

River basin	$\beta_L - \beta_F$ ($\delta_L - \delta_F$)	State	Behaviour of the extremes with increasing spatial scale (LA or A)
Solimões	0.70 (0.67)	Regulated	The amplitude of the extremes (Δ_Q) is greatly reduced (Figs. 4c and S9c) because of a strong capacity of the basin for amplifying low flows ($\beta_L = 1.62 \gg 1.00$ and $\delta_L = 1.55 \gg 1.00$) while not amplifying floods ($\beta_F = 0.91 \leq 1.00$ and $\delta_F = 0.88 \leq 1.00$).
Amazon	0.26 (0.31)	Regulated	Δ_Q is reduced (Figs. 4a and S9a) due to the combined effect of low-flow amplification ($\beta_L = 1.08 \geq 1.00$ and $\delta_L = 1.17 > 1.00$) and flood dampening ($\beta_F = 0.82 < 1.00$ and $\delta_F = 0.86 < 1.00$).
Negro	0.22 (0.17)	Regulated	Δ_Q is reduced (Figs. 4b and S9b) because of the basin's capacity for dampening floods ($\beta_F = 0.77 < 1.00$ and $\delta_F = 0.90 < 1.00$) while not dampening low flows. Low flows grow approximately linearly with scale ($\beta_L = 0.99 \approx 1.00$ and $\delta_L = 1.07 \geq 1.00$).
Madeira	0.11 (0.14)	Regulated	Δ_Q is reduced (Figs. 4d and S9d) mainly because of the basin's capacity for dampening floods ($\beta_F = 0.82 < 1.00$ and $\delta_F = 0.86 < 1.00$). Low flows are not amplified ($\beta_L = 0.93 \leq 1.00$ and $\delta_L \approx 1.00$).
Tapajós	-0.16 (-0.20)	Unregulated	Δ_Q is increased (Figs. 4f and S9f) because low flows are not amplified ($\beta_L = 0.75 < 1.00$, $\delta_L = 0.89 \leq 1.00$) and floods are less dampened than low flows ($1.00 \geq \beta_F = 0.90 > \beta_L = 0.75$) or even amplified ($\delta_F = 1.09 > 1.00 \geq \delta_L = 0.89$).