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Abstract. The relative roles of statistical weather prepro-
cessing and streamflow postprocessing in hydrological en-
semble forecasting at short- to medium-range forecast lead
times (day 1–7) are investigated. For this purpose, a re-
gional hydrologic ensemble prediction system (RHEPS) is
developed and implemented. The RHEPS is comprised of
the following components: (i) hydrometeorological obser-
vations (multisensor precipitation estimates, gridded sur-
face temperature, and gauged streamflow); (ii) weather en-
semble forecasts (precipitation and near-surface tempera-
ture) from the National Centers for Environmental Pre-
diction 11-member Global Ensemble Forecast System Re-
forecast version 2 (GEFSRv2); (iii) NOAA’s Hydrology
Laboratory-Research Distributed Hydrologic Model (HL-
RDHM); (iv) heteroscedastic censored logistic regres-
sion (HCLR) as the statistical preprocessor; (v) two statistical
postprocessors, an autoregressive model with a single exoge-
nous variable (ARX(1,1)) and quantile regression (QR); and
(vi) a comprehensive verification strategy. To implement the
RHEPS, 1 to 7 days weather forecasts from the GEFSRv2
are used to force HL-RDHM and generate raw ensemble
streamflow forecasts. Forecasting experiments are conducted
in four nested basins in the US Middle Atlantic region, rang-
ing in size from 381 to 12 362 km2.

Results show that the HCLR preprocessed ensemble pre-
cipitation forecasts have greater skill than the raw forecasts.
These improvements are more noticeable in the warm sea-
son at the longer lead times (> 3 days). Both postproces-
sors, ARX(1,1) and QR, show gains in skill relative to the
raw ensemble streamflow forecasts, particularly in the cool

season, but QR outperforms ARX(1,1). The scenarios that
implement preprocessing and postprocessing separately tend
to perform similarly, although the postprocessing-alone sce-
nario is often more effective. The scenario involving both
preprocessing and postprocessing consistently outperforms
the other scenarios. In some cases, however, the differences
between this scenario and the scenario with postprocessing
alone are not as significant. We conclude that implementing
both preprocessing and postprocessing ensures the most skill
improvements, but postprocessing alone can often be a com-
petitive alternative.

1 Introduction

Both climate variability and climate change, increased expo-
sure from expanding urbanization, and sea level rise are in-
creasing the frequency of damaging flood events and making
their prediction more challenging across the globe (Dankers
et al., 2014; Wheater and Gober, 2015; Ward et al., 2015).
Accordingly, current research and operational efforts in hy-
drological forecasting are seeking to develop and imple-
ment enhanced forecasting systems, with the goals of im-
proving the skill and reliability of short- to medium-range
streamflow forecasts (0–14 days) and providing more effec-
tive early warning services (Pagano et al., 2014; Thiemig
et al., 2015; Emerton et al., 2016; Siddique and Mejia,
2017). Ensemble-based forecasting systems have become the
preferred paradigm, showing substantial improvements over
single-valued deterministic ones (Schaake et al., 2007; Cloke
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and Pappenberger, 2009; Demirel et al., 2013; Fan et al.,
2014; Demargne et al., 2014; Schwanenberg et al., 2015; Sid-
dique and Mejia, 2017). Ensemble streamflow forecasts can
be generated in a number of ways, being the most common
approach to the use of meteorological forecast ensembles to
force a hydrological model (Cloke and Pappenberger, 2009;
Thiemig et al., 2015). Such meteorological forecasts can be
generated by multiple alterations of a numerical weather pre-
diction model, including perturbed initial conditions and/or
multiple model physics and parameterizations.

A number of ensemble prediction systems (EPSs) are be-
ing used to generate streamflow forecasts. In the United
States (US), the NOAA’s National Weather Service River
Forecast Centers are implementing and using the Hydrolog-
ical Ensemble Forecast Service to incorporate meteorolog-
ical ensembles into their flood forecasting operations (De-
margne et al., 2014; Brown et al., 2014). Likewise, the Eu-
ropean Flood Awareness System from the European Com-
mission (Alfieri et al., 2014) and the Flood Forecasting and
Warming Service from the Australia Bureau of Meteorology
(Pagano et al., 2016) have adopted the ensemble paradigm.
Furthermore, different regional EPSs have been designed and
implemented for research purposes, to meet specific regional
needs, and/or for real-time forecasting applications. Two ex-
amples, among several others (Zappa et al., 2008, 2011; Hop-
son and Webster, 2010; Demuth and Rademacher, 2016; Ad-
dor et al., 2011; Golding et al., 2016; Bennett et al., 2014;
Schellekens et al., 2011), are the Stevens Institute of Technol-
ogy’s Stevens Flood Advisory System for short-range flood
forecasting (Saleh et al., 2016) and the National Center for
Atmospheric Research (NCAR) System for Hydromet Anal-
ysis, Research, and Prediction for medium-range streamflow
forecasting (NCAR, 2017). Further efforts are underway to
operationalize global ensemble flood forecasting and early
warning systems, e.g., through the Global Flood Awareness
System (Alfieri et al., 2013; Emerton et al., 2016).

EPSs are comprised of several system components. In
this study, a regional hydrological ensemble prediction sys-
tem (RHEPS) is used (Siddique and Mejia, 2017). The
RHEPS is an ensemble-based research forecasting system,
aimed primarily at bridging the gap between hydrological
forecasting research and operations by creating an adapt-
able and modular forecast emulator. The goal with the
RHEPS is to facilitate the integration and rigorous verifi-
cation of new system components, enhanced physical pa-
rameterizations, and novel assimilation strategies. For this
study, the RHEPS is comprised of the following system com-
ponents: (i) precipitation and near-surface temperature en-
semble forecasts from the National Centers for Environmen-
tal Prediction 11-member Global Ensemble Forecast System
Reforecast version 2 (GEFSRv2), (ii) NOAA’s Hydrology
Laboratory-Research Distributed Hydrologic Model (HL-
RDHM) (Reed et al., 2004; Smith et al., 2012a, b), (iii) a
statistical weather preprocessor (hereafter referred to as pre-
processing), (iv) a statistical streamflow postprocessor (here-

after referred to as postprocessing), (v) hydrometeorological
observations, and (vi) a verification strategy. Recently, Sid-
dique and Mejia (2017) employed the RHEPS to produce and
verify ensemble streamflow forecasts over some of the ma-
jor river basins in the US Middle Atlantic region. Here, the
RHEPS is specifically implemented to investigate the relative
roles played by preprocessing and postprocessing in enhanc-
ing the quality of ensemble streamflow forecasts.

The goal with statistical processing is to use statistical
tools to quantify the uncertainty of and remove systematic
biases in the weather and streamflow forecasts in order to
improve the skill and reliability of forecasts. In weather and
hydrological forecasting, a number of studies have demon-
strated the benefits of separately implementing preprocess-
ing (Sloughter et al., 2007; Verkade et al., 2013; Messner et
al., 2014a; Yang et al., 2017) and postprocessing (Shi et al.,
2008; Brown and Seo, 2010; Madadgar et al., 2014; Ye et al.,
2014; Wang et al., 2016; Siddique and Mejia, 2017). How-
ever, only a very limited number of studies have investigated
the combined ability of preprocessing and postprocessing to
improve the overall quality of ensemble streamflow forecasts
(Kang et al., 2010; Zalachori et al., 2012; Roulin and Van-
nitsem, 2015; Abaza et al., 2017). At first glance, in the con-
text of medium-range streamflow forecasting, preprocessing
seems necessary and beneficial since meteorological forcing
is often biased and its uncertainty is more dominant than the
hydrological one (Cloke and Pappenberger, 2009; Bennett
et al., 2014; Siddique and Mejia, 2017). In addition, some
streamflow postprocessors assume unbiased forcing (Zhao et
al., 2011) and hydrological models can be sensitive to forcing
biases (Renard et al., 2010).

The few studies that have analyzed the joint effects of pre-
processing and postprocessing on short- to medium-range
streamflow forecasts have mostly relied on weather ensem-
bles from the European Centre for Medium-range Weather
Forecasts (ECMWF) (Zalachori et al., 2012; Roulin and Van-
nitsem, 2015; Benninga et al., 2017). Kang et al. (2010) used
different forcing but focused on monthly, as opposed to daily,
streamflow. The conclusions from these studies have been
mixed (Benninga et al., 2017). Some have found statisti-
cal processing to be useful (Yuan and Wood, 2012), partic-
ularly postprocessing, while others have found that it con-
tributes little to forecast quality. Overall, studies indicate that
the relative effects of preprocessing and postprocessing de-
pend strongly on the forecasting system (e.g., forcing, hy-
drological model, statistical processing technique), and con-
ditions (e.g., lead time, study area, season), underscoring the
research need to rigorously verify and benchmark new fore-
casting systems that incorporate statistical processing.

The main objective of this study is to verify and assess
the ability of preprocessing and postprocessing to improve
ensemble streamflow forecasts from the RHEPS. This study
differs from previous ones in several important respects. The
assessment of statistical processing is done using a spa-
tially distributed hydrological model whereas previous stud-
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ies have tended to emphasize spatially lumped models. Much
of the previous studies have used ECMWF forecasts; here
we rely on GEFSRv2 precipitation and temperature outputs.
Also, we test and implement a preprocessor, namely het-
eroscedastic censored logistic regression (HCLR), which has
not been used before in streamflow forecasting. We also con-
sider a relatively wider range of basin sizes and longer study
period than in previous studies. In particular, this paper ad-
dresses the following questions:

– What are the separate and joint contributions of prepro-
cessing and postprocessing over the raw RHEPS out-
puts?

– What forecast conditions (e.g., lead time, season, flow
threshold, and basin size) benefit potential increases in
skill?

– How much skill improvement can be expected from sta-
tistical processing under different uncertainty scenarios
(i.e., when skill is measured relative to observed or sim-
ulated flow conditions)?

The remainder of the paper is organized as follows. Sec-
tion 2 presents the study area. Section 3 describes the dif-
ferent components of the RHEPS. The main results and their
implications are examined in Sect. 4. Lastly, Sect. 5 summa-
rizes key findings.

2 Study area

The North Branch Susquehanna River (NBSR) basin in the
US Middle Atlantic region (MAR) is selected as the study
area (Fig. 1), with an overall drainage area of 12 362 km2.
The NBSR basin is selected as flooding is an important re-
gional concern. This region has a relatively high level of ur-
banization and high frequency of extreme weather events,
making it particularly vulnerable to damaging flood events
(Gitro et al., 2014; MARFC, 2017). The climate in the upper
MAR, where the NBSR basin is located, can be classified as
warm, humid summers and snowy, cold winters with frozen
precipitation (Polsky et al., 2000). During the cool season,
a positive North Atlantic Oscillation phase generally results
in increased precipitation amounts and occurrence of heavy
snow (Durkee et al., 2007). Thus, flooding in the cool sea-
son is dominated by heavy precipitation events accompanied
by snowmelt runoff. In the summer season, convective thun-
derstorms with increased intensity may lead to greater vari-
ability in streamflow. In the NBSR basin, we select four dif-
ferent US Geological Survey (USGS) daily gauge stations,
representing a system of nested subbasins, as the forecast lo-
cations (Fig. 1). The selected locations are the Ostelic River
at Cincinnatus (USGS gauge 01510000), Chenango River
at Chenango Forks (USGS gauge 01512500), Susquehanna
River at Conklin (USGS gauge 01503000), and Susque-
hanna River at Waverly (USGS gauge 01515000) (Fig. 1).

Figure 1. Map illustrating the location of the four selected river
basins in the US middle Atlantic region.

The drainage area of the selected basins ranges from 381 to
12 362 km2. Table 1 outlines some key characteristics of the
study basins.

3 Approach

In this section, we describe the different components of
the RHEPS, including the hydrometeorological observations,
weather forecasts, preprocessor, postprocessors, hydrologi-
cal model, and the forecasting experiments and verification
strategy.

3.1 Hydrometeorological observations

Three main observation datasets are used: multisensor pre-
cipitation estimates (MPEs), gridded near-surface air temper-
ature, and daily streamflow. MPEs and gridded near-surface
air temperature are used to run the hydrological model in
simulation mode for parameter calibration purposes and to
initialize the RHEPS. Both the MPEs and gridded near-
surface air temperature data at 4× 4 km2 resolution were
provided by the NOAA’s Middle Atlantic River Forecast
Center (MARFC) (Siddique and Mejia, 2017). Similar to
the NCEP stage-IV dataset (Moore et al., 2015; Prat and
Nelson, 2015), the MARFC’s MPEs represent a continuous
time series of hourly, gridded precipitation observations at
4× 4 km2 cells, which are produced by combining multi-
ple radar estimates and rain gauge measurements. The grid-
ded near-surface air temperature data at 4× 4 km2 resolution
were developed by the MARFC by combining multiple tem-
perature observation networks as described by Siddique and
Mejia (2017). Daily streamflow observations for the selected
basins were obtained from the USGS. The streamflow obser-
vations are used to verify the simulated flows, and the raw
and postprocessed ensemble streamflow forecasts.

3.2 Meteorological forecasts

GEFSRv2 data are used for the ensemble precipitation and
near-surface air temperature forecasts. The GEFSRv2 uses

www.hydrol-earth-syst-sci.net/22/1831/2018/ Hydrol. Earth Syst. Sci., 22, 1831–1849, 2018



1834 S. Sharma et al.: Statistical processing on a regional hydrological ensemble prediction system

Table 1. Main characteristics of the four study basins.

Location of outlet Cincinnatus, Chenango Conklin, Waverly,
New York Forks, New York New York

New York

NWS id CINN6 CNON6 CKLN6 WVYN6
USGS id 01510000 01512500 01503000 01515000
Area (km2) 381 3841 5781 12 362
Latitude 42◦32′28′′ 42◦13′05′′ 42◦02′07′′ 41◦59′05′′

Longitude 75◦53′59′′ 75◦50′54′′ 75◦48′11′′ 76◦30′04′′

Minimum daily flowa (m3 s−1) 0.31 4.05 6.80 13.08
(0.11) (2.49) (5.32) (6.71)

Maximum daily flowa (m3 s−1) 172.73 1248.77 2041.64 4417.42
(273.54) (1401.68) (2174.734) (4417.42)

Mean daily flowa (m3 s−1) 8.89 82.36 122.93 277.35
(9.17) (81.66) (121.99) (215.01)

Climatological flow (Pr = 0.95)b (m3 s−1) 29.45 266.18 382.28 843.84

a The numbers in parentheses are the historical (based on entire available record, as opposed to the period 2004–2012 used in this
study) daily minimum, maximum, or mean recorded flow. b Pr = 0.95 indicates flows with exceedance probability of 0.05.

the same atmospheric model and initial conditions as the ver-
sion 9.0.1 of the Global Ensemble Forecast System and runs
at T254L42 (∼ 0.50◦ Gaussian grid spacing or ∼ 55 km) and
T190L42 (∼ 0.67◦ Gaussian grid spacing or ∼ 73 km) reso-
lutions for the first and second 8 days, respectively (Hamill
et al., 2013). The reforecasts are initiated once daily at 00:00
Coordinated Universal Time. Each forecast cycle consists of
3-hourly accumulations for day 1 to day 3 and 6-hourly accu-
mulations for day 4 to day 16. In this study, we use 9 years of
GEFSRv2 data, from 2004 to 2012, and forecast lead times
from 1 to 7 days. The period 2004 to 2012 is selected to
take advantage of data that were previously available to us
(i.e., GEFSRv2 and MPEs for the MAR) from a recent veri-
fication study (Siddique et al., 2015). Forecast lead times of
up to 7 days are chosen since we previously found that the
GEFSRv2 skill is low after 7 days (Siddique et al., 2015;
Sharma et al., 2017). The GEFSRv2 data are bilinearly in-
terpolated onto the 4× 4 km2 grid cell resolution of the HL-
RDHM model.

3.3 Distributed hydrological model

NOAA’s HL-RDHM is used as the spatially distributed hy-
drological model (Koren et al., 2004). Within HL-RDHM,
the Sacramento Soil Moisture Accounting model with Heat
Transfer (SAC-HT) is used to represent hillslope runoff gen-
eration, and the SNOW-17 module is used to represent snow
accumulation and melting.

HL-RDHM is a spatially distributed conceptual model,
where the basin system is divided into regularly spaced,
square grid cells to account for spatial heterogeneity. Each
grid cell acts as a hillslope capable of generating surface, in-
terflow, and groundwater runoff that discharges directly into
the streams. The cells are connected to each other through

the stream network system. Further, the SNOW-17 module
allows each cell to accumulate snow and generate hillslope
snowmelt based on the near-surface air temperature. The hill-
slope runoff, generated at each grid cell by SAC-HT and
SNOW-17, is routed to the stream network using a nonlin-
ear kinematic wave algorithm (Koren et al., 2004; Smith et
al., 2012a). Likewise, flows in the stream network are routed
downstream using a nonlinear kinematic wave algorithm that
accounts for parameterized stream cross-section shapes (Ko-
ren et al., 2004; Smith et al., 2012a). In this study, we run
HL-RDHM using a 2 km horizontal resolution. Further infor-
mation about the HL-RDHM can be found elsewhere (Koren
et al., 2004; Reed et al., 2007; Smith et al., 2012a; Fares et
al., 2014; Rafieeinasab et al., 2015; Thorstensen et al., 2016;
Siddique and Mejia, 2017).

To calibrate HL-RHDM, we first run the model using a pri-
ori parameter estimates previously derived from available
datasets (Koren et al., 2000; Reed et al., 2004; Anderson et
al., 2006). We then select 10 out of the 17 SAC-HT parame-
ters for calibration based upon prior experience and prelim-
inary sensitivity tests. During the calibration process, each
a priori parameter field is multiplied by a factor. Therefore,
we calibrate these factors instead of the parameter values at
all grid cells, assuming that the a priori parameter distribution
is true (e.g., Mendoza et al., 2012).The multiplying factors
are adjusted manually first; once the manual changes do not
yield noticeable improvements in model performance, the
factors are tuned up using stepwise line search (SLS; Kuzmin
et al., 2008; Kuzmin, 2009). This method is readily available
within HL-RDHM, and has been shown to provide reliable
parameter estimates (Kuzmin et al., 2008; Kuzmin, 2009).
With SLS, the following objective function is optimized:
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OF=

√√√√ m∑
i=1

[
qi − si(�)

]2
, (1)

where qi and si denote the daily observed and simulated
flows at time i, respectively; � is the parameter vector being
estimated; and m is the total number of days used for cali-
bration. A total of 3 years (2003–2005) of streamflow data
are used to calibrate the HL-RDHM for the selected basins.
The first year (year 2003) is used to warm up HL-RDHM. To
assess the model performance during calibration, we use the
percent bias (PB), modified correlation coefficient (Rm), and
Nash–Sutcliffe efficiency (NSE) (see Appendix for details).
Note that these metrics are used during the manual phase of
the calibration process, and to assess the final results from
the implementation of the SLS. However, the actual imple-
mentation of the SLS is based on the objective function in
Eq. (1).

3.4 Statistical weather preprocessor

Heteroscedastic censored logistic regression (Messner et al.,
2014a; Yang et al., 2017) is implemented to preprocess
the ensemble precipitation forecasts from the GEFSRv2.
HCLR is selected since it offers the advantage, over other
regression-based preprocessors (Wilks, 2009), of obtain-
ing the full, continuous predictive probability density func-
tion (pdf) of precipitation forecasts (Messner et al., 2014b).
Also, HCLR has been shown to outperform other widely
used preprocessors, such as Bayesian model averaging (Yang
et al., 2017). In principle, HCLR fits the conditional logis-
tic probability distribution function to the transformed (here
the square root) ensemble mean and bias corrected precipita-
tion ensembles. Note that we tried different transformations
(square root, cube root, and fourth root) and found a similar
performance between the square and cube root, both outper-
forming the fourth root. In addition, HCLR uses the ensem-
ble spread as a predictor, which allows the use of uncertainty
information contained in the ensembles.

The development of the HCLR follows the logistic re-
gression model initially proposed by Hamill et al. (2004)
as well as the extended version of that model proposed
by Wilks (2009). The extended logistic regression of
Wilks (2009) is used to model the probability of binary re-
sponses such that

P(y ≤ z|x)=3[ω(z)− δ(x)], (2)

where 3(.) denotes the cumulative distribution function of
the standard logistic distribution, y is the transformed pre-
cipitation, z is a specified threshold, x is a predictor vari-
able that depends on the forecast members, δ(x) is a lin-
ear function of the predictor variable x, and the transforma-
tion ω(.) is a monotone nondecreasing function. Messner et
al. (2014a) proposed the heteroscedastic extended logistic re-
gression (HELR) preprocessor with an additional predictor

variable ϕ to control the dispersion of the logistic predictive
distribution,

P(y ≤ z|x)=3

{
ω(z)− δ(x)

exp[η(ϕ)]

}
, (3)

where η(.) is a linear function of ϕ. The functions δ(.) and
η(.) are defined as follows:

δ(x)= a0+ a1x (4)

and

η(ϕ)= b0+ b1ϕ, (5)

where a0, a1, b0, and b1 are parameters that need to be esti-

mated; x= 1
K

K∑
k=1

f
1
2
k , i.e., the predictor variable xis the mean

of the transformed, via the square root, ensemble forecasts f ;
K is the total number of ensemble members; and ϕ is the
standard deviation of the square-root-transformed precipita-
tion ensemble forecasts.

Maximum likelihood estimation with the log-likelihood
function is used to estimate the parameters associated with
Eq. (3) (Messner et al., 2014a, b). One variation of the HELR
preprocessor that can easily accommodate nonnegative vari-
ables, such as precipitation amounts, is HCLR. For this, the
predicted probability or likelihood πi of the ith observed out-
come is determined as follows (Messner et al., 2014b):

πi =


3

[
ω(0)− δ(x)
exp[η(ϕ)]

]
yi = 0

λ

[
ω(yi)− δ(x)

exp[η(ϕ)]

]
yi > 0

, (6)

where λ[.] denotes the likelihood function of the standard lo-
gistic function. As indicated by Eq. (6), HCLR fits a logistic
error distribution with point mass at zero to the transformed
predictand.

HCLR is applied here to each GEFSRv2 grid cell within
the selected basins. At each cell, HCLR is implemented for
the period 2004–2012 using a leave-one-out approach. For
this, we select 7 years for training and the 2 remaining years
for verification purposes. This is repeated until all the 9 years
have been preprocessed and verified independently of the
training period. This is done so that no training data are dis-
carded and the entire 9-year period of analysis can be used to
generate the precipitation forecasts. HCLR is employed for
6-hourly precipitation accumulations for lead times from 6 to
168 h. To train the preprocessor, we use a stationary training
period, as opposed to a moving window, for each season and
year to be forecasted, comprised of the seasonal data from
all the 7 training years. Thus, to forecast a given season and
specific lead time, we use ∼ 6930 forecasts (i.e., 11 mem-
bers× 90 days per season× 7 years). We previously tested
using a moving window training approach and found that
the results were similar to the stationary window approach
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(Yang et al., 2017). To make the implementation of HCLR
as straightforward as possible, the stationary window is used
here. Finally, the Schaake shuffle method as applied by Clark
et al. (2004) is implemented to maintain the observed space–
time variability in the preprocessed GEFSRv2 precipitation
forecasts. At each individual forecast time, the Schaake shuf-
fle is applied to produce a spatial and temporal rank structure
for the ensemble precipitation values that is consistent with
the ranks of the observations.

3.5 Statistical streamflow postprocessors

To statistically postprocess the flow forecasts generated by
the RHEPS, two different approaches are tested, namely
a first-order autoregressive model with a single exogenous
variable, ARX(1,1), and quantile regression (QR). We se-
lect the ARX(1,1) postprocessor since it has been suggested
and implemented for operational applications in the US (Re-
gonda et al., 2013). QR is chosen because it is of similar com-
plexity to the ARX(1,1) postprocessor but for some forecast-
ing conditions it has been shown to outperform it (Mendoza
et al., 2016). Furthermore, the ARX (1,1) and QR postpro-
cessors have not been compared against each other for the
forecasting conditions specified by the RHEPS. The post-
processors are implemented for the years 2004–2012, using
the same leave-one-out approach used for the preprocessor.
For this, the 6-hourly precipitation accumulations are used to
force the HL-RDHM and generate 6-hourly flows. Note that
we use 6-hourly accumulations since this is the resolution of
the GEFSRv2 data after day 4 and this is a temporal reso-
lution often used in operational forecasting in the US. Since
the observed flow data are mean daily, we compute the mean
daily flow forecast from the 6-hourly flows. The postproces-
sor is then applied to the mean daily values from day 1 to 7.

3.5.1 First-order autoregressive model with a single
exogenous variable

To implement the ARX(1,1) postprocessor, the observation
and forecast data are first transformed into standard nor-
mal deviates using the normal quantile transformation (NQT)
(Krzysztofowicz, 1997; Bogner et al., 2012). The trans-
formed observations and forecasts are then used as predictors
in the ARX(1,1) model (Siddique and Mejia, 2017). Specif-
ically, for each forecast lead time, the ARX(1,1) postproces-
sor is formulated as follows:

qTi+1 = (1− ci+1)q
T
i + ci+1f

T
i+1+ ξi+1, (7)

where qTi and qTi+1 are the NQT-transformed observed flows
at time steps i and i+ 1, respectively; c is the regression co-
efficient; f Ti+1 is the NQT transformed forecast flow at time
step i+ 1; and ξ is the residual error term. In Eq. (7), assum-
ing that there is significant correlation between ξi+1 and qTi ,
ξi+1 can be calculated as follows:

ξi+1 =
σξi+1

σξi
ρ (ξi+1,ξi)ξi +ϑi+1, (8)

where σξi and σξi+1 are the standard deviation of ξi and ξi+1,
respectively; ρ(ξi+1, ξi) is the serial correlation between ξi+1
and ξi ; and ϑi+1 is a random Gaussian error generated from
N (0, σ 2

ϑi+1
). To estimate N (0, σ 2

ϑi+1
), the following equation

is used:

σ 2
ϑi+1
=

[
1− ρ2 (ξi+1,ξi)

]
σ 2
ξi+1

. (9)

To implement Eq. (7), 10 equally spaced values of ci+1 are
selected from 0.1 to 0.9. For each value of ci+1, σ 2

ϑi+1
is

determined from Eq. (9), using the training data to deter-
mine the other variables in Eq. (9). Then, ϑi+1 is generated
from N (0, σ 2

ϑi+1
) and ξi+1 is calculated from Eq. (8). The

result from Eq. (8) is used with Eq. (7) to generate a trace
of qTi+1 which is transformed back to real space using the
inverse NQT. These steps are repeated to generate multiple
traces for each value of ci+1. For each value of ci+1, the
ARX(1,1) model is trained and used to generate ensemble
streamflow forecasts, which are in turn used to compute the
mean continuous ranked probability score (CRPS) for the
7-year training period under consideration. Thus, the mean
CRPS is computed for each value of ci+1, and the value
of ci+1 that produces the smallest mean CRPS is then se-
lected for use in the 2-year verification period under consid-
eration. This is repeated until all the years (2004–2012) have
been postprocessed and verified independently of the training
period. The ARX(1,1) postprocessor is applied at each indi-
vidual lead time. Thus, at each forecast lead time, an optimal
value of ci+1 is estimated by minimizing the mean CRPS fol-
lowing the steps previously outlined. For lead times beyond
the initial one (day 1), 1-day-ahead predictions are used as
the observed streamflow. For the cases in which qTi+1 falls
beyond the historical maxima, extrapolation is used by mod-
eling the upper tail of the forecast distribution as hyperbolic
(Journel and Huijbregts, 1978).

3.5.2 Quantile regression

Quantile regression (Koenker and Bassett Jr., 1978; Koenker,
2005) is employed to determine the error distribution, condi-
tional on the ensemble mean, resulting from the difference
between observations and forecasts (Dogulu et al., 2015;
López López et al., 2014; Weerts et al., 2011; Mendoza et
al., 2016). QR is applied here in streamflow space, since
it has been shown that, in hydrological forecasting applica-
tions, QR has similar skill performance in streamflow space
as well as normal space (López López et al., 2014). Another
advantage of QR is that it does not make any prior assump-
tions regarding the shape of the distribution. Further, since
QR results in conditional quantiles rather than conditional
means, QR is less sensitive to the tail behavior of the stream-
flow dataset and, consequently, less sensitive to outliers. Note
that although QR is here implemented separately for each
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Table 2. Summary and description of the verification scenarios.

Scenario Description

S1 Verification of the raw ensemble precipitation forecasts from the GEFSRv2
S2 Verification of the preprocessed ensemble precipitation forecasts from the GEFSRv2: GEFSRv2+HCLR
S3 Verification of the raw ensemble flood forecasts: GEFSRv2+HL-RDHM
S4 Verification of the preprocessed ensemble flood forecasts: GEFSRv2+HCLR+HL-RDHM
S5 Verification of the postprocessed ensemble flood forecasts: GEFSRv2+HL-RDHM+QR
S6 Verification of the preprocessed and postprocessed ensemble flood forecasts: GEFSRv2+HCLR+HL-RDHM+QR

lead time, the mathematical notation does not reflect this for
simplicity.

The QR model is given by

ε′τ = dτ + eτf , (10)

where ε′τ is the error estimate at quantile interval τ , f is the
ensemble mean, and dτ and eτ are the linear regression co-
efficients a τ . The coefficients are determined by minimizing
the sum of the residuals based on the training data as follows:

min
N∑
i=1

wτ
[
ετ,i − ε

′
τ

(
i,f i

)]
. (11)

Here, ετ,i and f i are the paired samples from a total of
N samples; ετ,i is computed as the observed flow minus the
forecasted one, qτ − fτ ; andwτ is the weighting function for
the τ th quantile defined as follows:

wτ (ζi)=

{
(τ − 1)ζi if ζi ≤ 0
τζi if ζi > 0 , (12)

where ζi is the residual term defined as the difference be-
tween ετ,i and ε′τ (i, f i) for the quantile τ . The minimiza-
tion in Eq. (11) is solved using linear programming (Koenker,
2005).

Lastly, to obtain the calibrated forecast, fτ , the following
equation is used:

fτ = f + ε
′
τ . (13)

In Eq. (13), the estimated error quantiles and the ensemble
mean are added to form a calibrated discrete quantile rela-
tionship for a particular forecast lead time and thus generate
an ensemble streamflow forecast.

3.6 Forecast experiments and verification

The verification analysis is carried out using the Ensemble
Verification System (Brown et al., 2010). For the verification,
the following metrics are considered: Brier skill score (BSS),
mean continuous ranked probability skill score (CRPSS),
and the decomposed components of the CRPS (Hersbach,
2000), i.e., the CRPS reliability (CRPSrel) and CRPS po-
tential (CRPSpot). The definition of each of these metrics is

provided in the appendix. Additional details about the verifi-
cation metrics can be found elsewhere (Wilks, 2011; Jolliffe
and Stephenson, 2012). Confidence intervals for the verifica-
tion metrics are determined using the stationary block boot-
strap technique (Politis and Romano, 1994), as done by Sid-
dique et al. (2015). All the forecast verifications are done for
lead times from 1 to 7 days.

To verify the forecasts for the period 2004–2012, six dif-
ferent forecasting scenarios are considered (Table 2). The
first (S1) and second (S2) scenario verify the raw and prepro-
cessed ensemble precipitation forecasts, respectively. Sce-
narios 3 (S3), 4 (S4), and 5 (S5) verify the raw, prepro-
cessed, and postprocessed ensemble streamflow forecasts, re-
spectively. The last scenario, S6, verifies the combined pre-
processed and postprocessed ensemble streamflow forecasts.
In S1 and S2, the raw and preprocessed ensemble precipita-
tion forecasts are verified against the MPEs. For the verifica-
tion of S1 and S2, each grid cell is treated as a separate veri-
fication unit. Thus, for a particular basin, the average perfor-
mance is obtained by averaging the verification results from
different verification units. The streamflow forecast scenar-
ios, S3–S6, are verified against mean daily streamflow ob-
servations from the USGS. The quality of the streamflow
forecasts is evaluated conditionally upon forecast lead time,
season (cool and warm), and flow threshold.

4 Results and discussion

This section is divided into four subsections. The first subsec-
tion demonstrates the performance of the spatially distributed
model, HL-RDHM. The second subsection describes the per-
formance of the raw and preprocessed GEFSRv2 ensemble
precipitation forecasts (forecasting scenarios S1 and S2). In
the third subsection, the two statistical postprocessing tech-
niques are compared. Lastly, the verification of different
ensemble streamflow forecasting scenarios is shown in the
fourth subsection (forecasting scenarios S3–S6).

4.1 Performance of the distributed hydrological model

To assess the performance of HL-RDHM, the model is used
to generate streamflow simulations which are verified against
daily observed flows, covering the entire period of analysis
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Figure 2. Performance statistics for the uncalibrated and calibrated simulation runs for the entire period of analysis (years 2004–2012):
(a) Rm, (b) NSE, and (c) PB.

(years 2004–2012). Note that the simulated flows are ob-
tained by forcing HL-RDHM with gridded observed precip-
itation and near-surface temperature data. The verification is
done for the four basin outlets shown in Fig. 1. To perform
the verification and assess the quality of the streamflow simu-
lations, the following statistical measures of performance are
employed: modified correlation coefficient, Nash–Sutcliffe
efficiency, and percent bias. The mathematical definition of
these metrics is provided in the appendix. The verification
is done for both uncalibrated and calibrated simulation runs
for the entire period of analysis. The main results from the
verification of the streamflow simulations are summarized in
Fig. 2.

The performance of the calibrated simulation runs is
satisfactory, with Rm values ranging from ∼ 0.75 to 0.85
(Fig. 2a). Likewise, the NSE, which is sensitive to both the
correlation and bias, ranges from ∼ 0.69 to 0.82 for the cali-
brated runs (Fig. 2b), while the PB ranges from∼ 5 to−11 %
(Fig. 2c). Relative to the uncalibrated runs, the Rm, NSE, and
PB values improve by ∼ 18, 29, and 47 %, respectively. Fur-
ther, the performance of the calibrated simulation runs is sim-
ilar across the four selected basins, although the largest basin,
WVYN6 (Fig. 2), shows slightly higher performance with
Rm, NSE, and PB values of 0.85, 0.82, and−3 % (Fig. 2), re-
spectively. The lowest performance is seen in CNON6 with
Rm, NSE, and PB values of 0.75, 0.7, and −11 % (Fig. 2),
respectively. Nonetheless, the performance metrics for both
the uncalibrated and calibrated simulation runs do not deviate
widely from each other in the selected basins, with perhaps
the only exception being PB (Fig. 2c).

4.2 Verification of the raw and preprocessed ensemble
precipitation forecasts

To examine the skill of both the raw and preprocessed GEF-
SRv2 ensemble precipitation forecasts, we plot in Fig. 3 the
CRPSS (relative to sampled climatology) as a function of the

forecast lead time (day 1 to 7) and season for the selected
basins. Two seasons are considered: cool (October–March)
and warm (April–September). Note that a CRPSS value of
zero means no skill (i.e., same skill as the reference system)
and a value of 1 indicates maximum skill. The CRPSS is
computed using 6-hourly precipitation accumulations.

The skill of both the raw and preprocessed ensemble pre-
cipitation forecasts tends to decline with increasing fore-
cast lead time (Fig. 3). In the warm season (Fig. 3a–d),
the CRPSS values vary overall, across all the basins, in the
range from ∼ 0.17 to 0.5 and from ∼ 0.0 to 0.4 for the pre-
processed and raw forecasts, respectively; while in the cool
season (Fig. 3e–h) the CRPSS values vary overall in the
range from ∼ 0.2 to 0.6 and from ∼ 0.1 to 0.6 for the pre-
processed and raw forecasts, respectively. The skill of the
preprocessed ensemble precipitation forecasts tends to be
greater than the raw ones across basins, seasons, and forecast
lead times. Comparing the raw and preprocessed forecasts
against each other, the relative skill gains from preprocess-
ing are somewhat more apparent in the medium-range lead
times (> 3 days) and warm season. That is, the differences
in skill seem not as significant in the short-range lead times
(≤ 3 days). This seems particularly the case in the cool sea-
son, where the confidence intervals for the raw and prepro-
cessed forecasts tend to overlap (Fig. 3e–h).

Indeed, seasonal skill variations are noticeable in all the
basins. Even though the relative gain in skill from prepro-
cessing is slightly greater in the warm season, the overall
skill of both the raw and preprocessed forecasts is better in
the cool season than the warm one. This may be due, among
other potential factors, to the greater uncertainty associated
with modeling convective precipitation, which is more preva-
lent in the warm season, by the NWP model used to gener-
ate the GEFSRv2 outputs (Hamill et al., 2013; Baxter et al.,
2014). Nonetheless, the warm season preprocessed forecasts
show gains in skill across all the lead times and basins. For a
particular season, the forecast ensembles across the different
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Figure 3. CRPSS (relative to sampled climatology) of the raw (red curves) and preprocessed (blue curves) ensemble precipitation forecasts
from the GEFSRv2 vs. the forecast lead time during the (a)–(d) warm (April–September) and (e)–(h) cool season (October–March) for the
selected basins.

basins tend to display similar performance; i.e. the analysis
does not reflect skill sensitivity to the basin size as in other
studies (Siddique et al., 2015; Sharma et al., 2017). This is
expected here since the verification is performed for each
GEFSRv2 grid cell, rather than verifying the average for the
entire basin. That is, the results in Fig. 3 are for the aver-
age skill performance obtained from verifying each individ-
ual grid cell within the selected basins.

Based on the results presented in Fig. 3, we may expect
some skill contribution to the streamflow ensembles from
forcing the HL-RDHM with the preprocessed precipitation,
as opposed to using the raw forecast forcing. It may also be
expected that the contributions are greater for the medium-
range lead times and warm season. This will be examined in
Sect. 4.4; prior to that we compare next the two postproces-
sors, namely ARX(1,1) and QR.

4.3 Selection of the streamflow postprocessor

The ability of the ARX(1,1) and QR postprocessors to im-
prove ensemble streamflow forecasts is investigated here.
The postprocessors are applied to the raw streamflow ensem-
bles at each forecast lead time from day 1 to 7. To examine
the skill of the postprocessed streamflow forecasts, Fig. 4 dis-
plays the CRPSS (relative to the raw ensemble streamflow
forecasts) versus the forecast lead time for all the selected

basins, for both warm (Fig. 4a–d) and cool (Fig. 4e–h) sea-
sons. In the cool season (Fig. 4e–h), the tendency is for both
postprocessing techniques to demonstrate improved forecast
skill across all the basins and lead times. The skill can im-
prove as much as 40 % at the later lead times (Fig. 4f). The
skill improvements, however, from the ARX(1,1) postpro-
cessor are not as consistent for the warm season (Fig. 4a–d),
displaying negative skill values for some of the lead times
in all the basins. The latter underscores an inability of the
ARX(1,1) postprocessor to enhance the raw streamflow en-
sembles for the warm season. In some cases (Fig. 4b and e–f),
the skill of the postprocessors shows an increasing trend with
the lead time. This is the case since the skill is here measured
relative to the raw streamflow forecasts, which is done to bet-
ter isolate the effect of the postprocessors on the streamflow
forecasts.

The gains in skill from QR vary from∼ 0 % (Fig. 4b at the
day 1 lead time) to ∼ 40 % (Fig. 4f at lead times> 4 days)
depending upon the season and lead time. The gains from
ARX(1,1), however, vary from ∼ 0 % (Fig. 4g at the day 1
lead time) to a much lower level of ∼ 28 % (Fig. 4f at the
day 4 lead time) during the cool season, while there are
little to no gains in the warm season. In the cool season
(Fig. 4e–h), both postprocessors exhibit somewhat similar
performance at different lead times, with the exception of
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Figure 4. CRPSS (relative to the raw forecasts) of the ARX(1,1) (red curves) and QR (blue curves) postprocessed ensemble flood forecasts
vs. the forecast lead time during the (a)–(d) warm (April–September) and (e)–(h) cool season (October–March) for the selected basins.

Fig. 4h, but in the warm season QR tends to consistently
perform better than ARX(1,1). The overall trend in Fig. 4
is for QR to mostly outperform ARX(1,1), with the differ-
ence in performance being as high as 30 % (Fig. 4d at the
day 7 lead time). This is noticeable across all the basins (ex-
cept WVYN6 in Fig. 4h) for most of the lead times and for
both seasons.

As discussed and demonstrated in Fig. 4, QR performs bet-
ter than ARX(1,1). We also computed reliability diagrams, as
determined by Sharma et al. (2017), for the two postproces-
sors (plots not shown) and found that QR tends to display bet-
ter reliability than ARX(1,1) across lead times, basins, and
seasons. Therefore, we select QR as the statistical streamflow
postprocessor to examine the interplay between preprocess-
ing and postprocessing in the RHEPS.

4.4 Verification of the ensemble streamflow forecasts
for different statistical processing scenarios

In this subsection, we examine the effects of different statis-
tical processing scenarios on the ensemble streamflow fore-
casts from the RHEPS. The forecasting scenarios considered
here are S3–S6 (Table 2 defines the scenarios). To facilitate
presenting the verification results, this subsection is divided
into the following three parts: CRPSS, CRPS decomposition,
and BSS.

4.4.1 CRPSS

The skill of the ensemble streamflow forecasts for S3–S6 is
assessed using the CRPSS relative to the sampled climatol-
ogy (Fig. 5). The CRPSS in Fig. 5 is shown as a function
of the forecast lead time for all the basins, and the warm
(Fig. 5a–d) and cool (Fig. 5e–h) seasons. The most salient
feature of Fig. 5 is that the performance of the streamflow
forecasts tends for the most part to progressively improve
from S3 to S6. This means that the forecast skill tends to
improve across lead times, basin sizes, and seasons as addi-
tional statistical processing steps are included in the RHEPS
forecasting chain. Although there is some tendency for the
large basins to show better forecast skill than the small ones,
the scaling (i.e., the dependence of skill on the basin size) is
rather mild and not consistent across the four basins.

In Fig. 5, the skill first increases from the raw scenario
(i.e., S3, where no statistical processing is done) to the sce-
nario where only preprocessing is performed, S4. The gain
in skill between S3 and S4 is generally small at the short
lead times (< 3 days) but increases for the later lead times;
this is somewhat more evident for the cool season than the
warm one. This skill trend between S3 and S4 is not entirely
surprising, as we previously saw (Fig. 3) that differences be-
tween the raw and preprocessed precipitation ensembles are
more significant at the later lead times. The skill in Fig. 5
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Figure 5. Continuous ranked probability skill score (CRPSS) of the mean ensemble flood forecasts vs. the forecast lead time during the
(a)–(d) warm (April–September) and (e)–(h) cool season (October–March) for the selected basins. The curves represent the different fore-
casting scenarios S3–S6. Note that S3 consists of GEFSRv2+HL-RDHM, S4 of GEFSRv2+HCLR+HL-RDHM, S5 of GEFSRv2+HL-
RDHM+QR, and S6 of GEFSRv2+HCLR+HL-RDHM+QR.

then shows further improvements for both S5 and S6, rela-
tive to S4. Although S6 tends to outperform both S4 and S5
in Fig. 5, the differences in skill among these three scenar-
ios are not as significant; their confidence intervals tend to
overlap in most cases, with the exception of Fig. 5f, in which
S4 underperforms relative to both S5 and S6. Figure 5 shows
that S6 is the preferred scenario in that it tends to more con-
sistently improve the ensemble streamflow forecasts across
basins, lead times, and seasons than the other scenarios. It
also shows that postprocessing alone, S5, may be slightly
more effective than preprocessing alone, S4, in correcting the
streamflow forecast biases.

There are also seasonal differences in the forecast skill
among the scenarios. The skill of the streamflow forecasts
tends to be slightly greater in the warm season (Fig. 5a–d)
than in the cool one (Fig. 5e–h) across all the basins and lead
times. In the warm season (Fig. 5a–d), all the scenarios tend
to show similar skill, except CNON6 (Fig. 5b), with S5 and
S6 only slightly outperforming S3 and S4. In the cool sea-
son (Fig. 5e–h), with the exception of CNON6 (Fig. 5f), the
performance is similar among the scenarios for the short lead
times, but S3 tends to consistently underperform for the later
lead times relative to S4–S6. There is also a skill reversal
between the seasons when comparing the ensemble precipi-
tation (Fig. 3) and streamflow (Fig. 5) forecasts. That is, the

skill tends to be higher in the cool season than the warm one
in Fig. 3, but this trend reverses in Fig. 5. The reason for this
reversal is that in the cool season hydrological conditions are
strongly influenced by snow dynamics, which can be chal-
lenging to represent with HL-RDHM, particularly when spe-
cific snow information or data are not available. In any case,
this could be a valuable area for future research since it ap-
pears here to have a significant influence on the skill of the
ensemble streamflow forecasts.

The underperformance of S4 in the CNON6 basin
(Fig. 5f), relative to the other scenarios, is in part due to the
unusually low skill of the raw ensemble streamflow forecasts
of S3, so that even after preprocessing the skill improvement
attained with S4 is not comparable to that associated with S5
and S6. This is also the case for CNON6 in the warm season
(Fig. 5b). However, in addition, during the cool season it is
likely that streamflows in CNON6 are affected by a reservoir
just upstream from the main outlet of CNON6. The reservoir
is operated for flood control purposes. During the cool sea-
son the reservoir affects low flows by maintaining them at a
somewhat higher level than in natural conditions. Since we
do not account for reservoir operations in our hydrological
modeling, it is likely that one of the benefits of postprocess-
ing is, in this case, that it corrects for this modeling bias.
In fact, this is also reflected in the calibration results (e.g.,
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Figure 6. Decomposition of the CRPS into CRPS potential (CRPSpot) and CRPS reliability (CRPSrel) for forecasts lead times of 1, 3, and
7 days during the warm (a)–(d) (April–September) and cool season (e)–(h) (October–March) for the selected basins. The four columns asso-
ciated with each forecast lead time represent the forecasting scenarios S3–S6 (from left to right). Note that S3 consists of GEFSRv2+HL-
RDHM, S4 of GEFSRv2+HCLR+HL-RDHM, S5 of GEFSRv2+HL-RDHM+QR, and S6 of GEFSRv2+HCLR+HL-RDHM+QR.

in Fig. 2c), where the performance of CNON6 is somewhat
lower than in the other basins. Interestingly, after postpro-
cessing (S5 in Fig. 5f), the skill of CNON6 is as good as
that of CINN6, even though at the day 1 lead time the skill
for S3 is ∼ 0.1 for CNON6 (Fig. 5f) and ∼ 0.4 for CINN6
(Fig. 5e). Hence, the postprocessor seems capable of com-
pensating somewhat for the lesser performance of CNON6
in both calibration or after preprocessing in the cool season.

4.4.2 CRPS decomposition

Figure 6 displays different components of the mean CRPS
against lead times of 1, 3, and 7 days for all the basins ac-
cording to both the warm (Fig. 6a–d) and cool (Fig. 6e–
h) seasons. The components presented here are reliabil-
ity (CRPSrel) and potential CRPS (CRPSpot) (Hersbach,

2000). CRPSrel measures the average reliability of the en-
semble forecasts across all the possible events, i.e., it exam-
ines whether the fraction of observations that fall below the
j th of n ranked ensemble members is equal to j/n on aver-
age. CRPSpot represents the lowest possible CRPS that could
be obtained if the forecasts were made perfectly reliable (i.e.,
CRPSrel= 0). Note that the CRPS, CRPSrel, and CRPSpot are
all negatively oriented, with perfect score of zero. Overall, as
was the case with the CRPSS (Fig. 5), the CRPS decomposi-
tion reveals that forecast reliability tends mostly to progres-
sively improve from S3 to S6.

Interestingly, improvements in forecast quality for S5
and S6, relative to the raw streamflow forecasts of S3, are
mainly due to reductions in CRPSrel (i.e., by making the
forecasts more reliable), whereas for S4 better forecast qual-
ity is achieved by reductions in both CRPSrel and CRPSpot.
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Figure 7. Brier skill score (BSS) of the mean ensemble flood forecasts for S5 (a–d) and S6 (e–h) vs. the flood threshold for forecast lead
times of 1, 3, and 7 days during the warm (April–September) season for the selected basins. The BSS is shown relative to both observed
(solid lines) and simulated floods (dashed lines).

CRPSpot appears to play a bigger role in S4 than in the other
scenarios, since in many cases in Fig. 6 the CRPSpot value
for S4 is the lowest among all the scenarios. The explanation
for this lies in the implementation of the HCLR preproces-
sor, which uses the ensemble spread as a predictor of the
dispersion of the predictive pdf and the CRPSpot is sensi-
tive to the spread (Messner et al., 2014a). In terms of the
warm and cool seasons, the warm season tends to show a
slightly lower CRPS than the cool one for all the scenar-
ios. There are other, more nuanced differences between the
two seasons. For example, S5 is more reliable than S4 in
several cases in Fig. 6, such as for the day 1 lead time in
the cool season. The CRPS decomposition demonstrates that
the ensemble streamflow forecasts for S5 and S6 tend to be
more reliable than for S3 and S4. It also shows that the fore-
casts from S5 and S6 tend to exhibit comparable reliability.
However, the ensemble streamflow forecasts generated using
both preprocessing and postprocessing, S6, ultimately result
in lower CRPS than the other scenarios. The latter is seen
across all the basins, lead times, and seasons, except in one
case (Fig. 6d at the day 7 lead time).

4.4.3 BSS

In our final verification comparison, the BSS values of
the ensemble streamflow forecasts for S5 (Fig. 7a–d) and
S6 (Fig. 7e–h) are plotted against the non-exceedance proba-
bility associated with different streamflow thresholds ranging
from 0.95 to 0.99. The BSS is computed for all the basins,
for the warm season, and at lead times of 1, 3 and 7 days.
In addition, the BSS is computed relative to both observed
(solid lines in Fig. 7) and simulated (dashed lines in Fig. 7)
flows. When the BSS is computed relative to observed flows,
it considers the effect on forecast skill of both meteorologi-
cal and hydrological uncertainties. While the BSS relative to
simulated flows is mainly affected by meteorological uncer-
tainties. The difference between the two, i.e., the BSS rela-
tive to observed flows minus the BSS relative to simulated
ones, provides an estimate of the effect of hydrological un-
certainties on the skill of the streamflow forecasts. Similar to
the CRPSS, the BSS value of zero means no skill (i.e., same
skill as the reference system) and a value of 1 indicates per-
fect skill.

In general, the skill of streamflow forecasts tends to de-
crease with lead time across the flow thresholds and basins.
In contrast to the CRPSS (Fig. 5), where S6 tends for the ma-
jority of cases to slightly outperform S5, the BSS values for
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the different flow thresholds appear similar for S5 (Fig. 7a–
d) and S6 (Fig. 7e–h). The only exception is CKLN6 (Fig. 7c
and g), where S6 has better skill than S5 at the day 1 and 3
lead times, particularly at the highest flow thresholds consid-
ered. With respect to the basin size, the skill tends to improve
somewhat from the small to the large basin. For instance, for
non-exceedance probabilities of 0.95 and 0.99 at the day 1
lead time, the BSS values for the smallest basin (Fig. 7a),
measured relative to the observed flows, are∼ 0.49 and 0.35,
respectively. For the same conditions, both values increase
to ∼ 0.65 for the largest basin (Fig. 7d).

The most notable feature in Fig. 7 is that the effect of
hydrological uncertainties on forecast skill is evident at the
day 1 lead time, while meteorological uncertainties clearly
dominate at the day 7 lead time. With respect to the latter,
notice that the solid and dashed green lines for the day 7 lead
time tend to be very close to each other in Fig. 7, indicat-
ing that hydrological uncertainties are relatively small com-
pared to meteorological ones. Hydrological uncertainties are
largest at the day 1 lead time, particularly for the small basins
(Fig. 7a–b and e–f). For example, for a non-exceedance prob-
ability of 0.95 and at a day 1 lead time (Fig. 7b), the BSS
value relative to the simulated and observed flows are∼ 0.79
and 0.38, respectively, suggesting a reduction of∼ 50 % skill
due to hydrological uncertainties.

5 Summary and conclusion

In this study, we used the RHEPS to investigate the effect
of statistical processing on short- to medium-range ensemble
streamflow forecasts. First, we assessed the raw precipita-
tion forecasts from the GEFSRv2 (S1), and compared them
with the preprocessed precipitation ensembles (S2). Then,
streamflow ensembles were generated with the RHEPS for
four different forecasting scenarios involving no statistical
processing (S3), preprocessing alone (S4), postprocessing
alone (S5), and both preprocessing and postprocessing (S6).
The verification of ensemble precipitation and streamflow
forecasts was done for the years 2004–2012, using four
nested gauge locations in the NBSR basin of the US MAR.
We found that the scenario involving both preprocessing and
postprocessing consistently outperforms the other scenarios.
In some cases, however, the differences between the scenario
involving preprocessing and postprocessing, and the scenario
with postprocessing alone are not as significant, suggesting
for those cases (e.g., warm season) that postprocessing alone
can be effective in removing systematic biases. Other specific
findings are as follows:

– The HCLR preprocessed ensemble precipitation fore-
casts show improved skill relative to the raw forecasts.
The improvements are more noticeable in the warm sea-
son at the longer lead times (> 3 days).

– Both postprocessors, ARX(1,1) and QR, show gains in
skill relative to the raw ensemble streamflow forecasts
in the cool season. In contrast, in the warm season,
ARX(1,1) shows little or no gains in skill. Overall, for
the majority of cases analyzed, the gains with QR tend
to be greater than with ARX(1,1), especially during the
warm season.

– In terms of the forecast skill (i.e., CRPSS), in the warm
season the scenarios including only preprocessing and
only postprocessing have a comparable performance to
the more complex scenario consisting of both prepro-
cessing and postprocessing, while in the cool season,
the scenario involving both preprocessing and postpro-
cessing consistently outperforms the other scenarios but
the differences may not be as significant.

– The skill of the postprocessing-alone scenario and the
scenario that combines preprocessing and postprocess-
ing was further assessed using the Brier skill score for
different streamflow thresholds and the warm season.
This assessment suggests that for high flow thresholds
the similarities in skill between both scenarios, S5 and
S6, become greater.

– Decomposing the CRPS into reliability and poten-
tial components, we observed that the scenario that
combines preprocessing and postprocessing results in
slightly lower CRPS than the other scenarios. We found
that the scenario involving only postprocessing tends to
demonstrate similar reliability to the scenario consisting
of both preprocessing and postprocessing across most of
the lead times, basins, and seasons. We also found that
in several cases the postprocessing-alone scenario dis-
plays improved reliability relative to the preprocessing-
alone scenario.

These conclusions are specific to the RHEPS forecasting sys-
tem, which is mostly relevant to the US research and opera-
tional communities as it relies on a weather and a hydrologi-
cal model that are used in this domain. However, the use of a
global weather forecasting system illustrates the potential of
applying the statistical techniques tested here in other regions
worldwide.

The emphasis of this study has been on benchmarking
the contributions of statistical processing to the RHEPS.
To accomplish this, our approach required that the quality
of ensemble streamflow forecasts be verified over multiple
years (i.e., across many flood cases) to obtain robust verifi-
cation statistics. Future research, however, could be focused
on studying how distinct hydrological processes contribute
or constrain forecast quality. This effort could be centered
around specific flood events rather than on the statistical,
many-cases approach taken here. To further assess the rel-
ative importance of the various components of the RHEPS,
additional tests involving the uncertainty to initial hydrologic
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conditions and hydrological parameters could be performed.
For instance, the combined use of data assimilation and post-
processing has been shown to produce more reliable and
sharper streamflow forecasts (Bourgin et al., 2014). The po-
tential for the interaction of preprocessing and postprocess-
ing with data assimilation to significantly enhance stream-
flow predictions, however, has not been investigated. This
could be investigated in the future with the RHEPS, as the
pairing of data assimilation with preprocessing and postpro-
cessing could facilitate translating the improvements in the
preprocessed meteorological forcing down the hydrological
forecasting chain.

Data availability. Daily streamflow observation data for the se-
lected forecast stations can be obtained from the USGS website
(https://waterdata.usgs.gov/nwis/). Multisensor precipitation esti-
mates are obtained from the NOAA’s Middle Atlantic River Fore-
cast Center. Precipitation and temperature forecast datasets can
be obtained from the NOAA Earth System Research Labora-
tory website (https://www.esrl.noaa.gov/psd/forecasts/reforecast2/
download.html).
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Appendix A: Verification metrics

Modified correlation coefficient. The modified version of the
correlation coefficient, called a modified correlation coeffi-
cient Rm, compares event-specific observed and simulated
hydrographs (McCuen and Snyder, 1975). In the modified
version, an adjustment factor based on the ratio of the ob-
served and simulated flow is introduced to refine the con-
ventional correlation coefficient R. The modified correlation
coefficient Rm is defined as follows:

Rm = R
min

{
σs,σq

}
max

{
σs,σq

} , (A1)

where σs and σq denote the standard deviation of the simu-
lated and observed flows, respectively.

Percent bias. PB measures the average tendency of the
simulated flows to be larger or smaller than their observed
counterparts. Its optimal value is 0.0 where positive values
indicate model overestimation bias, and negative values in-
dicate model underestimation bias. The PB is estimated as
follows:

PB=

N∑
i=1
(si − qi)

N∑
i=1
qi

× 100, (A2)

where si and qi denote the simulated and observed flow, re-
spectively, at time i.

Nash–Sutcliffe efficiency. the NSE (Nash and Sutcliffe,
1970) is defined as the ratio of the residual variance to the
initial variance. It is widely used to indicate how well the
simulated flows fit the observations. The range of NSE can
vary between negative infinity to 1.0, with 1.0 representing
the optimal value and values should be larger than 0.0 to in-
dicate minimally acceptable performance. The NSE is com-
puted as follows:

NSE= 1−

N∑
i=1
(si − qi)

2

N∑
i=1

(
qi − qi

)2 , (A3)

where si , qi , and qi are the simulated, observed, and mean
observed flow, respectively, at time i.

Brier skill score. the Brier score (Brier, 1950) is analogous
to the mean squared error, but where the forecast is a prob-
ability and the observation is either a 0.0 or 1.0. The BS is
given by

BS=
1
n

n∑
i=1

[
Ffi (z)−Fqi (z)

]2
, (A4)

where the probability of fi to exceed a fixed threshold z is

Ffi (z)= Pr
[
fi > z

]
. (A5)

Here, n is again the total number of forecast-observation
pairs, and

Fqi (z)=

{
1, qi > z

0, otherwise . (A6)

In order to compare the skill score of the main forecast sys-
tem with respect to the reference forecast, it is convenient to
define the Brier Skill Score (BSS):

BSS= 1−
BSmain

BSreference
(A7)

where BSmain and BSreference are the BS values for the main
forecast system (i.e. the system to be evaluated) and refer-
ence forecast system, respectively. Any positive values of the
BSS, from 0 to 1, indicate that the main forecast system per-
forms better than the reference forecast system. Thus, a BSS
of 0 indicates no skill and a BSS of 1 indicates perfect skill.

Mean continuous ranked probability skill score. Continu-
ous ranked probability score (CRPS) quantifies the integrated
square difference between the cumulative distribution func-
tion (cdf) of a forecast, Ff(z), and the corresponding cdf of
the observation, Fq(z). The CRPS is given by

CRPS=

∞∫
−∞

[
Ff(z)−Fq(z)

]2dz. (A8)

To evaluate the skill of the main forecast system relative to
the reference forecast system, the associated skill score, the
mean continuous ranked probability skill score (CRPSS) is
defined as follows:

CRPSS= 1−
CRPSmain

CRPSreference
, (A9)

where the CRPS is averaged across n pairs of forecasts
and observations to calculate the mean CRPS of the main
forecast system (CRPSmain) and reference forecast sys-
tem (CRPSreference). The CRPSS varies from −∞ to 1. Any
positive values of the CRPSS, from 0 to 1, indicate that the
main forecast system performs better than the reference fore-
cast system.

To further explore the forecast skill, the CRPSmain is de-
composed into the CRPS reliability (CRPSrel) and poten-
tial (CRPSpot) such that CRPSmain can be calculated as fol-
lows (Hersbach, 2000):

CRPSmain = CRPSrel+CRPSpot. (A10)

The CRPSrel measures the average reliability of the precipita-
tion ensembles similarly to the rank histogram, which shows
whether the frequency that the verifying analysis was found
in a given bin is equal for all bins (Hersbach, 2000). The
CRPSpot measures the CRPS that one would obtain for a per-
fect reliable system. It is sensitive to the average ensemble
spread and outliers.
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