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Abstract. Snow and glacial melt runoff are the major sources
of water contribution from the high mountainous terrain of
the Indus River upstream of the Tarbela reservoir. A reli-
able forecast of seasonal water availability for the Kharif
cropping season (April–September) can pave the way to-
wards better water management and a subsequent boost in
the agro-economy of Pakistan. The use of degree-day mod-
els in conjunction with satellite-based remote-sensing data
for the forecasting of seasonal snow and ice melt runoff has
proved to be a suitable approach for data-scarce regions. In
the present research, the Snowmelt Runoff Model (SRM) has
not only been enhanced by incorporating the “glacier (G)”
component but also applied for the forecast of seasonal wa-
ter availability from the Upper Indus Basin (UIB). Excel-
based SRM+G takes account of separate degree-day factors
for snow and glacier melt processes. All-year simulation runs
with SRM+G for the period 2003–2014 result in an average
flow component distribution of 53, 21, and 26 % for snow,
glacier, and rain, respectively. The UIB has been divided into
Upper and Lower parts because of the different climatic con-
ditions in the Tibetan Plateau. The scenario approach for sea-
sonal forecasting, which like the Ensemble Streamflow Pre-
diction method uses historic meteorology as model forcings,
has proven to be adequate for long-term water availability
forecasts. The accuracy of the forecast with a mean abso-
lute percentage error (MAPE) of 9.5 % could be slightly im-
proved compared to two existing operational forecasts for the
UIB, and the bias could be reduced to −2.0 %. However, the
association between forecasts and observations as well as the
skill in predicting extreme conditions is rather weak for all
three models, which motivates further research on the selec-

tion of a subset of ensemble members according to forecasted
seasonal anomalies.

1 Introduction

Mountains are the water towers of the world. They are the
biggest resource of freshwater to half of the world’s popu-
lation fulfilling their needs for irrigation, industry, domes-
tic and hydropower applications (Viviroli et al., 2007). The
Indus River on which Pakistan’s socio-economic develop-
ment depends, can be termed as the bread basket of Pakistan
(Clarke, 2015). Due to an agrarian economy, Pakistan’s agri-
culture share in water usage is about 97 %, which is well
above the global average of about 70 % (Akram, 2009). In
Pakistan, the Indus River System Authority (IRSA) decides
the provincial water shares according to the Water Appor-
tionment Accord (WAA) of 1991 and provincial irrigation
departments subsequently determine the seasonal water al-
location to the different canal command areas depending
upon the water availability forecast carried out at the end of
March for the forthcoming Kharif cropping season (April–
September). A reliable seasonal forecast of the water avail-
ability from snow and glacial melt is therefore of utmost im-
portance for agricultural production and efficient water man-
agement.

On the other hand, snowmelt runoff modelling in moun-
tainous regions faces the challenge of data scarcity as well
as the uncertainty in parameter calibration (Pellicciotti et al.,
2012). The need of the hour is to not only develop such a
hydrological model which has the capability to cater for both
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Figure 1. Map of the Upper Indus Basin (UIB) showing different elevations and splitting of the UIB at the Kharmong gauging station into
Upper and Lower UIB.

snow and glacial melt components but also a reliable fore-
cast technique which could help water managers and policy
makers to enhance water resources management in the fu-
ture. The present paper focuses on the implementation of
the Snowmelt Runoff Model (SRM) including the glacier
melt component (+G) based on the methodology proposed
by Schaper et al. (1999), which is an important value addi-
tion to the existing ExcelSRM version (Bogacki and Hashmi,
2013) of the WinSRM (Martinec et al., 2011) model. In the
earlier studies on the Upper Indus Basin (UIB) and its sub-
catchments, e.g. Immerzeel et al. (2010a), Tahir et al. (2011),
Butt and Bilal (2011), and Adnan et al. (2016), they have only
used the SRM standard version, while glaciers are dealt with
by taking them as a part of the snow covered area. The un-
derestimation of flows in periods associated with the glacier
melt contribution, as pointed out by Tahir et al. (2011), has
now been dealt with by incorporation of a glacier melt com-
ponent. A unique methodology has been adopted to deal with
the early fading of snow cover area from the Tibetan Plateau
by separating the whole UIB into two sub-catchments, which
is not implemented in the original WinSRM model.

Ensemble Streamflow Prediction (ESP), developed at the
U.S. National Weather Service (Day, 1985), is widely used
to generate probabilistic long-term stream-flow forecasts. As

already successfully applied in the Upper Jhelum basin (Bo-
gacki and Ismail, 2016), a scenario approach is used for sea-
sonal flow forecasting in the UIB, which has much similarity
to ESP. It also uses historical meteorology as model forc-
ings; however, like the other operational forecast models for
UIB, it is mainly focussed on a deterministic forecast of total
Kharif inflow to the Tarbela reservoir.

2 Materials and methods

2.1 Study area

The upper catchments of the Indus River basin (Fig. 1) pri-
marily feed the Tarbela reservoir, which is the larger of the
only two major reservoirs in Pakistan. The UIB has an area
of about 173 345 km2, of which approx. 11.5 % is covered by
perennial glacial ice (Tahir et al., 2011). At the end of most
winters, nearly the entire UIB above 2200 m a.s.l. is covered
with snow, resulting in more than 60 % of annual flow in the
Upper Indus River to originate from snowmelt (Bookhagen
and Burbank, 2010). The distribution of monthly inflows into
the Tarbela reservoir (see Fig. 2) shows that these flows tend
to rise progressively as melting temperatures advance into
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Figure 2. Monthly distribution of inflows to the Tarbela Reservoir from 2000–2015.

areas of higher snowpack at the higher elevations. The In-
dus River starts rising gradually in March reaching its max-
imum in July, while peak flood events usually occur during
the monsoon season during July–September. By the end of
July, the flows reduce due to the diminished snow cover in
the lower catchment and glacier melt becomes an important
flow component in the late summer months. This is due to
the first melting of their seasonal snow cover and, when the
snow has vanished, melting of the glacier ice. According to
Tahir et al. (2011), glacial melt dominates the flows of the
largest tributaries of the Indus River, i.e. the Chitral, Gilgit,
Hunza, Braldu, and Shyok rivers.

2.2 Model structure

The Snowmelt Runoff Model (SRM; Martinec, 1975) is
a semi-distributed, lumped temperature-index model which
is specifically designed to simulate the runoff in snow-
dominated catchments that has been successfully applied
in more than one hundred snow-driven basins around the
globe (Martinec et al., 2011). Input variables of the SRM
are daily values of air temperature, precipitation, and snow
covered area. The catchment is usually subdivided into el-
evation zones of about 500 m each and the input variables
are distributed accordingly. The total daily amount of wa-
ter produced from snowmelt and rainfall in the catchment is
superimposed on the calculated recession flow according to
Eq. (1):

Qn+1 =
∑m

i=1

{[
Mn,i +Rn,i

]
·

10000
86400

Ai

}
· (1− kn+1)+Qnkn+1, (1)

where Q is the average daily discharge (m3 s−1), M and R
are the daily runoff depths originating from snowmelt and
rainfall (cm d−1), A is the total area of the elevation zone
(km2), k is the recession coefficient (–), n is the index of the
simulation day, and i and m are the indices and total number
of elevation zones, respectively. Daily runoff from snowmelt
and rainfall is calculated by Eqs. (2) and (3):

Mn,i = cSn,iaSn,iTn,iSn,i, (2)
Rn,i = cRn,iPn,i, (3)

where cS and cR are the runoff coefficients (–) for snowmelt
and rain, respectively, aS is the degree-day factor for snow
(cm ◦C−1 d−1), T the degree-days (◦C d) for each elevation
zone, S the ratio of the snow covered area to the total area
(–), and P is the daily precipitation (cm d−1).

Schaper et al. (1999) introduced an enhancement in the
original SRM approach by incorporating the separate glacial
melt component in the model. In addition to the variables
used by SRM, it also considers the area covered by exposed
glaciers, i.e. not snow covered. An additional melt compo-
nent is added to Eq. (1) that takes into account the specific
degree-day factors for glaciers according to Eq. (4):

Gn,i = cGn,iaGn,iTn,iSGn,i, (4)
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Figure 3. Hypsometric curves and the distribution of area under 500 m elevation bands for the Upper and Lower UIB. Eleven and seven
elevation zones were made for the Lower and Upper UIB, respectively, and the elevation of the weather stations in the western portion of the
UIB are presented on the right hand side y-axis.

where G is the daily melt (cm d−1) from exposed glaciers in
each elevation zone, cG is the runoff coefficient (–), aG is the
degree-day factor (cm ◦C−1 d−1) for glaciers, and SG is the
ratio of the exposed glacier area to the total area (–).

This model was tested in several basins and was found
to be highly accurate even in basins with 67 % glacier area.
The three alpine basins were Rhine-Felsberg, Rhône-Sion,
and Ticino-Bellinzona in Switzerland (Schaper and Seidel,
2000). Apart from the improvement in the runoff modelling,
the independent computation of glacier melt is an important
step towards evaluations of glacier behaviour with regard to
climate change.

The glacier melt component according to Eq. (4) was in-
corporated into the existing ExcelSRM (further referred to as
SRM+G). This extension requires the glacier exposed area
as an additional daily input variable and respective model
parameters as given in Eq. (4).

An additional enhancement is the possibility to split
the watershed into different sub-catchments. This feature
is realised by adding the pre-calculated outflow of a sub-
catchment obtained by a separate simulation to the discharge
of the downstream sub-catchment. The travel time can be
considered by applying a time lag to the daily discharge time
series.

2.3 Splitting the UIB into two sub-catchments

In the Karakorum–Western-Himalayas region, snow accu-
mulates during winter and reaches its maximum extent in
February or March. Higher altitudes typically have a 90–
100 % snow cover that stays more or less constant until melt-
ing starts in spring. There is, however, a characteristic bias

between the north-western part of the UIB, where at altitudes
above 4000 m a.s.l. the snow covered area usually starts grad-
ually decreasing in March, and the south-eastern part, namely
the Tibetan Plateau, where at the same altitudes snow cover
is fading away rapidly. This bias leads to an inevitable un-
derestimation in forecasting the snowmelt-dominated early
Kharif flows (see Sect. 3.1), which motivates the splitting of
the UIB into two sub-catchments.

Ideally, the catchment should be split directly downstream
of the Tibetan Plateau. However, because the first gauging
station where daily flow data were available is the Kharmong
gauging station (when the Upper Indus River has entered into
Pakistan), this location was chosen to split the UIB into up-
stream and downstream sub-catchments (namely the Upper
and Lower UIB; Fig. 1). The hypsometric characteristics in-
cluding the number of elevation zones and their correspond-
ing areas of both sub-catchments are shown in Fig. 3.

According to the two sub-catchments, two separate
SRM+G models were created. For each simulation, first the
Upper UIB model is run in order to simulate flows at Khar-
mong. These flows are then superimposed onto the flows cal-
culated by the Lower UIB model using a time lag between
Kharmong and Tarbela that was estimated by Kirpich (Eq. 5;
Kirpich, 1940; USDA, 2010).

t = 0.00195L0.77 S−0.385 (5)

In this empirical equation, the time of concentration t (min)
is only related to the length of the main channel L (m) and
the slope of the longest hydraulic length S (–). Given the
altitudes of Kharmong and Darband (upstream Tarbela reser-
voir) gauging stations as 2542 and 436 m a.s.l., respectively,
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and a channel length1 of about 617 km, the approximated
time lag of 5000 min was finally rounded to 3 days.

2.4 Data sources

There are a number of high-elevation climate stations in the
Pakistani part of the UIB operated by WAPDA’s2 Glacier
Monitoring and Research Centre (GMRC) and the Pakistan
Meteorological Department (PMD). However, they are con-
centrated on the western part of the UIB and data is not avail-
able online. In order to have the most recent data for opera-
tional flow forecasting, the World Meteorological Organiza-
tion (WMO) climate station at Srinagar airport located at an
altitude of 1587 m a.s.l. was chosen as temperature base sta-
tion, which already had proven to give representative tem-
peratures for that region in the SRM model of the Upper
Jhelum catchment (Bogacki and Ismail, 2016) and a full set
of climatic data can be obtained online from the GSOD3

database with a time lag of about 2 days only. Based on
the daily air temperature data, degree-days in each elevation
zone were calculated using a constant temperature lapse rate
of −6 ◦C km−1.

The MODIS/Terra Snow Cover Daily L3 Global 500 m
Grid (MOD10A1) product4 has been used to determine the
daily snow covered area in the elevation zones. The compat-
ibility of using MODIS data in conjunction with SRM in the
Himalayas and its surroundings has already been investigated
by Immerzeel et al. (2009, 2010b). As the MODIS sensor
cannot detect snow below clouds, a cloud elimination algo-
rithm is applied using temporal interpolation between two
cloud-free days for each pixel. Afterwards the daily percent-
age of snow cover area in each elevation zone is calculated
and smoothed by moving average.

At the beginning of the melting season, glaciers are usu-
ally completely covered by fresh snow. As the melting sea-
son progresses, the snow cover will fade away and glacier
exposed area will increase. The actual glacier extent was de-
rived from two data sources. As a major source on global
glacier distribution, the Global Land Ice Measurements from
Space (GLIMS) data archive was used (Raup et al., 2007).
This data was complemented by interpretation of Landsat 8
scenes (30 m spatial resolution) from late summer to early
fall 2013, in order to identify the maximum of the glacier
exposed area. The merged data were mapped on the 500 m

1Digitised from Esri’s World Imagery. Sources: Esri, Digital-
Globe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aero-
grid, IGN, IGP, swisstopo, and the GIS user community

2Pakistan Water and Power Development Authority
3Global Summary Of the Day. Download at ftp://ftp.ncdc.noaa.

gov/pub/data/gsod/
4Hall et al. (2006), updated daily. MODIS/Terra Snow

Cover Daily L3 Global 500m Grid V005, (February 2000–
September 2016, tiles h23v05 & h24v05). NSIDC Boulder, Col-
orado, USA. Download at https://n5eil01u.ecs.nsidc.org/MOST/
MOD10A1.005.

MODIS grid. On a daily basis, the glacier exposed area is
determined by all pixels that are classified as glacier but not
identified as snow by the MODIS sensor.

A spatial interpolation of in situ (station) precipitation data
in mountainous regions is particularly difficult and often bi-
ased towards lower values (Archer and Fowler, 2004) as the
rain gauge network is usually sparse and mainly located at
the valley floors, while maximum precipitation occurs on
mountain slopes and increases with altitude in general. A
promising alternative to station data are gridded, remote-
sensing-based precipitation products. However, regional and
temporal patterns as well as multiannual means of these
products differ significantly in the Himalayas (Palazzi et al.,
2013). In particular, the widely used TRMM dataset is known
to underestimate the precipitation at high altitudes, as found
in the UIB (Forsythe et al., 2011) or the Andes (Ward et al.,
2011).

Based on our own precipitation product comparisons for
the Upper Chenab catchment, the gridded RFE 2.0 central
Asia5 daily rainfall product (Xie et al., 2002) is used in
the present model. According to SRM’s elevation band ap-
proach, the gridded data, having a spatial resolution of 0.1◦

latitude and longitude, is mapped to the respective eleva-
tion zones. For the period 2003–2015, the product yields
a mean annual precipitation of 854 and 482 mm year−1 for
the Lower and the Upper UIB, respectively, which reflects
the significantly lower annual precipitation on the Tibetan
Plateau compared to the western Himalayas (e.g. Bookhagen
and Burbank, 2010; Ménégoz et al., 2013). The RFE basin-
wide annual mean of 701 mm year−1 lies well in the range
of 675± 100 mm year−1 derived for the whole UIB by Reg-
giani and Rientjes (2015).

2.5 Model parameters

The most important parameter of a temperature-index model
that is controlling daily snow and glacial melt is the degree-
day factor (cm ◦C−1 d−1), which transforms the index vari-
able degree-day (◦C d) into actual melt (cm d−1).

In the case of glaciers, a constant degree-day factor of
0.70 cm ◦C−1 d−1, as proposed by Schaper et al. (2000), was
chosen, which also corresponds to degree-day factors re-
ported from glaciers in the Himalayas at a comparable lat-
itude (Hock, 2003). The approach for degree-day factors for
snow is more elaborate. In the first step, optimal degree-
day factors were obtained for each elevation zone and year
by diagnostic calibration, i.e. by achieving the best possi-
ble fit between simulated and observed hydrographs for each
year. From this calibration exercise, it appears that degree-
day factors are increasing by the time melting has started in
a particular elevation zone (Figs. 4 and 5). Because a gen-
eralised rule is needed in the forecasting procedure, zone-

5RainFall Estimates version 2.0 created by the NOAA Cli-
mate Prediction Center’s FEWS-NET group sponsored by USAID.
Download at ftp://ftp.cpc.ncep.noaa.gov/fews/afghan
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Table 1. Zone-wise melting start threshold temperatures and time-dependent degree-day factors for the Lower UIB.

Elevation zone (m a.s.l.)

≤ 2500 2500–3000 3000–3500 3500–4000 4000–4500 4500–5000 5000–5500 > 5500

Tth
∗ 9.0 7.0 5.0 4.0 2.0 1.0 1.0 1.0

Days after
melting start
10 0.20 0.21 0.22 0.22 0.19 0.18 0.18 0.20
20 0.30 0.32 0.32 0.32 0.30 0.31 0.31 0.33
30 0.39 0.43 0.41 0.43 0.41 0.43 0.44 0.46
40 0.48 0.53 0.51 0.54 0.52 0.56 0.57 0.59
50 0.57 0.64 0.61 0.65 0.63 0.68 0.70 0.72
60 0.67 0.75 0.70 0.80 0.74 0.80 0.80 0.80
70 0.80 0.80 0.80 0.80 0.80

∗ 10-day average temperature in ◦C in each elevation zone.

Table 2. Zone-wise melting start threshold temperatures and time-dependent degree-day factors for the Upper UIB.

Elevation zone (m a.s.l.)

≤ 3000 3000–3500 3500–4000 4000–4500 4500–5000 5000–5500 > 5500

Tth
∗ 2.0 2.0 2.0 2.0 0.5 0.5 0.5

Days after
melting start
10 0.37 0.35 0.35 0.52 0.56 0.48 0.60
20 0.43 0.40 0.40 0.59 0.64 0.54 0.70
30 0.49 0.45 0.46 0.66 0.73 0.80 0.80
40 0.54 0.51 0.51 0.73 0.80
50 0.60 0.56 0.56 0.80
60 0.66 0.61 0.62
70 0.71 0.66 0.67

∗ 10-day average temperature in ◦C in each elevation zone.

wise degree-day factor functions, as suggested by Ismail et
al. (2015), were developed by linear regression between the
calibrated degree-day factors and time. The increase in the
degree-day factors with the passage of time is because the
snow absorbs energy due to physical conditions such as in-
creasing temperatures and solar radiation intensities. This
process of energy storage plays a pivotal role in the ripening
of the snowpack, which melts rapidly as the snow melting
season progresses. The extent to which degree-day factors
increase is related to the calibration procedure because it was
observed during the model calibration that in a certain eleva-
tion zone when the degree-day factors attain a certain value,
e.g (0.80 cm ◦C−1 d−1), the snow cover area in that very ele-
vation zone has almost completely faded away so there is no
advantage in further increasing the values of degree-day fac-
tors. The limit of the degree-day factors increase at a certain
spatio-temporal region depends upon various physiographic
and climatic parameters and research is on-going to evaluate

the trend of degree-day factors in response to the aforemen-
tioned parameters.

The start of snowmelt and the corresponding application of
the developed degree-day factor generalised rule is correlated
with a certain threshold temperature (Tth) for each elevation
zone (see Tables 1 and 2). The other model parameters re-
quired by SRM like temperature lapse rate, recession coeffi-
cient, runoff coefficient for snow, lag time, etc., were applied
basin-wide and kept constant for all years (see Table 3). The
values of these parameters were determined according to the
methods described by Martinec et al. (2011) and slightly ad-
justed to achieve a good fit over the whole calibration period.
It has to be noted that these parameter values will differ for
other catchments.

2.6 Scenario approach for forecasting

In the forecasting period which starts from 1 April, the four
model variables temperature, precipitation, snow covered
area, and glacier exposed area have to be predicted for the
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Figure 4. Increase in degree-day factors with time after start of melting for elevation zones 7 and 8 for the Lower UIB. Degree-day factors
are obtained by diagnostic calibration.

Figure 5. Increase in degree-day factors with time after start of melting for elevation zones 5 and 6 for the Upper UIB. Degree-day factors
are obtained by diagnostic calibration.

forthcoming 6 months of the Kharif cropping season (April–
September). As the level of skill of seasonal climate fore-
casts for the Hindukush–Karakoram–Western-Himalaya re-
gion for such a lead time is still not sufficient, a scenario
approach already successfully applied in the Upper Jhelum
catchment (Bogacki and Ismail, 2016) is used.

This scenario approach has a lot in common with tradi-
tional ESP methods (developed at the U.S. National Weather
Service as a method for generating long-term probabilis-
tic streamflow outlooks; Day, 1985). Based on the assump-
tion that past meteorology is representative of possible fu-
ture events, ESP uses historical temperature and precipitation
time series as forcings for the hydrological model to produce
an ensemble of streamflow traces. A probabilistic forecast is
created by statistical analysis of the multiple streamflow sce-
narios produced (Franz et al., 2008). Initial basin conditions
are usually estimated by forcing the hydrological model with
observed meteorology in a “warm-up” phase up to the time
of forecast (Wood and Lettenmaier, 2008).

The seasonal scenario approach also uses historical tem-
perature and precipitation as forcings for the SRM+G model.
In contrast to ESP, however, this approach is, like the other
operational forecast models for the UIB, primarily focussed
on a deterministic forecast of total Kharif flow volume. Be-
sides the “most likely” (median) flow, SRM+G forecasts
only give an indication of the bandwidth of expected flows

by the dry (20 %) and wet (80 %) quantiles as limits of the
“likely” range.

The other notable differences are the initial basin condi-
tions. SRM and SRM+G do not use any initial conditions,
like soil moisture state of snow-water equivalent as used in
other hydrological models. Instead, however, the snow cover
area and the glacier exposed area are input variables to the
model. For reasons of simplicity, the glacier exposed area
is treated like the meteorological variables, i.e. the histori-
cal time series are used. However, the depletion of the snow
covered area during the forecast period, which is the deci-
sive factor for each forecast, is predicted by so-called “mod-
ified depletion curves”. These modified depletion curves are
derived from the conventional depletion curves of each ele-
vation zone by replacing the timescale with the cumulative
daily snowmelt depth (Martinec et al., 2011). The decline of
the modified depletion curves depends on the initial accumu-
lation of snow and represents the actual snow-water equiva-
lent. When initial snow depth is low, the modified depletion
curve declines faster than in years when a lot of snow has
accumulated. At the end of March, when the seasonal fore-
cast is carried out, an elevation zone already showing some
decline in snow covered area, and hence having also some
cumulated degree-days, is chosen as a “key zone”. Compar-
ing the relationship of decline in snow covered area versus
cumulated degree-days with a statistical analysis of the mod-

www.hydrol-earth-syst-sci.net/22/1391/2018/ Hydrol. Earth Syst. Sci., 22, 1391–1409, 2018
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Table 3. SRM+G model parameters for both the Upper and Lower UIB.

Parameters Symbol Value Units Remarks

Temperature lapse rate γ 6.0 ◦C km−1

Recession coefficient kx 1.193 – October–February
ky 1.060 – March–September

0.029 – October–February
0.020 – March–September

Critical precipitation Pcrit 1 cm constant

Lag time L 54 h 2.5 days delay
between melt and
runoff at Tarbela

Critical temperature Tcrit 0.5–3.0 ◦C variable

Rainfall contributing area RCA 0 – November–March
1 – April–October

Runoff coefficient – snow cS 0.80 – constant

Runoff coefficient – glacier cG 0.70 – constant

Runoff coefficient – rain cR 0.25–0.75 –
Degree-day factor – snow α 0.15–0.80 cm ◦C−1 d−1

Degree-day factor – glacier aG 0.70 cm ◦C−1 d−1 constant

ified depletion curves of previous years, the actual amount
of snow is estimated and the future depletion anticipated ac-
cordingly, while assuming similar snow conditions for all el-
evation zones.

The ESP approach usually has the advantage that errors in
the initial conditions are progressively superseded by the me-
teorological forcings. In SRM+G, however, if an erroneous
depletion estimate is in effect, then it will persist during the
whole forecast period. As all ensemble traces are based on
the chosen depletion curves, the initial estimate is crucially
influencing each trace of the ensemble in the same direction.

2.7 Verification methods

Model verification comprises the simulation model as well as
the forecasting model. The accuracy of the simulation model
was evaluated by the two standard criteria used in the SRM
(Martinec et al., 2011), namely the relative volume difference
Eq. (6)

Dv =
V −V ∗

V
× 100 [%] (6)

and the coefficient of determination R2 Eq. (7)

R2
= 1−

∑n
i=1
(
Qi −Q

∗

i

)2∑n
i=1
(
Qi −Q

)2 , (7)

where V and V ∗ are the observed and the simulated annual
flow volumes,Qi and Q∗i are the observed and the simulated

daily discharge values, and Q is the average observed daily
discharge.

The skill of the forecasting model was assessed in com-
parison with IRSA’s forecasts that are based on a statistical
model and with forecasts from the UBC6 watershed model
(Quick and Pipes, 1977) that is used by WAPDA’s Glacier
Monitoring Research Centre. The set of verification metrics
was chosen taking into account that the existing operational
forecasts for Kharif flows are traditionally issued in the form
of deterministic forecasts, thus only the ‘most likely’ values
forecasted by these models are available.

The accuracy of a forecast is a measure of the error be-
tween predicted and observed values. The root mean squared
error (RMSE; Eq. 8), mean percentage error (MPE; Eq. 9),
and mean absolute percentage error (MAPE; Eq. 10) were
used as deterministic metrics to assess the accuracy of the
predicted mean Kharif flow volumes.

RMSE=

√
1
n

∑n

i=1
(fi − oi)

2, (8)

MPE=
1
n

∑n

i=1

(fi − oi)

oi
, (9)

MAPE=
1
n

∑n

i=1

|fi − oi |

oi
. (10)

In the above equations, fi is the forecasted and oi the ob-
served flow volume, and n the total number of considered

6University of British Columbia Watershed Model.
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forecasts. Both, RMSE and MAPE measure the average
magnitude of the forecast errors, where RMSE penalises
larger errors more than MAPE. The mean percentage er-
ror measures the deviation between average forecasted and
average observed flows, i.e. a positive MPE indicates over-
forecasting and a negative under-forecasting.

As a commonly used deterministic measure of association,
the correlation coefficient, Eq. (11), was applied to assess the
correspondence between forecasted and observed values.

R =

∑n
i=1(fi − f )(oi − o)√∑n

i=1(fi − f )
2
√∑n

i=1(oi − o)
2
. (11)

In addition, the uncentered anomaly correlation ACu (Eq. 12;
Wilks, 2006) was used as another measure of association.

ACu =

∑n
i=1(fi − c)(oi − c)√∑n

i=1(fi − c)
2
√∑n

i=1(oi − c)
2
, (12)

where c is the climatological average value. The anomaly
correlation is designed to measure similarities in the patterns
of anomalies from the climatological average between fore-
casted and observed values. An AC≥ 0.6 is usually regarded
as an indication of some forecasting skill (Wilks, 2006). In
the present context, the climatology average c is equivalent
to the average observed flows o.

The ability of a non-probabilistic forecast to predict ex-
treme conditions is usually assessed by defining discrete cat-
egories like below normal, normal, and above normal. The
Heidke and Peirce skill scores for multi-categorical forecasts
measure the fraction of correct forecasts in each category in
relation to those forecasts which would be correct due purely
to random chance. The Peirce skill score, Eq. (13),

PSS=

∑m
j=1p(fj , oj )−

∑m
j=1p(fj )p(oj )

1−
∑m
i=jp(oj )

2 (13)

is unbiased in the sense that it assigns a marginal distribution
to the reference random forecast which is equal to the (sam-
ple) climatology (Wilks, 2006). In the above equation, m is
the number of categories, p(fjoj ) the joint distribution of
forecasts and observations, where p(fj ) and p

(
oj
)

are the
respective marginal distributions.

As the existing operational forecasts are primarily de-
signed as point estimates of the mean flow volume and hence
a comparison of probabilistic metrics between these models
is not possible, only a basic probabilistic evaluation of the
SRM+G scenario ensembles was carried out. The ranked
probability score RPS was used, which is essentially an ex-
tension of the Brier score to the many-event situation (Wilks,
2006). It reflects the overall performance of a multi-category
probabilistic forecast (Franz et al., 2003). In order to calcu-
late the RPS, first the quantiles ofm categories have to be de-
termined based on given non-exceedance probabilities of the

observed values. Then, for each forecast, the ensemble mem-
bers as well as the observed flow are assigned to these cate-
gories and the respective cumulative distributions, Eq. (14),
are calculated

Fi =
∑m

j=1
pj (fi)Oi =

∑m

j=1
pj (oi), (14)

where Fi is the cumulative ensemble distribution of forecast
i and pj (fi) is the relative frequency of an ensemble member
falling into category j . For each forecast i, there is only one
observation oi , hence the category j the observation falling
in is given a relative frequency of pj (oi)= 1 while all others
are set to 0. Finally, the RPS (Eq. 15) for n forecasts is the av-
erage of the sum of the squared differences in the cumulative
distributions.

RPS= (15)∑n

i=1

{∑m

k=1

[∑k

j=1
pj (fi)−

∑k

j=1
pj (oi)

]2
}

The RPS penalises forecasts more severely when their prob-
abilities are further from the actual observations. The relative
improvement or skill of a probability forecast over climatol-
ogy as a reference forecast is assessed by the ranked proba-
bility skill score (RPSS; Eq. 16)

RPSS= 1−
RPS

RPSref
, (16)

where RPSref is the RPS calculated with a constant forecast,
e.g. the average of the observed series.

Besides the RPSS as a single-number score for the forecast
performance, the reliability diagram (Wilks, 2006) is used to
show the full joint distribution p

(
fi,oj

)
of forecasts and ob-

servations of a binary predictand in terms of its calibration–
refinement factorisation (Murphy and Winkler, 1987)

p
(
fi,oj

)
= p

(
oj |fi

)
·p(fi) i = 1, . . .,m j = 1, . . .,n, (17)

where the m conditional distributions p
(
oj |fi

)
specify how

often each possible observation oj occurred when the par-
ticular forecast fi was issued, or in other words how well
each forecast fi is calibrated. Forecasts fi that fall near to
the 1 : 1 line in the reliability diagram result in a small (good)
reliability term of the algebraic decomposition of the Brier
score (Murphy, 1973), which is the weighted average of the
squared vertical distances.

The other part of the above factorisation is the uncondi-
tional (marginal) distribution p(fi) that specifies how often
each of the m possible forecast values occurred. This so-
called refinement distribution is visualised by a probability
histogram that is also referred to as a sharpness diagram. A
distribution with a large spread indicates that different fore-
casts are issued relatively frequently, and so have the poten-
tial to discern a broad range of conditions. Conversely, a nar-
row distribution, i.e. if most of the forecasts fi are the same
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Table 4. Percentage depletion of snow cover area for the Upper and
Lower UIB during March 2003.

Elevation 3500 4000 4500 5000 5500 > 5500
(m a.s.l.)

1 March 2003

Lower UIB 66 % 82 % 88 % 87 % 83 % 94 %
Upper UIB 58 % 79 % 58 % 51 % 58 % 71 %

1 April 2003

Lower UIB 42 % 71 % 84 % 84 % 78 % 92 %
Upper UIB 24 % 50 % 48 % 43 % 51 % 73 %

or in a similar range, indicates a lack of sharpness (Wilks,
2006).

While the calibration–refinement factorisation relates to
a binary predictand, the SRM+G scenario forecasts are
grouped into three categories: less than normal, near normal
(most likely), and higher than normal. According to Mur-
phy (1972), this N -state situation is handled as a collection
of N · m scalar forecasts, thus treating each category as a
separate binary forecast fi that either meets or does not meet
the observation oj .

3 Results and discussion

The development of the SRM+G forecasting model for the
UIB has been an iterative process with the focus on creating
an operational forecasting tool for Kharif flow volumes to
the Tarbela reservoir. Thus, not all improvements have been
tested individually while not changing the other components,
which would allow an independent assessment of the indi-
vidual effects. Nevertheless, the results are discussed below
separately for each component.

3.1 Splitting of the UIB catchment

While the simulation results using a sole model for the whole
UIB showed an acceptable agreement between simulated and
observed flows in terms of R2 andDv, initial hindcast results
proved to be unsatisfactory, especially for the early Kharif
(1 April–10 June) season, which is the major snowmelt con-
tribution period. The mean percentage error MPE between
hindcasts and observations of −21.0 % for the years 2003–
2014 indicated a severe bias towards underestimating the ac-
tual flows and the respective MAPE of 25.9 % was also un-
expectedly large.

An analysis of MODIS snow cover data indicates that
in the south-eastern part of the UIB, namely the Tibetan
Plateau, already in March the snow cover is fading away
rapidly. On the other hand, in the north-western part of the
catchment, the same elevation zone is still widely covered
with snow (Fig. 6). In Table 4 the snow cover area of the

relevant elevation zones for the south-eastern (Upper) and
north-western (Lower) part of the UIB is given on 1 March
and 1 April as an example for the year 2003. While at an el-
evation of 4000 m a.s.l. the snow cover area reduces from 82
to 71 % in the Lower UIB, in the Upper UIB the snow cover
area shrinks sharply from 79 to 50 %. A similar behaviour
can be observed for most of the other years as well.

As in forecasting mode, the depletion of the snow cover
area during the whole forecasting period is predicted de-
pending on the reduction in the “key zone” in March (see
Sect. 2.6). The relatively larger depletion in the Upper UIB
leads to an underestimation of the available snow-water
equivalent for the whole catchment, which explains the sub-
sequent underestimation of early Kharif flows by the initial
hindcasts and in turn motivates the splitting of the UIB into
two sub-catchments and separate models (see Sect. 2.3). As
a result of this splitting, the MPE of the hindcasts for early
Kharif changed to a modest overestimation of 4.2 %, while
the MAPE could be reduced to 15.8 %.

3.2 Glacier melt component

During the first diagnostic calibration of the degree-day fac-
tors, it became obvious that in late summer, even with ex-
treme high degree-day factors, it was usually not possible to
reproduce the observed hydrograph. The analysis of the snow
cover depletion showed that in most of the years, snow has
vanished from areas below 4000 m a.s.l. already in June and
elevation zones below 5000 m a.s.l. usually become snow-
free in July. Thus, the snowmelt contribution to the flow is
rapidly diminishing in August and September (see Fig. 7).

Although the monsoon season usually starts in July, bring-
ing the highest monthly precipitation depth to the UIB in July
and August, the resulting flow component from rain is not
sufficient to create the necessary discharge. Therefore, many
studies postulate a substantial contribution from glacier melt
to the annual flow in the UIB. For example, Immerzeel et
al. (2010b) estimate a contribution of 40 % from snow and
32 % from glacier melt with the remaining 28 % from rain,
Charles (2016) mentioned that the contribution is 50 % from
snow and 20 % from glacial melt.

Figure 7 shows the monthly distribution of the three flow
components as calculated by SRM+G before subjecting to
the recession flow calculation according to Eq. (1). SRM’s
simple recession flow approach is not mass conservative and
does also not allow a direct attribution, at what day these
flow components actually occur in the daily dischargeQn+1.
However, an overall water balance shows that the differ-
ence between water going into the (virtual) storage and water
taken out by the recession flow term Qn is about 7 %, which
seems acceptable in relation to the uncertainty associated
with the input data. Having in mind the above limitation, the
average (2003–2014) flow component distribution as simu-
lated by SRM+G is 53, 21, and 26 % for snow, glacier, and
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Figure 6. Snow cover variation in the months of March (Left) and April (Right) 2003 in UIB.

Table 5. Coefficient of determination R2 and relative volume dif-
ference Dv for the Upper and Lower UIB.

Upper UIB Lower UIB

Year R2 Dv (%) R2 Dv (%)

2003 0.86 −17.3 0.92 4.6
2004 0.84 2.2 0.90 0.1
2005 0.89 15.3 0.83 −17.4
2006 0.85 8.4 0.91 −3.5
2007 0.80 4.0 0.88 −4.1
2008 0.94 −6.7 0.92 −1.4
2009 0.79 14.2 0.86 16.4
2010 0.90 −1.9 0.77 −16.3
2011 0.88 −9.1 0.88 4.5
2012 0.87 −16.0 0.89 11.9
2013 0.77 −9.3 0.93 −2.5
2014 0.88 −6.5 0.92 8.0

Average 0.86 −1.89 0.88 0.03

rain, respectively, which is well within the magnitude of the
values found in other studies.

Figures 8 and 9 compare the hydrographs of simulation
runs with and without the glacier component for the Upper
and Lower UIB. The effect is more visible in the Lower UIB
as about 10.5 % of the catchment is glaciated, while for the
Upper UIB the glaciated area is merely 1.7 %.

3.3 Simulation model verification

The simulation model was verified by comparing full year
(1 January–31 December) simulation runs using the actual
temperature, precipitation, and snow cover data versus ob-
served daily flows. Examples of respective hydrographs for
the Upper and Lower UIB are given in Figs. 10 and 11. The
resulting coefficients of determination R2 and relative vol-
ume differences Dv for each year and both the Upper and

Table 6. Comparison of Kharif flow volumes (km3) during 2003–
2016.

Year Observed IRSA UBC SRM+G

2003 67.8 64.0 63.5 63.1
2004 51.8 60.5 63.6 60.8
2005 68.9 69.0 73.3 60.9
2006 67.8 68.4 73.3 61.6
2007 60.5 74.9 70.1 61.0
2008 57.7 68.5 59.2 53.9
2009 57.6 63.7 67.2 62.4
2010 76.6 63.3 68.4 61.4
2011 60.0 67.2 70.8 59.9
2012 55.4 61.3 61.7 60.4
2013 65.6 64.9 58.8 59.8
2014 52.9 64.6 64.2 61.4
2015 67.2 63.3 61.3 58.9
2016 66.4 62.4 66.5 63.1

Lower UIB model are given in Table 5. Although the years
2003–2012 were used to calibrate certain model parameters
(see Sect. 2.5), they are also used to validate the model in
“forecasting mode”, as in particular the degree-day factor
functions (Tables 1 and 2) were applied as during a real fore-
casting procedure, i.e. the starting point was chosen accord-
ing to the melting start threshold temperatures as given in
Tables 1 and 2. The years 2013 and 2014, on the other hand,
were not used at the time of model calibration; thus they
represent a fully independent verification of the simulation
model.

The average R2 of 0.86 and 0.88 for the Upper and Lower
UIB, respectively, indicate that in general the two models
simulate the variations in the observed hydrographs quite ac-
ceptably. Values for the years 2013 and 2014 are even above
the average for Lower UIB, which is finally essential for Tar-
bela inflows, but extreme floods, like 2010 during monsoon

www.hydrol-earth-syst-sci.net/22/1391/2018/ Hydrol. Earth Syst. Sci., 22, 1391–1409, 2018



1402 M. F. Ismail and W. Bogacki: Scenario approach for the seasonal forecast of UIB Kharif flows

Figure 7. Monthly distributions of flow components (snow, rain, and glacier) in the UIB.
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Figure 8. Comparison of SRM+G (with glaciers) and SRM (without glaciers) for the Lower UIB in 2008.

Figure 9. Comparison of SRM+G (with glaciers) and SRM (without glaciers) for the Upper UIB in 2008.

season, are not reproduced that well. The average relative
volume differences Dv of −1.89 and 0.03 % for the Upper
and Lower UIB, respectively, show that the simulation mod-
els, although not mass-conservative due to the recession ap-
proach (Sect. 2.2) and volume differences vary from year to
year, are in terms of total flow volume not biased over the
long run.

3.4 Evaluation of forecasting skills

In order to evaluate the skills of the forecasting model, hind-
casts were carried out for the years 2003–2014 always using
all years, i.e. also the hindcasted year, as scenario members.

For the years 2015 and 2016, real forecasts have been deter-
mined before 1 April of these years, thus without using the
particular year as a scenario. In all cases, the expected de-
pletion of snow cover area was predicted for each scenario
member based on the respective situation in March of the
specific year.

In Table 6, the ensemble medians of hind- and forecasts
by SRM+G are compared with observed flows, with IRSA’s
forecasts that are based on a statistical model, and with fore-
casts from the UBC watershed model (Quick and Pipes,
1977) that is used by WAPDA’s Glacier Monitoring Research
Centre. All values are total Kharif (1 April–30 September)
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Figure 10. Results of the validation of the final Upper UIB flow forecast model (dashed line) compared to observed flows at Kharmong (solid
line) for the year 2014.

Figure 11. Results of the validation of the final Lower UIB flow forecast model (dashed line) compared to observed inflows at Tarbela (solid
line) for the year 2014.

flow volumes in 109 m3. Figure 12 presents all model results
and observed flows and shows also the 20 and 80 % quan-
tiles of the SRM+G scenario ensemble. Table 7 summarises
the metrics that are used to compare the forecast skills of
the three models. The RMSE, MAE, and MAPE show an
improvement in accuracy by SRM+G and the MPE shows
a reduction of bias where SRM+G tends to slightly under-
estimate, while the two other forecasts moderately overesti-
mate the total Kharif flows. However, both the correlation co-
efficients R and the anomaly coefficients ACu indicate how-
ever, that the association between forecasts and observations

is weak for all three models. Here, the UBC forecasts show
the best correlation followed by SRM+G and IRSA. The
above aspects of model performance are synoptically visu-
alised in the Taylor diagram (Taylor, 2001) in Fig. 13 that
was plotted using the R-package Plotrix (Lemon, 2006). All
models are comparable far away from the point of observa-
tions given on the x-axis, with SRM+G having the smallest
centred root mean square difference and UBC the best corre-
lation coefficient.

In order to evaluate the model skills in forecasting extreme
conditions, i.e. dry or wet, the Peirce skill score was applied.
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Figure 12. Comparison of Kharif flow forecasts with 20 and 80 % quantiles of the SRM+G scenario ensembles for the years 2003–2016.

Table 7. Comparison of forecast skills between IRSA, UBC, and SRM+G.

Model MAE RMSE MPE MAPE R ACu PSS

km3 km3 % % – – –

IRSA 6.5 8.0 5.8 10.9 0.107 0.085 −0.070
UBC 6.9 7.7 6.3 11.4 0.318 0.260 0.096
SRM+G 6.0 7.0 −2.0 9.5 0.223 0.168 −0.079

Figure 13. Taylor diagram of IRSA, UBC, and SRM+G model per-
formance.

The limits between the categories dry, normal, and wet con-
ditions were defined as 20 and 80 % non-exceedance of the
observed historic Kharif flow series 2003–2016, which cor-
responds to quantiles of 56.8 and 67.9 km3, respectively. Ob-
viously IRSA and SRM+G forecasts have no skill in this re-
spect, while UBC shows some, although limited, skill com-
pared to purely random chance.

As only point estimates of IRSA and UBC forecasts were
available, the assessment of probabilistic skill only applies
to the SRM+G scenario ensembles. Figures 14 and 15 show
typical traces of ensemble members as well as the observed,
mean, and historic trace. In most years, the ensemble mean
is closer to the observed value than the historic trace.

The RPSS was used to assess the overall performance of
the probabilistic forecast. The same category limits as for the
Peirce skill score were chosen, i.e. the 20 and 80 % quantiles
of the observed flow series. As no other probabilistic fore-
casts were available as reference forecast, the ranked proba-
bility score RPS of the scenario forecast ensembles was com-
pared to the climatology, i.e. the average Kharif flow of the
observed series of 62.7 km3. The RPS of scenario forecast
ensembles and climatology were 0.370 and 0.462, respec-
tively. The resulting RPSS of 0.20 indicates that the scenario
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Figure 14. Plume diagram of ensemble member traces in 2003.

Figure 15. Plume diagram of ensemble member traces in 2008.

ensemble shows some, however limited, skill and improve-
ment over a constant forecast of the historic average.

The reliability diagram (Fig. 16) was constructed with the
aforementioned three forecast categories: dry (≤ 56.8 km3),
near normal, and wet (> 67.9 km3) conditions based on the
historic observations and using for each forecast the fre-
quency of ensemble members falling into the respective cat-
egory. The resulting reliability diagram is relatively rugged
and has gaps in several classes, although each forecast cat-
egory was treated as an individual forecast resulting in 42

scalar forecasts. However, in total there are only 14 obser-
vations, which causes the outlier at the forecast probability
class 0.6. There were 3 forecasts that fell into this very class
but none of the 14 observations. As can be seen from the
sharpness diagram, there are also empty forecast classes (0.4
and 0.5), meaning these probabilities have never occurred in
any forecast category. Besides the shortcoming of the lim-
ited sample size and in particular the outlier, most points are
located around the 1 : 1 line indicating that there is no dry or
wet bias and that they fall within an acceptable distance. Res-
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Figure 16. Reliability diagram of probability forecasts in the cate-
gories dry (≤ 20 %), near normal, and wet (> 80 %) of 2003–2014
flows.

olution, although difficult to assess taking the limited num-
ber of points, seems to be a bit weak, i.e. with a tendency
to over-confidence, which may be caused by the fact that the
available scenario years comprise mostly near normal condi-
tions.

4 Conclusions

The SRM was applied to the UIB in order to forecast the total
Kharif inflow to the Tarbela reservoir. Several improvements
had to be introduced to SRM in order to meet the specific
requirements of the UIB.

Not surprisingly, a separate component had to be added
to SRM in order to consider the flow component originating
from glacier melt. Without this component, especially in the
late summer months, there is a lack of water to meet the ob-
served hydrograph. All-year simulation runs with SRM+G
for the period 2003–2014 result in an average flow compo-
nent distribution of 53, 21, or 26 % for snow, glacier, or rain,
respectively, which fits well to the values found in a number
of other studies.

It is well known, that the Tibetan Plateau receives signifi-
cantly lesser precipitation than the western parts of the UIB.
In addition, MODIS data shows that the snow cover is fading
away in early spring much faster than in the other parts. In the
present study, SRM’s modified depletion curve approach for
predicting the snow cover depletion during the forecast pe-
riod has proven to be very sensitive to errors in the estimation
of the actual snow-water equivalent. In such cases, it is in-

evitable to split the catchment into more homogeneous units.
Therefore, the superposition of flows from sub-catchments
by using a time lag was introduced to SRM+G, which leads
to a significant improvement in the forecasts of snowmelt-
dominated early Kharif flows in particular.

The scenario approach is a step towards probabilistic fore-
casting of seasonal flows in the UIB. As the accuracy of ex-
isting forecasts with a mean volume error of 10.9 and 11.4 %
is already quite high, the improvement by SRM+G having a
MAPE of 9.5 % is only limited. The bias, however, could be
reduced to−2.0 %. Association between forecasts and obser-
vations is rather weak for all three models, just as none of the
models has significant skill in predicting extreme dry or wet
conditions.

Regarding the scenario approach, it is obvious that as far
as the variables precipitation and temperature are concerned,
these tend towards the climatology, i.e. the long-term aver-
ages. A variance in the forecasts is only introduced by the
different estimates of the snow-cover depletion curves for
each forecast. Thus, a promising way to improve the asso-
ciation and sharpness of the scenario approach would be a
selection of a subset of ensemble members according to fore-
casted seasonal anomalies in temperature and precipitation.
A quick test using only the five lowest, middle, or highest
ensemble members selected according to the (known) rela-
tive flow frequency of the forecasted year gives promising
results, e.g. not only a MAPE of 4.9 % but also an ACu of
0.78 and a PSS of 0.41. The challenge of course is to fore-
cast the seasonal anomaly in temperature and precipitation.
In this respect, further research is needed on how today’s
global forecast systems may allow a more specific selection
of ensemble members particularly in the UIB, where the cor-
relation to common teleconnections like the ENSO7 status is
known to be weak.
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