameter-elevation Regressions on Indepen-
dent Slopes Model (PRISM, Daly et al., 2008), the PPR study
area receives 6 % more precipitation on average than the
NP study area (626 mm yr−1 relative to 592 mm yr−1, respec-
tively) and 1.5 % less evaporative demand or potential evap-
otranspiration (PET) (603 mm yr−1 relative to 594 mm yr−1,
respectively). These differences were not found to be statis-
tically different using the Wilcoxon rank sum test.

Our regression analysis used eight-digit Hydrologic Unit
Codes (HUC8s; USDA NRCS, 2015) as the unit of analysis
(n= 150) across all 11 Landsat path/rows (Fig. 1). HUC8s
were used instead of smaller watersheds such as HUC10s or
HUC12s to ensure that patterns in surface water expansion
and contraction represented landscape patterns, not individ-
ual or small groups of water features. HUC8s that occurred at
the edge of a Landsat path/row with an area of < 50 ha were
excluded from further regression analysis to limit the inclu-
sion of incompletely characterized watersheds. The threshold
of 50 ha was selected as it was a natural break in the distri-
bution of HUC8 sizes. Patterns of surface water expansion
and contraction were compared between the PPR and NP.
We note that one path/row (p37r26) in northern Montana was
technically within the western most section of the PPR, but
was found to behave dissimilarly from the PPR and similarly
to the NP in terms of both its landscape characteristics (e.g.,
stream density, wetland density) and surface water expansion
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Figure 1. Distribution of Landsat path/rows used to map surface water extent and corresponding eight-digit Hydrological Units (HUC8s)
used for further analysis in relation to the boundary of the Prairie Pothole Region (PPR). The p37r26 behaved dissimilarly from the PPR and
similarly to the adjacent Northern Prairie (NP) in all regards and was therefore included with the NP for analyses organized by PPR and NP.

and contraction. Because of this, p37r26 was included in the
adjacent NP for analyses where findings were organized by
PPR and NP.

2.2 Landsat image processing

2.2.1 Path-row and image selection

surface water extent was mapped for a series of images across
11 Landsat path/rows (Fig. 1). These path/rows were selected
to represent the PPR and adjacent NP and were intentionally
selected to represent a range of ecoregions, climate condi-
tions (west to east and north to south), and densities of wet-
lands and streams. Snow-free images (acquired from approx-
imately April through October) containing less than 10 %
cloud cover from the Landsat 4–5 TM, Landsat 7 ETM+
(prior to failure of the scan-line corrector in 2003) and Land-
sat 8 OLI sensors were selected between 1985 and 2015. The
number of images processed within each path/row averaged
14 (range: 9 to 17 acceptable images) and were intentionally
selected to document interannual variability in surface wa-
ter extent, by selecting images from wet, average, and dry
years (Table 1). The terms “wet”, “average”, and “dry” were
defined in reference to local norms, using the Palmer Hy-
drological Drought Index (PHDI) and the 12-month Stan-
dardized Precipitation Index (SP12) (NOAA NCDC, 2014).

The range of conditions captured by the time series within
each path/row in relation to the historical climate condi-
tions (1895–2015) are shown in Table 1. The PHDI is based
on a monthly water balance accounting approach that consid-
ers precipitation, evapotranspiration, runoff, and soil mois-
ture. The indices rely on weather station data and are inter-
polated at 5 km (NOAA NCDC, 2014). A complete list of
images included in the analysis is presented in the Appendix
(Table A1).

2.2.2 Image processing

Images were atmospherically corrected and converted to sur-
face reflectance values using the Landsat Ecosystem Dis-
turbance Adaptive Processing System (Masek et al., 2006).
A minimum noise fraction transformation was applied to
reduce within-image noise (Green et al., 1988). The per-
pixel water fraction was estimated using the Matched Fil-
tering algorithm, a partial unmixing method in the ENVI
software package (Exelis Visual Information Solutions, Inc,
Herndon, Va) (Turin, 1960; Vanderhoof et al., 2016). This
algorithm is trained on a water spectral signature, which
was derived from open-water polygons manually selected
within each path/row, resulting in a water signature specific
to each image. Three to four polygons (minimum size of 1 ha
per polygon, total training area per path/row was approxi-

Hydrol. Earth Syst. Sci., 22, 1851–1873, 2018 www.hydrol-earth-syst-sci.net/22/1851/2018/



M. K. Vanderhoof et al.: Wetlands inform how climate extremes influence surface water expansion 1855

Table 1. A summary of the Landsat images utilized within each selected path/row. Landsat TM images were used for dates 2011 and earlier.
Landsat 8 OLI images were used for 2013 forward. DOY – day of year; NP – Northern Prairie, PPR – Prairie Pothole Region, and PHDI
– Palmer Hydrological Drought Index. ∗ p37r26 was considered NP because of its dissimilarity with the rest of the PPR.

Path/ PPR/Northern Number Spring Summer Fall Year Min. Max. Mean
row Prairie (NP) of (DOY (DOY (DOY range PHDI PHDI PHDI

(primary) images 60–151) 152–243) 244–335) (%) (%) (%)

p26r30 NP 12 6 4 2 1987–2010 4 99 45
p26r32 NP 17 10 3 4 1988–2010 2 99 51
p27r30 PPR 9 3 4 2 1988–2008 4 99 54
p29r29 PPR 17 9 2 6 1990–2011 7 100 69
p30r30 PPR 13 5 5 3 1988–2013 2 100 45
p30r31 NP 15 6 5 4 1986–2011 5 94 38
p31r27 PPR 15 2 6 7 1990–2011 3 100 67
p31r29 PPR 13 6 5 2 1989–2011 7 99 45
p33r28 NP 15 8 2 5 1988–2015 1 99 49
p36r28 NP 16 7 7 2 1985–2013 2 96 38
p37r26 NP∗ 15 4 6 5 1987–2013 1 99 52

Total 157 66 49 42

Table 2. Landsat images and corresponding National Agricultural Imagery Program (NAIP) images used to validate the Landsat surface water
extent maps. Accuracy is presented here by Landsat image. PHDI – Palmer Hydrological Drought Index, SP12 – 12-month Standardized
Precipitation Index, OE – omission error for water, CE – commission error for water, OA – overall accuracy, DC – Dice coefficient, and RB
– relative bias.

Landsat Landsat NAIP date(s) Gap (days) PHDI SP12 Number OE CE OA DC RB
path/row date of (%) (%) (%) (%) (%)

points

p26r32 28 Jun 2004 23 Jun and 7 Jul 2004 −5 to +9 days 0.57 0.14 947 6.3 5.9 97.4 93.9 −0.5
p27r30 14 Jul 2013 10 and 12 Jul 2013 −4 to −2 days −0.34 0.05 707 11.8 9.3 92.5 89.5 −2.7
p29r29 13 Oct 2006 25 Sep 2006 −18 days 2.3 −0.08 814 11.1 2.5 93.6 93.0 −8.8
p29r29 8 Oct 2010 17 and 20 Sep 2010 +18 to +21 days 9.63 3.06 959 1.9 3.3 97.4 96.4 1.4
p31r29 17 Jul 2004 10 and 14 Jul 2004 −7 to −3 days −0.4 −0.04 1302 7.4 1.5 97.2 95.4 −6.0
p33r28 13 Jul 2003 11 and 15 Jul 2003 −2 to +2 days −2.74 −0.91 908 10.6 27.0 85.5 80.4 22.5
p37r26 31 Jul 2011 16 and 19 Jul 2011 −15 to −12 days 2.96 1.29 498 16.8 9.7 90.2 86.6 −7.9

mately 20 ha) per path/row were selected. The same open-
water polygons were used to train the time series for each
path/row. The water fraction output was linearly stretched
to maximize our ability to separate water from non-water.
CFmask, a quality-control layer provided with Landsat im-
ages, was used to mask out clouds and cloud shadows
(Zhu and Woodcock, 2014), while the National Land Cover
Database (NLCD) was used to mask out impervious sur-
faces, defined as low, medium, and high-density development
(Homer et al., 2015), which can show spectral confusion
with surface water. Each surface water image was visually
inspected for quality using visual interpretation as well as
ancillary datasets (e.g., National Agricultural Imagery Pro-
gram – NAIP – imagery, National Wetlands Inventory – NWI
– dataset; USFWS, 2010). Select images were removed or
edited primarily due to spectral confusion between water and
bare rock or shadowed vegetation.

2.2.3 Surface water extent validation

The surface water extent maps were validated using 1 m res-
olution NAIP imagery. Landsat images were selected for val-
idation based on the temporal coincidence of the Landsat and
NAIP imagery collections (Table 2). Because terrestrial sur-
face water is a relatively rare cover type, it is difficult to
generate enough inundated reference points through a sim-
ple random-point generation. Therefore, random points were
generated in reference to NWI polygons overlapping with
the NAIP and Landsat imagery. Points were then visually
identified as inundated or non-inundated using the NAIP im-
agery. To account for the scale difference between a random
point and a 900 m2 Landsat pixel, the Landsat pixel bound-
aries for each random point were identified. The point was
classified as the majority class (inundated or non-inundated)
identified by NAIP within the Landsat pixel boundary sur-
rounding each random point. Reference points were gener-
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ated per Landsat/NAIP pair (500 or 1000), with the num-
ber of reference points varying depending on the amount of
NAIP imagery available within the Landsat path/row extent,
and the number of random points that occurred within Land-
sat NA pixels. Metrics presented included overall accuracy,
omission error, commission error, dice coefficient, and rela-
tive bias. Omission and commission errors were calculated
for the category “water”. The dice coefficient is the condi-
tional probability that if one classifier (product or reference
data) identifies a pixel as water, the other one will as well, and
therefore integrates omission and commission errors (Fleiss,
1981; Forbes, 1995). The relative bias provides the propor-
tion that water is underestimated (negative) or overestimated
(positive).

The Landsat per-pixel fraction water was binned into inun-
dated (≥ 0.3) and non-inundated (< 0.3) classes. This thresh-
old was selected as it best balanced errors of omission and
commission. Overall accuracy for the Landsat surface water
maps across the 11 path/rows was 93.9 % with errors of omis-
sion for surface water averaging 8.5 % and errors of commis-
sion for surface water averaging 8.2 % (Table 3). Errors of
commission were higher for p33r28 which can be attributed
to confusion in agricultural fields and with bare rock forma-
tions. The surface water maps showed no relative bias and
a dice coefficient of 92 %. To determine the minimum wet-
land size that was reliably detected, we randomly selected
400 NWI wetlands (from < 0.1 to 1.0 ha) visibly inundated
in the NAIP imagery (Table 2). Wetlands larger than 0.2 ha
were reliably detected by the Landsat surface water maps
(73 %). Errors of omission and commission can be primar-
ily attributed to mixed Landsat pixels occurring over small
wetlands (a few pixels in size) or at the edge of larger wet-
lands or open water features. In some images, parts of or en-
tire agricultural fields were classified as water. It is common
in both the spring months, when crops need to be planted,
and fall months, when crops are being harvested, for fields
to experience wet conditions (Fausey et al., 1987; King et
al., 2014). In addition, poorly drained soil is common across
this region (Skaggs et al., 1994) and wetland depressions of-
ten occur within agricultural fields. Consequently, subsurface
tile drainage has become increasingly popular across the re-
gion to speed up the removal of excess soil water (Blann et
al., 2009). It is often unclear to what extent surface water
mapped within agricultural fields represents historical or cur-
rent wetlands, poorly drained fields, or misclassified pixels.
Lastly, a close match in acquisition date between the Landsat
and NAIP images is essential for the NAIP imagery to ac-
curately represent ground conditions. Variability in the date
match can be considered one potential source of error, as the
occurrence of a rain event or seasonal variability can change
surface water conditions over even short time periods.

Table 3. Summary of accuracy statistics across all of the Land-
sat images validated using National Agricultural Imagery Pro-
gram (NAIP) imagery.

NAIP – NAIP – Total
inundated non-

inundated

Landsat – inundated 2052 183 2235
Landsat – non-inundated 190 3710 3900

Total 2242 3893 6135

Omission error for water (%) 8.5
Commission error for water (%) 8.2
Overall accuracy (%) 93.9
Dice coefficient 91.7
Relative bias 0.0

2.3 Surface water extent analysis

surface water abundance (ha km−2) was calculated per
HUC8 with HUC8 area being adjusted for each image based
on the abundance of not applicable (n/a) pixels (e.g., cloud
cover, cloud shadow) in each image. We used the high-
resolution National Hydrography Dataset (NHD, 1 : 24 000)
to classify surface water as (1) continuous connected with
the stream network, or (2) disconnected from the stream
network. The NHD line dataset was buffered by 14 m, the
reported digital horizontal accuracy of the dataset (USGS,
2010) and NHD area was added to account for the width
of large rivers. surface water polygons that intersected the
stream network in a given image were classified as continu-
ously connected water (CCW). surface water polygons that
did not intersect the stream network in a given image were
classified as discontinuous water (DCW) or discontinuous
from the stream network. We acknowledge that the NHD is
known to be incomplete (e.g., lacking short and ephemeral
stream lines) and that some stream lines within the NHD are
disconnected from downstream waters (Heine et al., 2004).
However, the NHD is the most complete nationally available
stream dataset.

Processed images within each path/row were ranked from
least-to-most amount of surface water per area. Median con-
dition was defined as the image or two images representing
the median amount of surface water extent, estimated from
all images within a path/row. Drought and deluge conditions
were defined as the average of the two end-member images
showing the least and most amount of total surface water
extent for each path/row, respectively. surface water extent
was then summed across the PPR and NP path/rows and di-
vided by the total area to calculate the hectares of surface
water extent per km2 for each region. The NP portion of
path 27, row 30 (p27r30) and p30r30 were deleted, as was
the PPR portion of p26r30 to avoid double-counting over-
lapped path/rows. The NP and PPR portions of p31r29 were
analyzed separately.
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2.4 Stage 1 – derivation of the Surface Water Climate
Response (SWCR)

In stage 1, surface water extent in each HUC8 was related,
using linear regression, to water availability, defined as pre-
cipitation minus PET summed over a time interval. Water
availability provided an estimate of the amount of water in
each watershed available to either (1) runoff, (2) infiltrate to
shallow or deep groundwater sources, or (3) be stored as sur-
face water. Surface water was again partitioned into CCW
and DCW using its spatial relationship to the NHD. Pre-
cipitation data were compiled using the Parameter-elevation
Regressions on Independent Slopes Model (PRISM, Daly
et al., 2008). PET, or the atmospheric demand for evap-
oration and transpiration in the absence of water limita-
tions, which can be expected over open surface water, was
compiled using gridded surface meteorological data PRISM
and the North American Land Data Assimilation System
Phase 2 (Abatzoglou, 2011). PET was calculated using the
Penman–Monteith equation that required inputs of mini-
mum and maximum temperature, daily average dew point
temperature (equivalently, vapor pressure or vapor pres-
sure deficit), wind speed and downward shortwave radiation
(Abatzoglou, 2011; Mitchel et al., 2004). The datasets were
resampled to 125 m using cubic convolution and summarized
for each HUC8. Water availability was summed for a series
of monthly periods preceding each image date (3, 6, 9, 12, 18,
24, 30, and 36 months) to identify the accumulation period
for which the greatest number of HUC8s showed a signifi-
cant (p < 0.05) slope between water availability and surface
water extent. This logic was meant to reduce the probability
that a zero slope resulted from surface water responding more
strongly to climate drivers at a different time interval. This
first stage produced surface water climate response (SWCR),
our dependent variables for stage 2, i.e., the slope of the re-
lationship between CCW and DCW surface water extent to
accumulated water availability (Fig. 2). The slope or stage 2
dependent variable is referred to as the surface water climate
response (SWCR) from this point forward.

Cloud cover makes it challenging to restrict analysis of
Landsat imagery to a specific season, while including im-
agery that covers more than one season potentially conflates
seasonal surface water dynamics with interannual surface
water dynamics. The influence of seasonal change in sur-
face water extent within our analysis contributed to the un-
certainty (primarily through sampling error) in the SWCR.
For example, if we included an image from June 1993 and
one from August 1993 and related both images to the last
nine months of precipitation and PET (September 1992–
May 1993 and November 1992–July 1993, respectively),
greater seasonal dynamics or variation in surface water ex-
tent between the two dates can be expected to show up as
greater uncertainty in the slope, defined by the standard er-
ror of the slope or standard error of the SWCR. This becomes
more evident as the accumulated period becomes larger (e.g.,

Figure 2. Theoretical figure showing the derived dependent vari-
able, or the Surface Water Climate Response (SWCR), defined as
the slope of the statistical relationship between accumulated wa-
ter and surface water extent. Some areas show a greater SWCR
or substantial increase in surface water extent as more water be-
comes available via precipitation minus potential evapotranspira-
tion (PET), while other areas show little to no change in surface
water extent, presumably as excess water leaves the system through
runoff or infiltration.

36 months). By explicitly considering the uncertainty of the
SWCR in the regression analysis, as described below in the
stage 2 analysis (Sect. 2.6), we can, to the extent possible,
account for seasonally induced variation in surface water ex-
tent.

2.5 Landscape variables for stage 2 analysis

The independent variables summarized for each HUC8 and
included in the analysis were selected to characterize mecha-
nisms through which water can leave the landscape (e.g., in-
filtration, runoff, tile drainage), mechanisms through which
water can remain and expand on the landscape (e.g., wet-
land density, wetland size, topography), as well as other po-
tential influences on surface water dynamics (e.g., climate
norms, land cover). The NWI (USFWS, 2010) and NHD
stream dataset (USGS, 2013) were used to calculate wet-
land and stream characteristics including stream density, wet-
land count and areal density, and proportion of total wet-
land area attributed to large (> 8 ha) features. A threshold
of 8 ha was selected as this is the size threshold used by US-
FWS to define a lacustrine system (Cowardin et al., 1979).
We do not refer to these features as lakes, however, as wa-
ter depth and associated vegetation are also important fea-
tures to defining lacustrine systems, and were not evaluated.
We did not include distance variables, which were previously
found to be highly correlated with simpler variables already
in the analyses: mean wetland-to-wetland distance was pre-
viously found to be highly correlated with wetland density
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(r =−0.95, p < 0.01) and mean wetland-to-stream distance
highly correlated with stream density (r = 0.88, p < 0.01)
(Vanderhoof et al., 2017). We included the proportion (%)
DCW was of total surface water as a proxy of the relative
distribution of water storage across the watershed between
riparian and non-riparian water bodies. Surface topography
can influence the capacity for surface water to expand and
was quantified as the weighted averaged slope gradient, as
defined by the US Department of Agriculture’s Soil Survey
Geographic (SSURGO) database (Soil Survey Staff, 2017).
Topographic Wetness Index was not included because of the
relative weakness of such indices in landscapes with little
relief (e.g., Schmidt and Persson, 2003) and the data in-
tensive nature of calculating TWI with a 10 m digital ele-
vation model (DEM) across such a large study area. Addi-
tional variables derived from the SSURGO database to char-
acterize infiltration capacity include available water storage
(0–150 cm), annual minimum depth to water table, and sat-
urated hydraulic conductivity (Ksat). Human influence was
quantified as the abundance of agricultural activities, or the
percent of each HUC8 classified as agriculture, defined as
the National Land Cover Database (NLCD; Homer et al.,
2015) cover categories hay/pasture and row crop. Anthro-
pogenic modifications to drainage systems, or the percent
land cover artificially drained, was estimated as the percent
of each HUC8 where row crop cover type (NLCD) and very
poorly drained or poorly drained soils as defined by the Na-
tional Resources Conservation Service’s SSURGO database
were collocated following Christensen et al. (2013). The cli-
mate normals per HUC8 (1989–2013) were calculated to rep-
resent the Landsat image range. Multi-decadal climate nor-
mals were included to test for the potential effect of a climate
gradient across the study area. The precipitation averages are
provided as part of the PRISM dataset (Daly et al., 2008).
PET was calculated as a function of monthly mean PRISM
temperature and day length following Hamon (1961). The
Moisture Index (MI) was calculated as the ratio of pre-
cipitation and PET where, if PET exceeded precipitation,
MI= precipitation/PET− 1, and if precipitation exceeded or
equaled PET, then MI= 1=PET/precipitation. Values range
from−1 (dry) to 1 (wet) (Willmott and Feddema, 1992; Fed-
dema, 2005). The climate averages were resampled to 1 km
from 4 km using inverse-distance weighting, prior to being
averaged per HUC8. The distribution of values within each
of the independent variables is shown in Table 4. Spearman
rank correlations with a Bonferroni correction (Dunn, 1961)
were calculated for the independent variables (Table A2).

2.6 Stage 2 – analysis – landscape mechanisms
explaining variability in SWCR

In stage 2, CCW and DCW SWCRs, or the slope of the re-
lationship between CCW and DCW and accumulated wa-
ter availability, were related to landscape variables using
feasible generalized least-squares (FGLS) regression, with

HUC8s (n= 150) as the unit of analysis. FGLS allowed us to
estimate the heteroscedastic structure of the residuals (Lewis
and Linzer, 2005) and has been previously applied within
landscape ecology contexts (e.g., Acharya, 2000; Villalobos-
Jimenez and Hassall, 2017). The SWCRs were found to
be significant for the largest number of HUC8s using a 9-
month period of accumulation for both CCW and DCW,
which was therefore used as the accumulation period for fur-
ther analyses (Table 5). The SWCRs were found to be spa-
tially autocorrelated using Global Moran’s I (spatial relation-
ship conceptualized using inverse distance) (DCW SWCR,
9 months, z-score= 7.8, p < 0.01, CCW SWCR, 9 month,
z-score= 4.1, p < 0.01), violating the assumption of inde-
pendence between samples. To account for spatial autocor-
relation in the SWCRs, we calculated an autocovariate in
ArcGIS 10.3, Geostatistical Analyst (ESRI, Redmond CA)
which uses adjacent HUC8s to create a neighbor value.
By including a spatial autocovariate in the ordinary least-
squares (OLS) regression model, we controlled for how
much the response variable reflected response values of adja-
cent HUCs, before identifying additional significant explana-
tory variables (Dormann et al., 2007; Betts et al., 2009). The
autocovariate was automatically retained while only signif-
icant independent variables (p < 0.05) were additionally re-
tained. The dependent variable was normalized using a Box–
Cox power transformation (R package MASS, Venables and
Ripley, 2002). Multicollinearity was formally assessed using
the regression collinearity diagnostics described by Belsley
et al. (1980) and implemented in the R package perturb (Hen-
drickx, 2012). Collinearity may affect parameter estimation
when a condition index greater than 10 is associated with
variance decomposition proportions greater than 0.5 for two
or more explanatory variables (Belsley, 1991). Both models
complied with collinearity requirements.

Having an estimated dependent variable (e.g., SWCR)
does not necessarily present a problem for a regression anal-
ysis, but we must recognize that the regression model error
term contains two components: (1) the expected random er-
ror resulting from sources of variation not taken into account
in the model, and (2) the difference between the true value of
the dependent variable and the estimated value (sampling er-
ror). In this study, the uncertainty around the dependent vari-
able (SWCR) was not constant across observations. Instead,
the dependent variable showed a strong positive correlation
with its standard error (DCW SWCR, R2

= 0.59, p < 0.05;
CCW SWCR, R2

= 0.70, p < 0.05) (Fig. 3). FGLS allowed
us to estimate both components of the error. To do so we:
(1) calculated the logarithm of squared residuals from the
OLS model; (2) regressed the log-residuals on the indepen-
dent variables included in the OLS model; (3) calculated the
exponential of fitted values from that regression, which esti-
mates the variance of the regression residual that is not due to
sampling of the dependent variable, z; and (4) estimated the
basic model again now including weights (1 z−1) (Hanushek,
1974; Lewis and Linzer, 2005). We found the final model
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Figure 3. Standard errors of the Surface Water Climate Re-
sponse (SWCR) tended to be positively correlated with both (a) dis-
continuous surface water (DCW) or surface water disconnected
from the stream network and (b) continuously connected wa-
ter (CCW) or surface water connected to the stream network.

residuals to be random using the studentized Breusch–Pagan
test (Breusch and Pagan, 1979).

To help add confidence regarding which landscape vari-
ables were more or less important, we also fit random for-
est models in R using the package randomForest (Liaw and
Wiener, 2005). The random forests were run with the SWCRs
as the dependent variable and landscape characteristics as in-
dependent variables. We derived 500 binary trees or boot-
strap iterations using out of bag (OOB) samples (70 % of
samples to train and 30 % of samples to validate). Variable
importance was calculated as the change in node impurity
(i.e., Gini importance). Random forest models are generally
insensitive to collinearity among metrics; however, the inclu-
sion of correlated variables can deflate variable importance as
well as the overall variation explained by the model (Murphy
et al., 2010). We implemented random forest model selec-
tion to select the smallest number of non-redundant variables
(varSelRF R package) (Murphy et al., 2010).

3 Results

3.1 Surface water extent

Median surface water extent as well as the amount of wa-
ter added and lost from the surface between wet and dry pe-
riods was found to vary considerably across the study area
(Figs. 4 and 5). Analysis of the median total surface water ex-
tent between the PPR and the NP demonstrated that the PPR
had 2.6 times greater surface water extent than the NP (Ta-
ble 6). The PPR also showed greater variability in total sur-
face water extent, adding 5.7 ha km−2 during very wet condi-
tions and losing 2.8 ha km−2 during very dry conditions, for
a maximum net difference of 8 ha km−2. This can be com-
pared to the NP which gained 1.6 ha km−2 during very wet
conditions and lost 0.8 ha km−2 during very dry conditions,
a net difference of 2.4 ha km−2 (Table 6). DCW, or water that
was discontinuous with the stream network, showed greater
expansion and contraction in extent in both the PPR and NP,
relative to CCW which intersected the stream network. Con-
sequently, DCW increased as a percent of total surface water
during wet periods and decreased as a percent of total sur-
face water in dry periods. This suggests that across the study
area, surface water that was disconnected from the stream
network disproportionately served a surface water storage
function during wet periods, reducing the amount of water
contributing to downstream flooding. Similarly, DCWs dis-
proportionately experienced loss during dry periods.

3.2 Relationship between surface water extent and
water availability

Including PET instead of using precipitation alone tended to
increase the percentage of HUC8s showing a statistically sig-
nificant relationship between surface water extent and water
availability across the different accumulation periods that we
tested, although this was not true for all time periods. For in-
stance, the percent change from precipitation to precipitation
minus PET ranged from −1.4 to 38 % for DCW and −6.3 to
24.3 % for CCW. For DCW there was a jump in the percent-
age of HUC8s showing a significant relationship between
six and nine months, but the percentage of HUC8s stabilized
after this time period out to 36 months. CCW showed a sim-
ilar but smaller jump in the percentage of HUC8s with a sig-
nificant relationship between six and nine months (Table 5).
At nine months, all images, regardless of being collected in
the spring, summer or fall, would include winter precipita-
tion. We observed substantial spatial variability in the sta-
tistical relationship between surface water extent and water
availability. Using nine months as the accumulation period,
we observed a strong spatial pattern in DCW. PPR HUC8s
tended to show a greater SWCR, exhibited by a substantial
increase in surface water extent with increased water avail-
ability, while HUC8s across the NP tended to show a smaller
SWCR, exhibited by minor to no increases in surface wa-
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Figure 4. Mean surface water abundance and the amount of “wetting up” varied substantially between different Landsat path/rows. Portions
of the Northern Prairie (e.g., p26r30) showed relatively less surface water extent and expansion (a, b) while portions of the Prairie Pothole
Region (e.g., p29r29) showed relatively more surface water extent and expansion (c, d). Note: not all water is visible at this reduced scale.
PHDI – Palmer Hydrological Drought Index.

ter extent with increased water availability (Figs. 6 and 7).
For CCW, the spatial pattern was less consistent within the
PPR or ecoregion boundaries. Instead, HUC8s with a greater
SWCR tended to be HUC8s with large lakes or floodplains
(Figs. 6 and 7).

3.3 Landscape variables explaining variability in
surface water response

For DCW SWCR, when independent variables were assessed
individually using Spearman’s rank correlation, the SWCR

was greater in locations with fewer streams (R=−0.64,
p < 0.05), lower slope gradient (R=−0.59, p < 0.05),
higher wetland density (R= 0.52, p < 0.05) and total wet-
land area (R= 0.51, p < 0.05), deeper minimum depth to
water table (R= 0.59, p < 0.05), and where a greater pro-
portion (%) of the total surface water was disconnected from
the stream network (R= 0.42, p < 0.05) (Table 7). When the
relative importance of the variables was tested using random
forest, variables found to be the most important included,
wetland density, stream density, annual minimum depth to
water table, and the slope gradient (Table 7). However, after
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Figure 5. Examples of minor and substantial expansion of surface water extent between historically dry and historically wet points in time.
PHDI – Palmer Hydrological Drought Index.

accounting for the spatial autocorrelation in the DCW SWCR
and the significance of the variables, the DCW SWCR in-
creased in the final feasible generalized least-squares model
(adjusted R2

= 0.66, F statistic= 73.6) with (1) greater wet-
land density, (2) deeper depth to groundwater, and (3) less
anthropogenic drainage (Table 8). The variable most con-
sistently identified across statistical approaches was wetland
density, the relevance of which is demonstrated in Fig. 5a
and b.

For CCW SWCR, fewer independent variables showed
a significant Spearman rank correlation. The SWCR for
stream-connected water increased in locations with a greater
total wetland area (R= 0.48, p < 0.05) and less average pre-
cipitation (R=−0.33, p < 0.05) (Table 7). Using random
forest, the total wetland area and proportion of total water
from large features were found to be the most important vari-

ables in explaining variation. The final feasible generalized
least-squares model (adjusted R2

= 0.54, F statistic= 37.4)
also found the relationship between CCW and surface wa-
ter availability (i.e., SWCR) was stronger with greater total
wetland area, but also found that it decreased with greater
wetland density (Table 8).

4 Discussion

Surface water extent, and in particular surface water within
well-studied portions of the PPR, has been previously shown
to exhibit seasonal and interannual patterns (Poff et al., 1997;
Beeri and Phillips, 2007; Vanderhoof et al., 2016) that can, in
turn, influence the cumulative hydrologic response of a wa-
tershed (Evenson et al., 2016; Golden et al., 2016; Ameli and
Creed, 2017). What has been less studied is how surface wa-
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Figure 6. The spatial distribution of the Surface Water Climate Response (SWCR) values from the statistical relationships between avail-
able water, defined as precipitation minus potential evapotranspiration accumulated over the previous nine months, and surface water extent.
Greater SWCR values indicate greater change in surface water extent with increased available water. Surface water extent was divided be-
tween (a) disconnected surface water (DCW), or surface water extent disconnected from the stream network, and (b) continuously connected
water (CCW), or surface water extent connected to the stream network.

ter dynamics vary across diverse landscapes. This is partic-
ularly relevant when we consider the need for communities
and local agencies to plan ahead for expected changes in the
precipitation regime associated with climate change (Dore,
2005; Johnson et al., 2005; Millett et al., 2009; McKenna et
al., 2017).

Our study area was intentionally selected to encompass a
large area with a wide range of landscape conditions in re-
gards to wetland and stream density and capacity for infiltra-
tion. Across the study area, variation in the values of many
of the variables (e.g., stream density, wetland density) can be
attributed to landscape age or the time since the last glacial
retreat, and corresponding variability in drainage develop-
ment across the region (Ahnert, 1996). The Wisconsin glacier

retreated from the PPR by 11 300 BP, meaning the drainage
system is still developing and surface water is being stored in
glacially formed depressions (Winter and Rosenberry, 1998;
Stokes et al., 2007). In contrast, the landscape to the west and
south of the PPR, is much older (> 20 000 BP) with a well-
developed drainage network (Clayton and Moran, 1982).

Our results demonstrated that the relationship between
surface water extent and water availability (SWCR) is a func-
tion of both climate and landscape variables and that the
density of depressional wetlands, in particular, played a key
explanatory role in the observed landscape response to in-
creased climate inputs. Given our findings, we expect that
changes in net precipitation from climate change or other
climatic forcings will disproportionately affect surface wa-
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Table 5. The percent of HUC8s across the study area that showed a significant relationship (p < 0.05) between surface water extent and
(1) precipitation (Precip or P ) or (2) precipitation minus potential evapotranspiration (PET) for different accumulation periods. DCW –
disconnected surface water; CCW – continuously, connected surface water.

Accumulated Precip P −PET Inclusion Precip P −PET Inclusion
period DCW DCW of PET CCW CCW of PET

(%) (%) change (%) (%) change
(DCW) (CCW)

3 months 19.4 27.1 7.6 15.3 28.5 13.2
6 months 5.6 31.9 26.4 9.0 33.3 24.3
9 months 20.8 59.7 38.9 27.1 48.6 21.5
12 months 45.8 50.7 4.9 42.4 41.0 −1.4
18 months 24.3 58.3 34.0 25.7 39.6 13.9
24 months 52.1 50.7 −1.4 43.8 37.5 −6.3
30 months 28.5 55.6 27.1 27.1 43.1 16.0
36 months 54.9 54.9 0.0 47.2 44.4 −2.8

HUC8s with a significant (p < 0.05)
relationship in at 65.3 75.7 10.4 59.0 67.4 8.3
least 1 time period

Figure 7. Distribution of Surface Water Climate Response and standard error values organized by Landsat path/row and primary path/row
location, i.e., the Northern Prairie or the Prairie Pothole Region (PPR) for (a) surface water that is disconnected from the stream net-
work (DCW), and (b) surface water that is connected to the stream network (CCW). HUC8 – eight-digit Hydrological Units.
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Table 6. Surface water extent conditions summarized for the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP). TSW – total
surface water extent, CCW – continuously connected surface water that intersects the stream network, and DCW – disconnected surface
water or surface water that does not directly intersect the stream network.

Region Path/ Total Min Max Median Added min Reduction Increase Min (% Max (% Median
rows area (ha km−2) (ha km−2) (ha km−2) to max from median from median of all) of all) (% of all)
(all or (km2) (ha km−2) to min (%) to max (%) (area) (area) (area)
part)

PPR TSW 7 146 309 3.51 11.99 6.33 8.48 44.6 89.2 – – –
NP TSW 9 173 026 1.62 4.07 2.45 2.45 33.9 66.1 – – –
PPR CCW 7 146 309 2.82 7.56 4.44 4.74 36.5 70.4 80.3 63.1 70.1
NP CCW 9 173 026 1.44 3.11 2.06 1.66 30.0 50.5 89.1 76.3 84.2
PPR DCW 7 146 309 0.69 4.42 1.90 3.73 63.4 133.4 19.7 36.9 29.9
NP DCW 9 173 026 0.18 0.97 0.39 0.79 54.4 149.2 10.9 23.7 15.8

Table 7. Spearman rank correlation values between the dependent variables and each of the independent variables considered in the analysis.
Bonferroni correction was applied to the p values and significant correlations (p < 0.05) are starred. Relative variable importance as deter-
mined by random forest models are also presented for each variable (i.e., increase in node purity). PET – potential evapotranspiration, Ksat
– saturated hydraulic conductivity, DCW – disconnected surface water, and CCW – continuously, connected surface water.

Response (DCW, 9 months) Response (CCW, 9 months)

Variable Spearman Increase in Spearman Increase in
rank node purity rank node purity
correlation correlation

Autocovariate 0.79∗ 0.081 0.53∗ 0.108
Proportion (%) DCW is of total surface water 0.42∗ 0.012 −0.11 0.3341

Stream density −0.64∗ 0.0361
−0.15 0.060

Wetland density 0.52∗ 0.0481 0.27 0.0571

Wetland areal abundance 0.51∗ 0.0171 0.48∗ 0.8551

Portion of total water from large features −0.01 0.004 0.30 0.5561

Moisture index (average) −0.03 0.005 −0.28 0.0531

Precipitation (average) −0.10 0.0081
−0.33∗ 0.0391

PET (average) −0.06 0.0111
−0.13 0.034

Available water storage (0–150 cm) 0.27 0.007 −0.01 0.061
Annual minimum depth to water table 0.56∗ 0.0271 0.09 0.046
Ksat 0.04 0.004 −0.08 0.0701

Slope gradient, weighted average −0.59∗ 0.0251
−0.22 0.072

Agricultural land cover 0.31 0.005 −0.05 0.035
Percent drained by anthropogenic means 0.22 0.004 −0.04 0.020

1 Variables selected by the random forest model selection process, using the R package rfUtilities, when the autocovariate was not included.
∗ Significant correlations (p < 0.05).

ter extent across the PPR relative to the adjacent NP, and that
these effects will be more evident in disconnected wetland
systems (DCWs) than in wetlands connected to the river net-
work (CCWs). Surface waters that are disconnected from the
stream network showed a larger change in extent in response
to wetter conditions in landscapes with higher wetland den-
sities or storage capacity. That is to say that landscapes with
a larger number of depressional features were found to show
a greater increase in surface water extent in response to a
wetter climate, relative to landscapes with fewer depressional
features (e.g., Fig. 5a and b).

However, a larger DCW SWCR was observed even after
controlling for wetland density, suggesting that landscapes

with substantial surface storage (i.e., the PPR) may show
other landscape characteristics conducive to the accumula-
tion of DCW, for example, reduced infiltration. Correspond-
ingly, the expansion of disconnected water correlated posi-
tively with a greater annual minimum depth to groundwa-
ter (Table 8). The low permeability of glacial till across the
PPR is indicative of a reduction in infiltration, relative to the
NP (Sloan, 1972; Winter and Rosenberry, 1995), and would
reduce the potential for increased water table elevations, re-
sulting in a deeper minimum depth to groundwater. With less
infiltration, pulses of snowmelt or precipitation in the PPR
will instead be transported as overland flow and fill wetlands
with available storage.
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Table 8. Feasible generalized least square models with residual weights applied relating the response (of surface water extent to water
availability) to landscape-related variables. All variables included in the models were significant. DCW – surface water disconnected from
the stream network, CCW – continuously connected surface water, SE – standard error, and D.F. – degrees of freedom.

Response of DCW water Variables Coefficients SE t value
to water availability

D.F.= 145 Intercept 0.17 0.01 12.84
F statistic= 73.6 Autocovariate 0.03 0.004 6.32
adjusted R2

= 0.66 Wetland density 0.90 0.23 3.96
Minimum depth to groundwater 0.0021 0.0006 3.29
Percent anthropogenically drained −0.0004 0.0003 −1.25

Response of CCW water Variables Coefficients SE t value
to water availability

D.F.= 144 Intercept 0.018 0.01 1.43
F statistic= 69.4 Wetland areal abundance 0.96 0.07 14.42
adjusted R2

= 0.58 Wetland density −0.43 0.21 −2.09
Autocovariate −0.12 0.01 −0.89

In addition to wetland density and infiltration capacity,
DCW SWCR was also found to be related to anthropogenic
drainage. The drainage network across the PPR is increas-
ingly modified with the expansion of ditch networks and
tile drainage in association with agricultural activities (Mc-
Cauley et al., 2015). These changes have accompanied exten-
sive human-induced wetland loss across the region (Millett
et al., 2009; Van Meter and Basu, 2015). Ditches, pipes and
field tiles on the glacial till can hasten the speed with which
water leaves a location and lower the water table through
increased water withdrawal (De Laney, 1995; Blann et al.,
2009; McCauley et al., 2015). We found in the FGLS model,
the expansion of disconnected water was inversely related
to the abundance of estimated anthropogenic drainage. Be-
cause anthropogenic drainage increases the rate at which wa-
ter leaves a location, it results in the loss or reduction of
landscape-scale functions of wetlands and other natural wa-
ter storage features in the PPR (McCauley et al., 2015), and
shifts the hydrologic behaviors of watersheds towards those
more commonly seen in the NP.

When we considered surface waters connected to the
stream network, we found that CCWs showed more substan-
tial expansion with increased water availability in landscapes
with more concentrated water (i.e., greater total wetland area,
but lower wetland density) (e.g., Fig. 5c and d). This finding
suggests that the presence of stream-connected lakes within
large flat basins may be an important factor influencing sur-
face water expansion. Previous research found lakes within
the PPR to be important features that commonly experience
extensive surface water expansion, subsuming adjacent wet-
lands during wet periods (Vanderhoof and Alexander, 2016).
These findings suggest that if climate conditions within the
US portion of the PPR continue to get wetter, as predicted
(e.g., Millett et al., 2009; McKenna et al., 2017), then both
small wetland depressions and larger features, such as lakes

and floodplains, will both serve critical roles in storing in-
creased inputs of surface water, which could prevent down-
stream flooding.

We must also consider that we may be missing key land-
scape variables that could explain variability in the spatial
response of surface water extent to climate inputs. For ex-
ample, major landscape characteristics required for stream-
connected surface water to expand include (1) large, stream-
connected water bodies such as lakes and (2) hydrologically-
connected floodplains. The influence of large water bod-
ies was considered by including total wetland area and the
portion of water from larger (> 8 ha) features; however, we
did not explicitly consider the presence/absence of active
floodplains beyond including stream density as a variable.
Floodplain activity typically exhibits strong seasonal pat-
terns; while the goal of our analysis was focused on patterns
of surface water extent that occurred on longer-time scales
(i.e., interannual variability). Because of this, we excluded
two Landsat path/rows from the analysis that were originally
included because strong seasonal flooding outweighed inter-
annual patterns in climate as evidenced by a lack of a rela-
tionship between climate indices (e.g., Standardized Precip-
itation Index (12 months) and Palmer Hydrologic Drought
Index) and surface water extent. These path/rows included
p30r27 which straddles North Dakota and Minnesota and ex-
hibits strong seasonal flooding of the Red River and p28r32
in the southeastern corner of Nebraska, which exhibits strong
seasonal flooding of the Missouri River. However, even with
the exclusion of these two path/rows, the importance of
floodplains was still evident (e.g., Figs. 5c, d and 6b) as we
observed greater SWCR in areas with an abundance of lakes
or floodplain systems. Because complete floodplain maps
across the study area are lacking, we were not able to ex-
plicitly identify the role of floodplains in the CCW models.
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It is important to consider decision points and data charac-
teristics that may have influenced our findings. For example,
the period of time for which the greatest number of HUC8s
showed a significant SWCR was used as the climate accu-
mulation period. This logic was meant to avoid, to the ex-
tent possible, a HUC8 showing a zero SWCR because sur-
face water responded at a time period different than the one
selected. However, its usage meant that the study results are
limited to interpreting the relationship of surface water extent
to same year climate inputs (or the previous nine months)
and may be less applicable to understanding the relation-
ship of surface water extent to shorter (seasonal) or longer
(multi-year) time periods. This means that the role of small
(< 0.2 ha), ephemeral wetlands, was likely excluded both be-
cause they were too small to be mapped by Landsat imagery
and show a surface water duration too short to be adequately
reflected using a nine-month aggregation period.

In addition, decisions regarding image inclusion may have
also influenced the analysis. Although the Landsat images
used in the analysis were selected strategically to represent
historically dry, average, and wet conditions, because the
Landsat images were processed individually we were ulti-
mately limited in the number of Landsat images we could
process. As more remotely sensed products become avail-
able, such as the US Geological Survey’s Dynamic Surface
Water Extent (DSWE) Product, which plans to utilize the
entire Landsat archive (1984 to present) (Jones, 2015), we
could utilize many more images and reduce the uncertainty
in estimates of the SWCR or watershed-specific response to
available water. Although decision points regarding the data
included or excluded from the analysis are important to con-
sider, this study provides an improved understanding of how
the relationship between surface water extent and climate
may vary spatially across different landscapes.

5 Conclusion

Shifts in climate patterns and the frequency of extreme cli-
mate events will influence surface water extent. This has
implications for habitat availability (Boschilia et al., 2008;
Calhoun et al., 2017), agricultural productivity (Mokrech et
al., 2008; Gornall et al., 2010), and hydrologic connectivity
(Golden et al., 2016; Ameli and Creed, 2017). This study
demonstrated that not only is surface water extent variable
across landscapes, but shifts in climate patterns will have
an uneven effect on surface water extent across these dif-
ferent landscapes. The PPR experienced a 2.6 fold greater
surface water extent than the adjacent NP under average
conditions and a 3.4 fold larger range in surface water ex-
tent between drought and deluge conditions. To move from
ecoregion boundaries to a more functional characterization
of the spatial distribution of surface water on the landscape,
we used a statistical approach to explore potentially signifi-
cant landscape variables that could explain the spatially vari-

able change in surface water to climate inputs (precipita-
tion minus evapotranspiration). Landscapes with higher wet-
land density (i.e., more surface storage), less infiltration (i.e.,
deeper annual minimum depth to groundwater), and less an-
thropogenic drainage showed a greater expansion of discon-
nected (from the stream network) surface water (e.g., de-
pressional wetlands) with wetter climatic conditions relative
to landscapes with fewer wetlands and more anthropogenic
drainage. This suggests that with wetter climate conditions,
the PPR will store more of its excess water in DCW surface
storage relative to the NP. However, increased anthropogenic
drainage of water across the PPR has an observable im-
pact on this DCW expansion, suggesting that anthropogenic
modifications are reducing the landscape’s natural ability to
buffer runoff. Landscapes with fewer wetlands, but more to-
tal surface water area (e.g., lakes, large river systems) showed
a greater expansion of stream-connected surface water with
wetter climatic conditions relative to landscapes with less to-
tal wetland area, suggesting that riparian wetlands, lakes and
floodplains show an important water storage and lag role dur-
ing wetter climate conditions. Enhancing our knowledge of
spatial and temporal variability in the relationship between
surface water extent and climate inputs can advance efforts
to predict the hydrologic effects of climate change, including
drought and floods, on water resources and improve hydro-
logical modeling in low-gradient landscapes.

Data availability. The Landsat surface water maps produced
by this study, and accompanying metadata will be pub-
lished and publicly available through the US Geological Sur-
vey’s ScienceBase-Catalog following publication (https://www.
sciencebase.gov/catalog/, https://doi.org/10.5066/F7GX49VQ).

www.hydrol-earth-syst-sci.net/22/1851/2018/ Hydrol. Earth Syst. Sci., 22, 1851–1873, 2018

https://www.sciencebase.gov/catalog/
https://www.sciencebase.gov/catalog/
https://doi.org/10.5066/F7GX49VQ


1868 M. K. Vanderhoof et al.: Wetlands inform how climate extremes influence surface water expansion

Appendix A

Table A1. A complete list of Landsat TM images used in the analysis and the corresponding Palmer Hydrological Drought Index (PHDI).

Landsat Date PHDI Landsat Date PHDI Landsat Date PHDI
path/row path/row path/row

p26r30 1987 117 0.06 p30r30 1988 148 −1.23 p31r29 2003 196 −1.22

p26r30 1988 296 −4.15 p30r30 1989 110 −3.47 p31r29 2004 135 −2.66
p26r30 1989 170 −4.29 p30r30 1989 294 −4.66 p31r29 2004 279 2.52
p26r30 1989 186 −4.29 p30r30 1990 121 −4.70 p31r29 2006 172 −3.49
p26r30 1993 133 3.95 p30r30 1991 236 −2.79 p31r29 2010 167 6.94
p26r30 1993 277 6.92 p30r30 1993 161 5.40 p31r29 2010 279 8.63
p26r30 1996 142 0.30 p30r30 2002 122 −1.12 p31r29 2011 154 6.55

p26r30 1996 222 −0.24 p30r30 2003 141 0.26 p33r28 1988 137 −2.47
p26r30 2006 153 1.17 p30r30 2003 285 0.88 p33r28 1988 249 −5.68
p26r30 2008 95 2.82 p30r30 2010 288 8.93 p33r28 1990 254 −3.87
p26r30 2010 148 1.10 p30r30 2011 179 6.87 p33r28 1995 188 4.09
p26r32 1988 264 −4.18 p30r30 2011 211 6.49 p33r28 1997 129 5.11
p26r32 1989 266 −2.92 p30r30 2013 184 −0.94 p33r28 1998 148 0.22

p26r32 1991 288 −1.88 p30r31 1986 174 2.19 p33r28 1998 260 0.70
p26r32 1991 96 0.55 p30r31 1990 105 −2.63 p33r28 2003 146 −1.78
p26r32 1993 133 3.66 p30r31 1990 137 −2.43 p33r28 2005 135 −2.35
p26r32 1994 104 3.79 p30r31 1990 297 −2.45 p33r28 2005 263 −0.62
p26r32 1994 136 2.76 p30r31 1994 148 3.63 p33r28 2006 106 0.36
p26r32 2000 105 −3.03 p30r31 1994 260 4.12 p33r28 2008 112 −2.86

p26r32 2002 158 1.59 p30r31 2000 125 −2.05 p33r28 2014 160 5.61
p26r32 2003 145 −2.98 p30r31 2000 173 −2.66 p33r28 2014 256 9.15
p26r32 2007 108 0.74 p30r31 2000 221 −2.38 p33r28 2015 67 5.37

p26r32 2008 271 5.07 p30r31 2000 269 −3.75 p36r28 1985 149 −2.04
p26r32 2010 100 4.06 p30r31 2002 122 −1.84 p36r28 1988 222 −6.07
p26r32 2010 228 5.90 p30r31 2002 250 −4.62 p36r28 1989 112 −1.94

p27r30 1988 239 −4.52 p30r31 2003 141 −2.46 p36r28 1993 235 5.17
p27r30 1989 161 −4.34 p30r31 2003 221 −2.41 p36r28 1993 91 −0.89
p27r30 1992 122 4.29 p30r31 2005 178 1.58 p36r28 1994 142 2.50
p27r30 1992 266 3.22 p30r31 2009 173 5.29 p36r28 1996 100 3.81
p27r30 1993 172 6.52 p30r31 2011 179 5.22 p36r28 1996 244 2.06

p27r30 2002 141 −1.25 p31r27 1990 160 −4.12 p36r28 1998 121 1.67
p27r30 2003 104 1.44 p31r27 1991 163 −2.45 p36r28 2002 212 −5.14
p27r30 2003 280 −1.32 p31r27 1992 118 −1.93 p36r28 2003 135 −2.38
p27r30 2008 182 3.03 p31r27 1994 299 7.03 p36r28 2004 154 −4.72
p29r29 1990 130 −3.55 p31r27 1995 270 5.97 p36r28 2004 282 −4.29
p29r29 1991 133 −0.69 p31r27 1997 195 2.72 p36r28 2008 181 1.70
p29r29 1992 136 1.35 p31r27 1999 121 2.01 p36r28 2013 178 −0.91
p29r29 1993 266 6.86 p31r27 2001 190 4.46 p36r28 2013 242 −0.42

p29r29 1995 288 5.71 p31r27 2004 279 4.38 p37r26 1987 162 2.15
p29r29 1997 165 5.05 p31r27 2005 169 3.06 p37r26 1988 213 −5.70
p29r29 1998 120 2.77 p31r27 2006 252 −3.32 p37r26 1991 141 0.14
p29r29 2001 128 4.47 p31r27 2007 255 2.41 p37r26 1991 269 2.26
p29r29 2002 323 −1.69 p31r27 2009 244 3.28 p37r26 1994 101 2.76
p29r29 2003 118 −2.01 p31r27 2010 279 6.43 p37r26 1994 261 −2.54
p29r29 2005 91 3.15 p31r27 2011 186 6.61 p37r26 1995 168 1.35
p29r29 2006 286 2.30 p31r27 2011 266 8.92 p37r26 1995 264 1.68

p29r29 2006 94 4.20 p31r29 1989 109 −1.62 p37r26 2002 171 −1.85
p29r29 2010 105 6.19 p31r29 1989 189 −3.38 p37r26 2006 246 −3.41
p29r29 2010 281 9.63 p31r29 1989 269 −2.31 p37r26 2008 108 −2.37
p29r29 2011 156 8.37 p31r29 1990 96 −1.65 p37r26 2009 142 0.26
p29r29 2011 284 5.88 p31r29 1999 121 5.19 p37r26 2011 212 9.14

p31r29 2003 100 −2.24 p37r26 2011 276 7.32
p31r29 2003 132 −1.84 p37r26 2013 169 3.40
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Table A2. Spearman rank correlation values between the independent variables considered in the analysis. Bonferroni correction was applied
to the p values and significant correlations (p < 0.05) are starred. DCW – surface water disconnected from the stream network, CCW
– continuously connected surface water, MI – Moisture Index, PET – potential evapotranspiration, precip – precipitation, lg – large, ag
– agricultural, Ksat – saturated hydraulic conductivity, and n/a – not applicable.

Variable DCW CCW Portion Stream Wetland Wetland Dominance MI Precip PET Avail Annual Ksat Slope Ag Percent
auto- auto- dis- density density areal of lg. water water min gradient land drained

covariate covariate connected abund. bodies storage depth to cover
(0–150 cm) water

table

DCW 1 n/a 0.45∗ −0.66∗ 0.48∗ 0.48∗ −0.04 0.03 −0.05 0.03 0.29 0.54∗ 0.21 −0.58∗ 0.33∗ 0.22
autocovariate
CCW 1 −0.11 −0.16 0.15 0.27 0.18 −0.29 −0.26 0.15 0.05 −0.04 0.01 −0.16 −0.03 −0.07
autocovariate
Portion DCW of 1 −0.38∗ 0.32∗ −0.09 −0.63∗ 0.33∗ 0.20 −0.05 0.37∗ 0.54∗ 0.11 −0.34∗ 0.46∗ 0.26
total water
Stream density 1 −0.33∗ −0.37∗ −0.05 −0.34∗ −0.21 0.09 −0.34∗ −0.62∗ −0.47∗ 0.66∗ −0.33∗ −0.2
Wetland density 1 0.79∗ −0.02 0.24 0.19 −0.1 0.26 0.29 −0.03 −0.19 0.11 0.25
Wetland areal 1 0.44 0.18 0.06 −0.1 0.21 0.26 −0.01 −0.29 0.05 0.23
abundance
Dominance of 1 −0.22 −0.16 0 −0.11 −0.1 0.08 0.1 −0.24 −0.01
lg water bodies
MI 1 0.86∗ −0.2 0.60∗ 0.67∗ 0.14 −0.41∗ 0.80∗ 0.64∗

Precipitation 1 0.25 0.48∗ 0.44∗ 0.03 −0.17 0.66∗ 0.50∗

PET 1 −0.07 −0.21 −0.2 0.12 −0.08 −0.16
Avail water 1 0.49∗ −0.05 −0.44∗ 0.66∗ 0.51∗

storage
(0–150 cm)
Annual min 1 0.19 −0.61∗ 0.69∗ 0.57∗

depth to water
table
Ksat 1 −0.25 0.02 −0.07
Slope gradient 1 −0.63∗ −0.32∗

Agricultural 1 0.63∗

land cover

∗ Significant correlations (p < 0.05).
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