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Abstract. A newly developed microwave (MW) land sur-
face temperature (LST) product is used to substitute ther-
mal infrared (TIR)-based LST in the Atmosphere–Land Ex-
change Inverse (ALEXI) modeling framework for estimating
evapotranspiration (ET) from space. ALEXI implements a
two-source energy balance (TSEB) land surface scheme in
a time-differential approach, designed to minimize sensitiv-
ity to absolute biases in input records of LST through the
analysis of the rate of temperature change in the morning.
Thermal infrared retrievals of the diurnal LST curve, tradi-
tionally from geostationary platforms, are hindered by cloud
cover, reducing model coverage on any given day. This study
tests the utility of diurnal temperature information retrieved
from a constellation of satellites with microwave radiometers
that together provide six to eight observations of Ka-band
brightness temperature per location per day. This represents
the first ever attempt at a global implementation of ALEXI
with MW-based LST and is intended as the first step towards
providing all-weather capability to the ALEXI framework.

The analysis is based on 9-year-long, global records of
ALEXI ET generated using both MW- and TIR-based di-
urnal LST information as input. In this study, the MW-LST
(MW-based LST) sampling is restricted to the same clear-sky
days as in the IR-based implementation to be able to analyze
the impact of changing the LST dataset separately from the
impact of sampling all-sky conditions. The results show that
long-term bulk ET estimates from both LST sources agree
well, with a spatial correlation of 92 % for total ET in the
Europe–Africa domain and agreement in seasonal (3-month)
totals of 83–97 % depending on the time of year. Most impor-
tantly, the ALEXI-MW (MW-based ALEXI) also matches

ALEXI-IR (IR-based ALEXI) very closely in terms of 3-
month inter-annual anomalies, demonstrating its ability to
capture the development and extent of drought conditions.
Weekly ET output from the two parallel ALEXI implementa-
tions is further compared to a common ground measured ref-
erence provided by the Fluxnet consortium. Overall, the two
model implementations generate similar performance met-
rics (correlation and RMSE) for all but the most challenging
sites in terms of spatial heterogeneity and level of aridity.
It is concluded that a constellation of MW satellites can ef-
fectively be used to provide LST for estimating ET through
ALEXI, which is an important step towards all-sky satellite-
based retrieval of ET using an energy balance framework.

1 Introduction

Estimating terrestrial evapotranspiration (ET) on continental
to global scales is central to understanding the partitioning of
energy and water at the earth surface and for evaluating mod-
eled feedbacks operating between the atmosphere and bio-
sphere. ET is an important flux that links the water, carbon,
and energy cycles (Campbell and Norman, 1998). Approx-
imately two-thirds of the precipitation over land is returned
to the atmosphere by ET (Baumgartner and Reichel, 1975).
Moreover, ET consumes 25–30 % of the net radiation reach-
ing the land surface (Trenberth et al., 2009). ET occurs as a
result of atmospheric demand for water vapor and depends on
the availability of water and energy. When plants are present,
this balancing is controlled by leaf-level stomatal controls,
and in agricultural areas the water availability may also be
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managed on the field scale through irrigation or drainage.
The high spatial and temporal variability in the driving mech-
anisms in combination with possible field-scale management
decisions poses a significant challenge to bottom-up mod-
eling of ET at sub-monthly timescales, even on the spatial
scales of numerical weather prediction (NWP) models (5-25
km). In order for NWP models to improve the characteriza-
tion of the surface energy budget, there is a need for timely
diagnostic information on ET (Hain et al., 2015). This, in
turn, could lead to a more timely and accurate identifica-
tion of developing droughts (Anderson et al., 2011) which
would aid farm-level management decisions as well as re-
gional yield impact predictions.

ET is highly variable in space, so no amount of ground
stations can provide an accurate estimate of the spatial aver-
age over larger domains, let alone the globe. Therefore, ap-
proaches have been developed to integrate satellite data with
models to estimate ET from space. Surface energy balance
approaches use surface temperature observations as the main
diagnostic to estimate ET by partitioning the available en-
ergy into turbulent fluxes of sensible heating (H ) and latent
heating (LE). In the two-source energy balance (TSEB) ap-
proach (Kustas and Norman, 1999; Norman et al., 1995) the
partitioning is evaluated for the soil and the canopy sepa-
rately. Anderson et al. (1997) modified TSEB to leverage ob-
servations of the time evolution of surface temperature as a
way to reduce the impact of biases in instantaneous tempera-
ture observations on the ET retrieval. This approach allowed
for regional implementation of TSEB and came to be known
as the Atmosphere–Land Exchange Inverse (ALEXI) method
(Anderson et al., 2007a; Mecikalski et al., 1999).

To date, ALEXI has always been implemented with
land surface temperature (LST) retrievals from thermal in-
frared (TIR) imaging radiometers (Anderson et al., 2011).
Most applications of ALEXI have utilized data products from
geostationary satellites, for example the Geostationary Oper-
ational Environmental Satellite (GOES) with coverage over
the Americas. More recently it has been applied to records
from polar-orbiting satellites to obtain consistent global cov-
erage from a single sensor with short latency. This is based on
day–night temperature differences from the Moderate Res-
olution Imaging Spectroradiometer (MODIS) on the Aqua
satellite from NASA’s Earth Observing System (EOS) pro-
gram (Hain and Anderson, 2017). Reliance on TIR effec-
tively limits ET retrievals to clear skies (Rossow et al., 1989),
and failure to completely mask cloud-affected observations
is shown to limit the precision in TIR-LST (TIR-based LST;
Holmes et al., 2016). Continuous daily estimates of ET are
generated from clear-sky ALEXI samples through temporal
interpolation based on maintaining a normalized flux parti-
tioning metric. In ALEXI this also accounts for daily evapo-
rative losses (Anderson et al., 2007a). Recent work by Alfieri
et al. (2017) analyzed measurements from eddy-covariance
(EC) towers and found the persistence for energy flux parti-
tioning metrics to be short. In their analysis, they found that

a return interval of no more than 5 days is necessary to keep
the relative error in daily ET below 20 %.

In order to provide a more consistent and short return inter-
val for daily ET retrievals on the global scale there is a need
for accurate values during cloudy intervals. The approach we
take here to address this challenge is to leverage passive mi-
crowave (MW) observations. The longer wavelengths (0.1–
1 m) make MW observations of the land surface generally
less susceptible to scattering and absorption by clouds than
observations in the TIR spectral region (except for notable
water and oxygen absorption windows; Ulaby et al., 1986).
One MW frequency band with a particularly high sensitiv-
ity to LST (Prigent et al., 2016) and high tolerance to clouds
(Holmes et al., 2016) is Ka band (36-37 GHz). MW radiome-
ters with a Ka-band channel are available from several low-
Earth-orbiting satellites that sample at different times of the
day. Collectively they can be used to construct a diurnal cycle
of brightness temperature for each location on Earth (Holmes
et al., 2013b; Norouzi et al., 2012). This diurnal brightness
temperature can then be scaled to match the diurnal temper-
ature cycle (DTC) as measured by TIR imagers (Holmes et
al., 2015, 2016).

The methodology developed in Holmes et al. (2015) was
applied to create an 11-year record of MW-based LST (MW-
LST) from various Ka-band sensors (see Sect. 2). Because
this new dataset specifically includes diurnal information, it
presents an opportunity to evaluate use of constellation-based
MW-LST in a TSEB framework for estimating ET. For this
purpose, we substituted MW-LST for MODIS LST in the
global implementation of ALEXI as described in Hain and
Anderson (2017) and generated a data record of weekly ET
for the time period 2003 to 2013 using each LST data source.
No recalibration of ALEXI was applied in this experiment
to accommodate MW-LST. The only difference between the
two resulting multi-year records of ET estimates are the spec-
tral window (MW Ka band vs. TIR) and spatial resolution of
the LST inputs (0.25◦ for the MW implementation: ALEXI-
MW; 0.05◦ for the MODIS implementation: ALEXI-IR). In
order to make the subsequent comparison with ALEXI-IR as
direct as possible, the MODIS cloud mask was also applied
to MW-LST. This assures that potential issues related to the
applicability of the ALEXI framework during cloudy condi-
tions (particularly its assumptions regarding boundary layer
development) are separated from the question of MW-LST
performance within the two-source framework. The results
are discussed by region and season, as well as in terms of
bulk ET and its inter-annual variation. With this analysis, we
hope to establish the degree to which ALEXI-MW resembles
the ALEXI-IR under clear-sky situations. The performance
of the ALEXI model with all-sky LST observations will be
the topic of subsequent investigations.
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2 Methodology

2.1 ALEXI model

The ALEXI method is a comprehensive set of algorithms to
diagnose the surface energy balance with the aim of retriev-
ing ET (Anderson et al., 2007a; Mecikalski et al., 1999).
ALEXI is based on the TSEB land surface parameteriza-
tion (Kustas and Norman, 1999; Norman et al., 1995) in
which the partitioning of turbulent fluxes is evaluated for the
soil (s) and the canopy (c) separately. This is accomplished
by (1) partitioning the bulk net radiation (Rnet) between
canopy and soil surface components and (2) attributing the
observed composite surface radiometric temperature (Trad)
to soil and canopy temperatures, Ts and Tc, based on vegeta-
tion cover fraction. An initial guess for the canopy latent heat
is based on the assumption that the green part of the canopy
transpires at its potential rate (LEc=LEPT), where LEPT is
estimated with a modified Priestley and Taylor (1972) ap-
proximation. The sensible heat flux for the two-source com-
ponents (Hs and Hc) is then calculated in a set of equations
that accounts for their different resistance to heat transfer and
that satisfy the observation-based Ts and Tc and air temper-
ature Ta (Norman et al., 1995). The final estimate of latent
heat is determined in an iterative procedure in which LEc
is reduced until a solution is found where the soil evapora-
tion (LEs) is nonnegative. ET (in units of mass flux) is com-
puted from the latent heat (units of energy flux) by dividing
by the latent heat of vaporization.

ALEXI couples TSEB with an atmospheric boundary
layer model to relate the morning rise in Trad to the growth of
the overlying planetary boundary layer and simulate an inter-
nally consistent Ta. This removes the need for Ta as an input
dataset and limits the sensitivity of the method to biases in
instantaneous satellite-based temperature estimates, while al-
lowing for regional and global implementations of the model
(Anderson et al., 1997). The ALEXI model is intended for
coarse spatial grids (∼ 5 km pixels) and provides the physi-
cal foundation to the multi-scale ALEXI/DisALEXI model-
ing system that has been applied to many satellite-based TIR
data streams from 30 to 10 km spatial resolutions (Ander-
son et al., 2011). The primary input to ALEXI is Trad at two
times during the morning: 1.5 h after sunrise (time 1) and
1.5 h before solar noon (time 2). ALEXI computes the en-
ergy balance at both instantaneous points during the morning
hours (post-dawn and pre-noon). The latent heat estimate at
the second time is then upscaled to a daily flux, conserving
a flux ratio metric. There are two pathways through which
the Trad input affects ALEXI ET estimates: through the es-
timation of the morning rise in temperature between time 1
and time 2, 1Trad, which affects the boundary layer growth
and the strength of the sensible heat fluxes; and through
the impact of Trad on the upwelling longwave component
of Rnet at these times. Whereas the former is not sensitive
to time-invariant biases in the diurnal temperature retrievals,

the latter has a weak sensitivity to the absolute temperature
at time 1 and time 2.

The experiment described in this paper is based on a re-
cent global implementation of the ALEXI model (Hain and
Anderson, 2017). This global ALEXI implementation differs
from prior geostationary implementations in that its analysis
is performed at weekly timescales. While a daily system is
in preparation, at present, the global model is executed using
7-day averages of all inputs on clear-sky days to minimize
computational load. In practice this means taking an aver-
age of all needed inputs (at time 1 and 2) on the clear-sky
days in the 7-day period and running ALEXI. As in prior
geostationary implementations the retrieved latent heat esti-
mate at time 2 is upscaled to a daily flux, conserving a flux
ratio metric and using daily solar radiation retrievals. This
accounts for changes in atmospheric demand while preserv-
ing the scaling flux ratio as determined on the clear-sky days.
However, because the scaling flux ratio is held constant over
the 7-day period the output is also reported as 7-day total ET
(mm week−1). The data sources for this version of ALEXI
are listed in Table 1. This paper compares two sets of ALEXI
ET estimates based on the exact same global model formu-
lation but with alternative LST inputs to estimate the time-
integrated change in mid-morning Trad. The baseline is a TIR
version that makes use of MODIS LST from the Moderate
Resolution Imaging Spectroradiometer on the polar-orbiting
satellites Aqua and Terra from NASA’s Earth Observing Sys-
tem program. This MODIS-based Trad estimates are used as
the input in the current global ALEXI implementation (Hain
and Anderson, 2017) described in Sect. 2.2. The alternative
LST input from MW data is described in Sect. 2.3. The two
separate implementations of ALEXI are identified by their
temperature input source: ALEXI-IR (with MODIS LST)
and ALEXI-MW (with MW-LST). All other inputs needed
to run ALEXI are identical for both implementations.

2.2 Temperature from MODIS

The MODIS instrument on the polar-orbiting Aqua satel-
lite (July 2002 to present) with an equator overpass time of
13:30 and 01:30 LST provides global TIR observations with
spectral bands suitable for estimating LST. The specific LST
product used for the ALEXI implementation is the MODIS
Climate Modeling Grid 0.05◦ daily LST product (MYD11C1
Wan, 2008), which is distributed by the Land Processes Dis-
tributed Active Archive Center (https://lpdaac.usgs.gov). Al-
though the overpass times of this satellite do not correspond
directly with ALEXI’s time 1 and time 2, Hain and Ander-
son (2017) show that, over the US, GOES-based 1Trad can
be estimated with a 5–10 % relative error using a tree-based
regression model based on independent variables including
vegetation index and land cover class. This regression model,
trained over the GOES domain, is then applied globally to es-
timate Trad at time 1 and time 2 from MODIS LST.
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Table 1. Primary inputs for current global implementation of ALEXI.

Data Purpose Source Spatial
resolution

LST Trad, net radiation
MODIS (MYD11C1) (Sect. 2.2) 0.05◦

MW-LST (Sect. 2.1) 0.25◦

Surface longwave radiation Net radiation CFS-R2, CFSRv23 0.5◦

Surface shortwave fluxes Net radiation CERES SYN1deg4 1◦

Albedo Net radiation MODIS (MCD43B3)5 0.05◦

LAI Trad partitioning MODIS (MCD15A3)6 0.01◦

Land cover type Canopy characteristics MODIS (MCD12C1)7 0.01◦

Wind speed Aerodynamic resistance CFS-R, CFSRv2 0.5◦

Lapse rate profile Atmospheric boundary layer growth model CFS-R, CFSRv2 0.5◦

2 NCEP Climate Forecast System Reanalysis (Saha et al., 2010), 3 Saha et al. (2011), 4 Doelling (2012), 5 Schaaf et al. (2002), 6 Myneni et al. (2002), 7 Friedl et
al. (2010).

Figure 1. MW-LST workflow.

2.3 Temperature from a constellation of MW satellites

The MW-LST product is based on vertical polarized Ka-
band (36–37 GHz) brightness temperature (T Ka), a spectral
band commonly included in multi-frequency microwave ra-
diometers in low-Earth orbit. The current MW-LST product
integrates observations from six of these satellites. Most im-
portant are the Advanced Microwave Scanning Radiometer
EOS (AMSR-E) on Aqua from mid-2002 to October 2011
and its successor AMSR2 on the Global Change Observa-
tion Mission 1st Water (GCOM-W) from July 2012 onward.
Also included are the Special Sensor Microwave and Im-
ager (SSM/I) on platforms F13–F15 of the Defense Meteo-
rological Satellite Program, the Tropical Rainfall Measuring
Mission (TRMM) Microwave Imager (TMI) and Coriolis–
WindSat. Together this constellation of Ka-band radiometers
allows for the estimation of the diurnal temperature cycle in
a process that can be summarized in 4-steps, detailed below
and diagrammed in Fig. 1.

2.3.1 Inter-calibration of MW satellites

All available Ka-band observations are combined to create a
global record with up to 8 observations per day for each 0.25◦

resolution grid box. The data are binned in 15 min windows
of local solar time (00:00–00:15 LST is the first window of
the day). The brightness temperatures are inter-calibrated us-
ing observations from the TRMM satellite (with an equato-
rial overpass) as a transfer reference. Individual 0.25◦ aver-
ages are masked if the spatial standard deviation of the over-
sampled Ka-band observations exceeds a prior determined
threshold for each grid box. Both the inter-calibration and
quality control procedures are described in detail in Holmes
et al. (2013a). The resulting global record of inter-calibrated
Ka-band brightness temperatures spans the years 2003–2013.

2.3.2 Fitting of diurnal cycle model to sparse
observations

For days with suitable MW observations (a minimum of 4, at
least one of which is close to solar noon) and no T Ka< 250 K
(an indication of frozen soil), a continuous diurnal tempera-
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ture cycle is fitted. The DTC model combines a cosine and
an exponential term to describe the effect of the sun and
the decrease in surface temperature at night and is based on
Göttsche and Olesen (2001) with slight adaptations to limit
the number of parameters. This implementation (DTC3) is
fully described in Holmes et al. (2015). DTC3 summarizes
the DTC with four parameters: daily minimum (T0) at start
and end of day, diurnal amplitude A and diurnal timing ϕ.
The fitting procedure first determines ϕ as a temporal con-
stant (Holmes et al., 2013b) and subsequently T0 and A for
each day individually. The success of the fit (εd ) is expressed
as the root mean square error (RMSE) between the modeled
and observed T Ka for the n observations (at times t) in any
given day (d), calculated following Eq. (1):

εd =

√√√√1
n

n∑
i=1

(Ti −DTC3(ϕ,T0,A, ti))
2. (1)

This method was applied to the entire record of inter-
calibrated Ka-band brightness temperatures (Sect. 2.3.1) to
create a database of annual maps of ϕKa and daily maps of
T Ka

0 and AKa

2.3.3 Scaling of MW DTC parameters to match the
TIR-LST target

To relate the diurnal cycle in Ka-band brightness temperature
to the composite radiative temperature of the land surface re-
quires a set of DTC parameters that is equivalent to those
derived from T Ka but derived from a TIR-LST product. In
the present analysis, the TIR-LST that serves as a reference
is produced at the Land Surface Analysis Satellite Applica-
tion Facility (LSA-SAF). The LSA-SAF LST is based on
TIR window channels of SEVIRI (Spinning Enhanced Visi-
ble and Infrared Imager) onboard the Meteosat Second Gen-
eration (MSG) geostationary satellite. The same method for
fitting a DTC model to sparse observations (Sect. 2.3.2) was
applied to the LSA-SAF LST to create a database of annual
maps of ϕTIR and daily maps of T TIR

0 and ATIR (Holmes et
al., 2015). This preparation step is diagrammed in Fig. 1 as
step “0”.

The Ka-band DTC parameters (T Ka
0,d , AKa

d ) are scaled so
that the long-term mean matches that of the equivalent TIR-
based parameters (T TIR

0,d , ATIR
d ). Because T Ka

0 is affected by
the sensing depth, the scaling is performed by using daily
mean temperature as an intermediate, which is defined as
(T

Ka
= T Ka

0 +A
Ka/2) for this purpose.

AMW
d = AKa

d /δ (2)

T
MW
d = β0+β1T

Ka
d (3)

The scaled parameters are indicated with the super-
script “MW”. The parameter δ represents the slope of the
zero-order least-squares regression line for estimating the

amplitude of AKa
d from TIR-LST (ATIR

d ). The intercept (β0)

and slope (β1) to correct the mean daily temperature (T
Ka
d )

for systematic differences with TIR-LST (T
TIR
d ) are deter-

mined with a constrained numerical solver, as in Holmes et
al. (2015). The constraint is based on radiative transfer con-
siderations and assures that the scaling of the mean is in
agreement with the prior scaling of the amplitude (Eq. 2).

The set of time-constant scaling parameters (δ, β0 and
β1) were determined for each 0.25◦ grid box based on all
days in the period 2007–2012 where both MW- and TIR-
based DTC parameters were available (generally clear sky
and above freezing). Because all three parameters are con-
stant with time, Eqs. (2–3) preserve their temporal indepen-
dence of the TIR-LST product. The consequence of using
LSA-SAF LST as the reference product is that observation-
based scaling parameters are limited to the domain covered
by Meteosat (Africa, Europe, Middle East). Outside this do-
main, the parameters must be extrapolated. The procedure
for the extrapolation is still in development and currently en-
tails fitting linear regressions with vegetation characteristics.
Because of the limited confidence in the scaling parameters
outside the MSG domain, the analysis in this paper is focused
on the Africa and Europe domain. Some results of the global
set will be presented in the comparison with flux-tower ob-
servations (Sect. 3.4).

2.3.4 Constructing MW-LST

Global maps of the time-constant parameters (δ, β0 and β1;
Sect. 2.3.3) are used to calculate the daily DTC parame-
ters (TMW

0,d , AMW
d ) in the scaled climatology of the TIR-

LST product. This scaling (Eqs. 2 and 3) is applied to ev-
ery day for which estimates of T

Ka
and AKa are available

(see Sect. 2.3.2). The methodology to scale the DTC param-
eters from this record of Ka-band observations to a physical
temperature range is described in more detail in Holmes et
al. (2015). The scaled parameters together with ϕTIR are then
used to construct MW-LST based on the same DTC3 model
as used in step 2:

MW−LSTi = DTC3
(
ϕTIRTMW

0,d ,A
MW
d

)
. (4)

The use of the DTC model allows MW-LST to be diur-
nally complete for days when both TMW

0,d and AMW
d are avail-

able. MW-LST can therefore be generated at any time in-
crement (i). The MW-LST database used for this paper was
generated at a 15 min temporal interval. This allows Trad1
and Trad2 to be accurately interpolated from the database. εKa

d

(Eq. 1) is used to flag days where the assumptions imposed
by the shape of clear-sky DTC3 are not valid or individual
Ka-band observations have a large bias. In this experiment,
MW-LST was only used if εKa

d was 2.5 K or lower.
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Figure 2. Temporal coverage of MW- and IR-based 1Trad in 2004. (a) shows the fraction of total days where MODIS-based estimates of
1Trad are available. (b) shows the fraction of this subset of days where there is also a MW-based 1Trad available. (c) shows the fraction of
days without a MODIS-based estimate but with availability of a MW-based estimate (potential for IR-gap coverage). (d) shows the fraction
of total days where either a MODIS- or a MW-based 1Trad is available.

2.3.5 MW-LST in ALEXI

The continuous 7-day totals are achieved by temporal gap-
filling of (clear sky) ET as a fraction of clear-sky latent heat
flux to incoming solar radiation (Anderson et al., 2007a). To
maximize similarity, the same MODIS cloud mask is applied
to the ALEXI-MW implementation so that the mechanics of
standard ALEXI can be evaluated under circumstances for
which it has previously been developed and validated.

The fraction of days in a year where a clear-sky MODIS-
based Trad1 and Trad2 is available for ALEXI is below 0.3
for large parts of Europe and (sub)-tropical Africa (Fig. 2a).
In these areas the revisit time between observation days regu-
larly exceeds 5 days, which is a threshold for temporal down-
scaling given the persistence of ET fraction (Alfieri et al.,
2017). On average for the non-coast pixels, there is a MW-
based estimate available for 69 % of those days where there
is also a (clear sky) MODIS-based Trad1 and Trad2. The rea-
son this percentage is not higher is mainly due to the require-
ment of a near-noon overpass for the fitting of the diurnal
temperature curve (see Sect. 2.3.2), in combination with the
1 in 3 days without such overpass for a given location as
determined by the orbit and coverage of Aqua and GCOM-
W. The multi-year and global record of simultaneous MW-
LST and MODIS LST during clear skies will support further
calibration of MW-LST to MODIS LST in future investiga-
tions. This MW to MODIS calibration was not done in this
study but is likely needed to maximize consistency between
ALEXI implementations over the globe. In terms of potential
for additional sampling through the use of MW-based LST,
Fig. 2c shows that MW-based estimates for the two ALEXI
times are available for 54 % of the days where no MODIS-
based estimate is available. Figure 2d depicts the fraction of
days where either MODIS or MW-LST can be used to es-
timate the Trad inputs required to run ALEXI. This shows

that the addition of MW-LST can bring the minimum aver-
age coverage in this domain to once every 2 days.

2.4 Flux-tower observations

Tower measurements of latent heat flux obtained using the
eddy-covariance technique are commonly used for ground
truthing of remote sensing and model-based ET estimates
(Baldocchi et al., 2001). Harmonized Fluxnet data are dis-
tributed in so-called synthesis datasets. They include the
original observations at a 30 min observation time and aggre-
gate values per day, week and month. For this work, we used
the synthesis 2015 Tier 1 data as accessed in July 2016 (http:
//fluxnet.fluxdata.org/data/fluxnet2015-dataset/) to serve as a
common ground reference for the evaluation of the temporal
characteristics of ALEXI-MW and ALEXI-IR. In particular,
the part of the dataset of interest here is the daily aggregates
of latent heat flux (variable name LE_F_MDS) which include
quality control as described in Pastorello et al. (2014).

Based on these daily data, we computed the 7-day av-
erages matching the window length of ALEXI. If not all
days within a window have valid data, that window is dis-
regarded. Overall, eddy-covariance observations of ET were
available from 68 flux towers with at least 1 year of observa-
tions within the time period of this study.

2.5 Definition of regions

Although both MW and IR sets are available globally, the
main analysis of this paper is focused on the domain encom-
passing Africa and Europe. This is because only in that re-
gion is the scaling of MW-LST to TIR-based LST currently
supported by data (see Sect. 2.3.3). However, temporal com-
parisons (e.g., correlations) are much less affected by the
mean absolute value of the MW-LST product. Because of the
limited availability of flux-tower data, we include all avail-
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Figure 3. Location of flux-tower sites used in the analysis (see also Table 2): (a) North America, (b) Europe and (c) the world. The size of the
marker is in proportion to the number of data days used in the assessment. (d) indicates the 11 regions selected based on annual precipitation
cycle and geographic diversity.

able stations from across the globe which allows us to double
the amount of stations available for the analysis compared to
only the sites in Europe and Africa.

Within the main focus domain of this study we further
highlight 11 climate-based domain subsets (see also Fig. 3,
bottom-right panel):

A. West-African Sahel, arid;

B. West-African Sahel, semi-arid;

C. Guinean coast, dry subhumid;

D. Central Africa, humid;

E. Horn of Africa, arid;

F. Southern Africa, semi-arid (large bias in Fig. 4);

G. Southern Africa, arid (large bias in Fig. 4);

H. Iberia, semi-arid;

I. Germany, continental humid;

J. European Russia, continental humid, boreal forest
(large bias in Fig. 4);

K. France, humid.

These regions are selected to represent a wide variety of
seasonal variation in precipitation and climate class and are
based on the work of Trambauer et al. (2014). Rather than
attempting to cover the entire domain with these subsets, we
selected smaller subsets in order to visualize the local devia-
tions between MW and IR products that might otherwise be
averaged out. We also added regions in Europe and several
regions that showed a large bias in Fig. 4.

2.6 Metrics

Cumulative annual and seasonal fluxes are compared in terms
of their relative difference – RD (%), calculated following
Eq. (5):

RD=
x− y

(x+ y)/2
× 100%, (5)

where x represents the mean of the MW product and y the
mean of the IR product, both sampled at the same times. This
relative comparison is useful because neither product repre-
sents the truth and this formulation places the difference in
the context of the size of the fluxes. Still, if the ET is very
small (average ET below 14 mm month−1) then the denom-
inator becomes too small and the RD is not reported. The
temporal agreement between the anomalies in the IR and
MW-based ET products is analyzed in terms of the Pearson’s
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Figure 4. Multi-year mean of clear-sky 1Trad (a, 2004–2011) and mean annual clear-sky ET (b, 2003–2011) for IR and MW. The transect
shows the latitudinal average for longitude 10◦W to 35◦ E. The right-hand panel shows the corresponding relative difference (RD) between
the two estimates (MW–IR), with areas with ET below 14 mm month−1 greyed out. Note the reversed color bars for 1Trad and ET to
emphasize their negative correlation (1Trad up, ET down). 1Trad is defined in the ALEXI framework as the temperature rise between 1.5 h
after sunrise to 1.5 h before noon (see Sect. 2.1).

correlation (ρ) and the spatial agreement in terms of the cor-
relation coefficient (R2).

The temporal agreement of the weekly ET estimates is
further compared relative to the flux-tower observations that
serve as a common reference. For this assessment, MW- and
IR-based ET estimates are again compared in terms of ρ but
also in terms of root mean square error to quantify the abso-
lute error. The RMSE is calculated following Eq. (7):

RMSE=

√
1
N

∑
(x− y)2, (6)

where x is the satellite estimate of ET and y is the tower-
based measurement of ET. N is the number of data pairs.

3 Results

3.1 Comparing multi-year means

The mean average 1Trad as calculated from MW-LST de-
viates from that calculated from MODIS LST by 0–20 %,
which leads to a spatial R2 of 0.90 (Fig. 4, top row panels).
These spatial variations in mean values arise from the differ-
ent calibration targets. MW-LST is calibrated to match the
LSA-SAF LST from MSG (Europe and Africa) with a preci-
sion of 2–3 K (see Sect. 2.3.3), and MODIS 1Trad is trained
on GOES (North America) with an estimated precision of 5–
10 % (see Sect. 2.2). These different calibration domains to-
gether with likely calibration differences between GOES and
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Figure 5. Mean monthly ET as estimated with ALEXI-IR over 2003–2011, and monthly means of its MODIS-based 1Trad input (pe-
riod 2004–2011), for selected regions. The deviation from these IR estimates when using the MW inputs is shown in blue for a positive
deviation and red for a negative deviation.

MSG LST products present sources of bias that can explain
the regional variation we see in Fig. 4. For example, the dif-
ference between 1Trad estimates in the northeast corner of
this map may be an artifact of scaling with high incidence
angles (θ ) for the MSG geostationary satellite. In the farthest
corner (θ > 60◦), MSG observations were not used and the
MW scaling is extrapolated based on land surface character-
istics. The MW 1Trad also exceeds IR-based estimates by
more than 10 % in Southern Africa, for which we do not cur-
rently have an explanation.

The general agreement in mean 1Trad translates into a
high agreement between IR and MW-based ALEXI in terms
of mean annual ET for the period 2003–2011. The spatial
correlation between MW and IR in terms of ET is 92 %
(Fig. 4, bottom row panels), similar to that for 1Trad. Boreal
Russia shows the most notable differences in absolute terms,
where MW is lower by ∼ 20 %. This is related to view angle
impacts on the 1Trad retrieval, as noted above. MW ET is

also much lower than IR ET in the Alps, which likely reflects
an interaction between view angle and topography (e.g., dif-
ferences in pixel proportion of sunlit and shaded slopes). In
the Horn of Africa, MW is higher by 20–30 %, although lit-
tle difference in 1Trad is apparent in this region. ALEXI ET
becomes more sensitive to small changes in 1Trad near the
dry end, where the iterative stress reduction in transpiration
starts to kick in.

3.2 Regional and seasonal bulk flux comparison

Figure 5 provides a more detailed comparison between the
MW and IR products for the domain subsets as described in
Sect. 2.5. For each domain subset, it shows the mean monthly
total ET and the associated monthly means of1Trad. For Eu-
ropean Russia (region J) and to a lesser extend Germany (I)
and France (K), this shows a higher MW-based 1Trad result-
ing in lower summertime ET estimates than for ALEXI-IR.
Conversely, in the wintertime the lower MW-based1Trad re-
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sults in higher ET estimates compared to the TIR products in
October–December. For Iberia (H), the semi-arid Sahel (B)
and Spain (H) there appears to be a difference in timing with
MW estimating a later time for peak ET. The higher MW ET
estimates in the Horn of Africa are rather uniform over the
year, except for December and January where the difference
is small. The size of the bias in ET for the Horn of Africa is
relatively large compared to the modest bias in 1Trad. An-
other disconnect between 1Trad deviation and ET can be
seen in Southern Africa (regions F and G). Despite a gen-
eral overestimation of 1Trad by MW, the ET estimates are
very close to those of ALEXI-IR. The small difference in ET
estimates are the opposite of what would be expected from
the 1Trad deviation. Finally, the humid tropical climates of
the Guinean coast and Central Africa (regions C and D) have
very little differences in both 1Trad and ET.

To provide some additional spatial and temporal con-
text for these observations, the 3-month total MW and
TIR ET (averaged over 2003–2011) are shown in Fig. 6
for December–January–February (DJF), March–April–
May (MAM), June–July–August (JJA) and September–
October–November (SON). This shows that the cold season
overestimation of MW-based ET, seen in the European
regions, is present not only in Europe but also in eastern and
Southern Africa in SON. The underestimation of MW-based
ET in summer is not as pronounced in terms of its relative
difference. The apparent difference in timing, seen in the
Sahel and Iberian regions, shows up across the southern
border of the Sahara – MW ET is higher in MAM, and TIR
ET is higher in JJA. The spatial correlation between MW
and IR is higher in SON (96 %) and DJF (97 %) compared
to the periods MAM (83 %) and JJA (84 %). Despite these
localized differences, the transect averages are remarkably
similar showing the general success of scaling MW-LST to
TIR-LST (Sect. 2.3.3).

3.3 Inter-annual variation

Because the long-term mean of MW-LST is calibrated to
match a TIR reference (see Sect. 2.3.3), a comparison in
terms of anomalies is the real test of its performance in the
ALEXI framework, especially in areas that are water lim-
ited (see Fig. 7). Of the subsets in water-limited regions, the
Horn of Africa (ρ= 0.78) and Spain (ρ= 0.85) subsets show
a high degree of correlation between MW- and TIR-based
ET anomalies. Semi-arid Southern Africa (F) and the Sa-
hel (B) show relatively poor correlation with ρ= 0.48 and
ρ= 0.63 respectively. The size of the anomaly is much larger
for ALEXI-MW in Southern Africa in January and February,
reflecting a much larger inter-annual variation.

In energy-limited areas when ET is fully determined based
on the meteorological forcing data, the effect of LST inputs is
minimal. This is apparent in the Tropical region, where MW
and ALEXI-IR have a correlation of 0.99 in Central Africa

(region D). Figure 8 shows a map of the correlation between
3-month anomalies of MW- and IR-based ALEXI ET.

Seasonal anomalies are calculated by taking the seasonal
total ET for a given year and subtracting its corresponding
long-term mean seasonal total (2003–2011 period, as shown
in Fig. 6). Examples of this are shown for a dry year (2008)
and a wet year (2011), see Fig. 9. Overall the two sets of
anomalies agree very well – the MW ALEXI appears to iden-
tify roughly the same areas with anomalous high or low ET.
The agreement is better in the wet year than in the dry year.

3.4 Comparison with flux-tower observations

The availability of eddy-covariance observations of ET from
68 flux towers allows for a more detailed grid-level analysis
of temporal agreement. Even at the 0.05◦ (∼ 5 km) resolution
of ALEXI-IR there is a large-scale mismatch between the re-
mote sensing estimate and tower footprint. The impact of this
scale difference will depend on the degree of spatial hetero-
geneity within the larger footprint. We therefore cannot use
these flux-tower observations to quantify absolute accuracy
in either product, but instead focus on its use as a reference
target to compare relative performance between two satellite
products. To start, we compare the effect of the resolution
degradation from 0.05 to 0.25◦.

When 0.05◦ ALEXI-IR is averaged over its surrounding
0.25◦ grid (the average of the 5× 5 0.05◦ grid cells), there is
an overall improvement in ρ (but not in RMSE), see Fig. 10.
Only at three sites does this spatial degradation of the remote
sensing measurement lower its ρ with the site measurement.
The landscape heterogeneity is large at these sites (US-Ton,
US-Var and ES-Lgs). For most stations, the spatial degrada-
tion actually improves the ρ with the site. In fact, 40 % of
the difference in ρ between the MW and IR implementations
of ALEXI is explained by the change in ρ resulting from the
averaging of ALEXI-IR at 0.05◦ to 0.25◦ spatial resolution.
This indicates the presence of noise in the 0.05◦ MODIS-
LST input that is uncorrelated with the surrounding 0.25◦

grid average and negates any positive effect of its resolution
advantage compared to a 0.25◦ grid average for most sites.

The following analysis compares MW and IR both at 0.25◦

grid resolution. The metrics we focus on are ρ and RMSE
which are computed for each flux-tower site and listed in Ta-
ble 2. For ALEXI-IR, ρ is between 0.6 and 0.92 and RMSE
is 12–33 mm week−1 for the majority of the sites. The im-
pact of LST input varies from site to site (see also Fig. 11),
with some stations showing higher ρ for ALEXI-MW, but
most showing an advantage for ALEXI-IR, as expected.
Overall, the mean ρ is higher for ALEXI-IR (ρ= 0.78
vs. ρ= 0.74), even though the average RMSE comes out the
same (24 mm week−1).

It is interesting to investigate what drives the difference in
temporal correlation at individual sites. The second row in
Fig. 11 shows how the same data as presented in Fig. 11a,
but now marks the individual sites based on geographic do-
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Figure 6. As Fig. 4, but now averaged by season.
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Figure 7. Comparison of anomaly in 3-month ET totals as calculated from ALEXI-IR and ALEXI-MW for selected regions (see Fig. 3 for
definition of regions).

Figure 8. Pearson’s correlation between anomaly in 3-month ET
totals as estimated by ALEXI-IR and ALEXI-MW, calculated at
0.25◦ resolution. White areas have no data; grey areas are masked
because the standard deviation in the 3-month anomaly was below
8 mm/3 months in both estimates.

main, climate or spatial agreement. The first panel splits the
sites by geographic region. Europe and Africa (blue) is where
MW-LST was calibrated with MSG SEVIRI and the North-
American sites (green) is where MODIS ALEXI-IR has been
calibrated with GOES data (see Sect. 2). Between these two
groups of stations the relative improvement in ρ is higher
in the North-American sites. This is despite the MODIS
ALEXI-IR being calibrated with GOES data. Panel 2 sep-
arates the sites based on climate, particularly in terms of the
potential ET (PET) relative to the annual precipitation (P ).
The PET used for this classification is calculated following
Priestley and Taylor (1972) with an alpha parameter of 1.26
and zero ground heat flux. Sites with humid climates (en-
ergy limited: PET≤P ) have generally a higher ρ between
station and satellite data and show only a modest impact of
the change in LST input on ALEXI. In arid climates (water
limited: PET>P) there is more variation in performance and
correlations between the satellite estimate and tower obser-
vation are generally lower. Partly, this reflects a lower signal
to noise in areas with low overall ET, but it also reflects a
more challenging environment for ET retrievals. The advan-
tage of ALEXI-IR over ALEXI-MW is larger in these arid
climates. Further subdividing the arid locations based on in-
formation on spatial heterogeneity reveals a still larger sepa-
ration of performance (Fig. 11, Panel 3 on bottom row). Tak-
ing the absolute bias (|b|) between ALEXI-IR at the 0.05◦
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Figure 9. Anomaly in seasonal ET compared to multi-year mean (2003–2011, see Fig. 6) as retrieved by ALEXI-IR and ALEXI-MW. The
first two columns show the anomalies for 2008 and the two right-hand columns show them for 2011.

grid cell encompassing the tower site and the mean of the
0.25◦ surrounding grid box as proxy for spatial heterogene-
ity, we can see that for the sites that are both in a water-
limited region and have a high spatial bias, 11 in total, the

average ρ for ALEXI-MW (ρ= 0.55) is markedly lower than
that for ALEXI-IR (ρ= 0.65).

Six of the 68 sites have a markedly higher ρ with ALEXI-
IR than with ALEXI-MW. All but one of these sites have an
arid climate (see Table 2), and four of those stations also have
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Figure 10. The effect of spatial resolution in the satellite product on
Pearson correlation (ρ) and RMSE between weekly ET estimates
from satellite data (ALEXI-IR) and flux-tower eddy-covariance
measurements (Fluxnet). Each marker represents a single station
and compares results at the original 0.05◦ resolution of ALEXI-
IR (x axis) with those calculated for 0.25◦ resolution ALEXI-IR (y
axis).

a high spatial bias between the 0.05◦ grid box and 0.25◦ grid
box mean (|b|> 2 mm week−1):

– US-Ton and US-Var (PET/P = 2.5/1.7, b=−6.4),
woody savannas, same 0.05 box. ALEXI-IR has a
ρ= 0.80/0.5, while ALEXI-MW has a lower value of
0.56/0.09. At US-Var, the site has an abrupt collapse of
ET at the end of summer. The satellite data miss this,
especially the ALEXI-MW (0.25◦) product.

– Zambia, Savannas; ZM-Mon; water limited
(PET/P = 2.3), spatial heterogeneous (b=−2.9).

– ES-LgS, woody savannas (b= 11, PET/P = 2.8). The
MODIS has a high ρ= 0.84, while the MW has a poor
ρ= 0.62. The average comes in at ρ= 0.82. This site
is located on a mountain ridge. The smaller grid size of
ALEXI-IR is able to capture the vegetation conditions
at the mountain ridges whereas the 0.25 grid of ALEXI-
MW has more bare soil which leads to lower ET values.

The station in Sudan (SD-Dem) is the only of these six sta-
tions that is in a water-limited region (arid desert climate)
and has low spatial bias. Despite the low bias, the station ET
estimates are 2.5 times satellite estimates, so it could be that
the near-station land use is not representative of the wider
area.

The final station that shows a large advantage in ρ for
ALEXI-IR relative to ALEXI-MW is Fi-Hyy (no. 63 in Ta-
ble 2) in a cold region climate. It is also one of only two
stations with data availability at high latitude (above 60◦ N).
This station has land cover dominated by evergreen needle-
leaf forest. The bias between the 0.05 and 0.25◦ grid box
mean is also small (b=−0.6). The MW observations have
relatively many weeks with very low ET estimates compared
to the ALEXI-IR. The reason for this is not readily appar-
ent but it could be that the MW product suffers from rain

clouds that suppress temperature estimates during the morn-
ing hours around ALEXI time 1. This, in turn, leads to an
overestimated morning temperature rise.

In contrast to these sites, there are two sites where the
ALEXI-MW outperforms ALEXI-IR in terms of correlation
with in situ sites despite being in a relatively arid climate with
large spatial bias: US-SRG and US-NR1. For US-NR1, ρ is
low because the station records high values in winter time,
and the site is located in an evergreen forest east of a moun-
tain ridge, with high day-to-day variation, possibly due to
varying wind direction or shading effects. Despite this, both
satellite products pick up the seasonal cycle reasonably well,
except that they both underestimate wintertime ET.

4 Discussion and conclusion

This paper shows that a newly developed MW-LST prod-
uct can be used to effectively substitute TIR-based LST in
a two-source energy balance approach to estimate coarse-
resolution ET (∼ 25 km) from space. This particular TSEB
approach, the ALEXI model framework, is an approach that
minimizes sensitivity to absolute biases in input records of
LST through the analysis of the rate of change in morning
LST. It is therefore an important test of the ability to re-
trieve diurnal temperature information from a constellation
of satellites that provide six to eight observations of Ka-band
brightness temperature per location per day. This represents
the first ever attempt at a global implementation of ALEXI
with MW-based LST and is intended as the first step towards
providing all-weather capability to the ALEXI framework.

Because the long-term (7-year mean) diurnal features of
MW-LST are calibrated to TIR-LST, it is perhaps not sur-
prising that the long-term bulk ET estimates agree with a
spatial correlation of 92 % for total ET in the Europe–Africa
domain. A comparison with biases in the input datasets
of 1Trad shows that a large part of the remaining differ-
ences can be mitigated by specifically calibrating MW-LST
to MODIS LST. More convincing is the agreement in sea-
sonal (3-month) averages of 83–97 % because the calibra-
tion is based on time-constant parameters. The comparison
in terms of 3-month anomalies adds another layer of chal-
lenging complexity. By this test, ALEXI-MW also matches
ALEXI-IR very closely, demonstrating an ability to capture
the development and extent of drought conditions.

The two parallel ALEXI implementations are further com-
pared at the maximum temporal resolution of the current
global ALEXI output (7 days) and relative to a common
ground measured reference provided by the Fluxnet consor-
tium. The 68 stations that were available for this analysis rep-
resent a wide range of land cover characteristics and climate
conditions. Overall, they indicate a close match in both per-
formance metrics (ρ and RMSE), especially considering the
advantage of TIR-LST compared to MW-LST in these clear-
sky conditions. The most challenging conditions for MW-
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Figure 11. The effect of switching from TIR to MW-LST as input to ALEXI on Pearson correlation (ρ) and RMSE between weekly
ALEXI ET estimates and flux-tower eddy-covariance measurements (Fluxnet). Each marker represents a single station and compares results
calculated for ALEXI-MW (x axis) with those calculated for ALEXI-IR (y axis). (c)-(e) Same data as presented in (a), but now distinct
subsets of the tower sites are emphasized. (c) Sites by geographic region; (d) sites grouped by climate (humid vs. arid, see text for definition).
(e) splits the arid sites further based on bias between the ALEXI-IR (0.05◦) and the mean value for the encompassing 0.25◦ grid box with a
threshold of |b| = 2 mm week−1. The black x mark stations that are either below 60◦ N or are not covered by the two contrasting selections.

LST as input to ALEXI ET according to these sites are loca-
tions with higher aridity levels and where the larger domain
has a high spatial heterogeneity. Spatial heterogeneity places
an obvious penalty on ALEXI-MW due to the coarser MW-
LST input, even though in general ALEXI-IR improves in
terms of its correlation with the tower data when it is spa-
tially downgraded to 0.25◦ resolution. For future merging of
IR- and MW-based ALEXI into a superior combined ET es-
timate, this range in relative performance observed at these
sites needs to be accounted for.

Based on the analyses presented in this paper, we out-
line the following roadmap for an all-sky implementation
of ALEXI-MW. First of all, there is a need for global
observation-based calibration of MW-LST with MODIS LST
to reduce biases as identified at the high incidence angles
of the MSG domain and avoid the need for extrapolation
of scaling parameters. Second, MW-LST could be used to
improve the TIR cloud mask by attributing anomalous TIR-
based 1Trad to the presence of clouds, with subsequent im-
provements in ALEXI-IR ET estimates. Finally, the all-sky
implementation that is now within reach with ALEXI-MW
will test the assumptions in new ways, which will require

careful investigation. For example, the assumptions related
to the boundary layer development may be tested as we move
to include less stable conditions associated with cloudy skies.
Similarly, evaporation of intercepted rain water will feature
more prominently under cloudy skies and may require inclu-
sion as a separate process within the current physical frame-
work. With a combined MW+ IR ALEXI estimates it ap-
pears entirely feasible to reduce the current window length
for reporting MODIS ALEXI ET totals from 7 days to as
low as 2. At a window length of 2 days the average satellite
coverage would support each 2-day total with at least one ET
retrieval (see Fig. 2). This would reduce the reliance on tem-
poral downscaling and its associated assumptions and impact
on estimation error. More independent estimates of ET would
allow for more robust statistical analysis in the context of
land–atmosphere exchange studies, even if the record length
is not extended. Perhaps most importantly, a shorter reporting
interval would also allow for earlier detection of agricultural
drought as reflected in the ET-based drought indices (Ander-
son et al., 2011).
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