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Abstract. In seasonal flow forecasting applications, one fac-
tor which can help predictability is a significant hydrolog-
ical response time between rainfall and flows. On account
of storage influences, large lakes therefore provide a useful
test case although, due to the spatial scales involved, there
are a number of modelling challenges related to data avail-
ability and understanding the individual components in the
water balance. Here some possible model structures are in-
vestigated using a range of stochastic regression and trans-
fer function techniques with additional insights gained from
simple analytical approximations. The methods were evalu-
ated using records for two of the largest lakes in the world –
Lake Malawi and Lake Victoria – with forecast skill demon-
strated several months ahead using water balance models for-
mulated in terms of net inflows. In both cases slight improve-
ments were obtained for lead times up to 4–5 months from
including climate indices in the data assimilation component.
The paper concludes with a discussion of the relevance of the
results to operational flow forecasting systems for other large
lakes.

1 Introduction

One of the challenges in seasonal flow forecasting is that the
lead times of interest often far exceed the hydrological re-
sponse time of catchments. This means that traditional ap-
proaches to data assimilation are often less effective due to
the decay in information content on these longer timescales.

However, the potential for deriving operationally useful
forecasts improves if there are significant storage influences.
Perhaps the greatest success to date has been in snowmelt
forecasting for basins with a significant winter snowpack and

typically this has been based on statistical techniques or sam-
pling of historic records for input to hydrological models;
for example using an ensemble streamflow prediction ap-
proach (Day, 1985; Wood and Schaake, 2008). These tech-
niques have also been applied more widely and other more
recent developments include the use of seasonal rainfall fore-
casts, climate indices and ensemble Kalman filter approaches
(e.g. Crochemore et al., 2017; Candogan Yossef et al., 2017;
Huang et al., 2017). However, a common finding is that fore-
cast skill may arise as much from the representation of an-
tecedent conditions as from the meteorological inputs, with
the balance depending on factors such as lead times and sea-
son, as well as location (e.g. Robertson and Wang, 2012;
Greull et al., 2016; Mendoza et al., 2017).

Another situation where storage influences are important
is for large lakes, and potential seasonal forecasting applica-
tions include assisting with water supply, irrigation and hy-
dropower operations for individual lakes, and for water re-
sources monitoring on a regional or global scale. However,
some potential modelling challenges are that lake catchment
areas may span several climate zones and that monitoring
networks are often sparse. Also, with the exception of lake
levels and outflows, the main components in the water bal-
ance – lake rainfall, tributary inflows and lake evaporation –
are often difficult to measure or estimate. In some cases there
may also be significant differences between lake and catch-
ment rainfall due to influences on local climate.

For large lakes, perhaps the longest-established opera-
tional systems for seasonal forecasting of lake levels are for
the Great Lakes in the USA and Canada. Both empirical tech-
niques and physically based hydrological models are used
driven by long-range climate outlooks for precipitation and
air temperatures with, more recently, incorporation of ensem-
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ble outputs from regional climate models (Gronewold et al.,
2011; Bollinger et al., 2017). On a smaller scale, of course,
water balance models for reservoirs and regulated lakes of-
ten form part of regional water supply models typically using
statistical techniques or ensemble streamflow prediction ap-
proaches (Yeh, 1985; Pagano et al., 2009). The potential for
seasonal forecasting using statistical models has also been
explored for the rivers downstream of two of the largest
lakes in Africa – Lake Malawi (Jury, 2014) and Lake Vic-
toria (Siam and Eltahir, 2015) – and, over longer time scales,
Mulumpwa et al. (2017) derived probabilistic estimates for
future levels of Lake Malawi using a univariate stochastic
model.

Here we describe exploratory studies into forecasting po-
tential for large lakes using an alternative approach. Follow-
ing a brief review of the dynamic characteristics of lake re-
sponse, both stochastic dynamic regression and transfer func-
tion approaches are used to explore the relationships between
a range of potential predictors and lake levels and outflows.
This general approach has been widely applied to real-time
flood forecasting applications (e.g. Lees, 2000; Smith et al.,
2014) and, in addition to the ease with which options can be
explored, a key advantage is that few prior assumptions are
required about the nature of those relationships (e.g. Beven,
2009; Young, 2013).

The methods are evaluated using case studies for Lake
Victoria and Lake Malawi including the potential benefits
of data assimilation in reducing the impacts of measurement
and modelling uncertainties. As in the studies by Jury (2014)
and Siam and Eltahir (2015) the use of climate indices is
considered since both the El Niño Southern Oscillation and
Indian Ocean Dipole are thought to have a significant in-
fluence on rainfall in east and southern Africa (e.g. Saji et
al., 1999; Nicholson and Selato, 2000; Jury and Gwazan-
tini, 2002; Manatsa et al., 2011). Since the main aim was to
provide insights into possible model structures, the analyses
were based primarily on historical datasets derived as part
of previous water balance studies as this allowed a more de-
tailed investigation of lake response than would be possible
using contemporary datasets. By chance the periods covered
included some of the most significant flood and drought pe-
riods on record allowing model performance to be evaluated
under these more extreme conditions. The discussion con-
cludes with some suggestions for how the findings could be
translated into operational forecasting models.

2 Methodology

2.1 General approach

The water balance for a lake can typically be expressed as
the following:

dh
dt
=N (t)−

Qo(t)

A(t)
, (1)

where h is the lake level, t is time, Qo is the outflow and
A the surface area. The term N is the net inflow, expressed
as a volumetric flux per unit area of lake surface, which is
sometimes called the net basin supply or “freewater” and,
for a given time interval, is defined as

N = P −E+
Qc

A
= 1h+

Qo

A
, (2)

where P is the rainfall on the lake surface, E the lake evap-
oration andQc is the inflow from the surrounding catchment
area, again expressed in terms of unit lake surface area. All
terms are averages for the selected time interval. An error
term is often included to account for additional terms which
normally cannot easily be quantified such as seepage and
groundwater inflows at the lake bed, although for simplicity
this has been omitted here.

Based on the idealised equations for fluid flow over a weir,
the natural outflow from a lake is often expressed in the fol-
lowing form:

Qo = ah
b, (3)

where a and b are empirically derived constants and it is as-
sumed that h is defined relative to a datum value for which
outflows are zero. For a rectangular weir, the theoretical es-
timate for b is 1.5 and in practice values can be estimated
either directly from lake levels and discharge measurements
or using more approximate techniques (e.g. Skaugen, 2004).
Furthermore if, as is often the case, the lake area can be as-
sumed to be constant (A(t)= Ao), Eq. (1) then reduces to

dh
dt
=N (t)−

a hb (t)

Ao
. (4)

Some useful insights can be gained by exploring the response
for a constant net inflow No > 0 and integer values of b, and
for the present study, as discussed later, the case b = 2 is rel-
evant in which case the solution to Eq. (4) can be expressed
as

h= ho
(1+ ce−t/τ )
(1− ce−t/τ )

, (5)

where τ is a time constant defined by τ = 1
2

√
Ao
a No

, c =
h1−ho
h1+ho

, h1 is the initial level and ho = 2Noτ is the equi-
librium level (e.g. Sene, 2000). During periods of constant
net inflow, lake levels therefore tend towards an equilibrium
value over timescales which are a function of the net in-
flow itself, the area of the lake, and the outflow relationship.
In contrast, during periods of heavy rainfall, a more rapid
response would be expected with levels rising over much
shorter timescales.

Generally the relationship between catchment rainfall and
runoff is non-linear and affected by catchment antecedent
conditions. However, for ungauged catchments it is often
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found that, on an annual basis, and sometimes a monthly
basis, empirical regression relationships can be derived be-
tween flow-related parameters of interest and catchment
characteristics such as the area and slope (e.g. Smakhtin,
2001). Perhaps the simplest of all such approaches is to as-
sume a mean runoff coefficient r =Qc/(AcPc) in which case
the net inflow is given by

N = P + k Pc−E , (6)

where Pc is the catchment rainfall, Ac is the catchment area
and k = r(Ac/Ao).

Equations (5) and (6) together provide a useful – albeit
very crude – framework for considering the lake response.
That is, during periods of constant net inflow, it might be as-
sumed that the lake outflow is related to the net inflow by a
non-linear relationship with a typical response timescale τ .
Furthermore if – as is often the case – the variability in evap-
oration is much less than that in rainfall, then the variations in
net inflow might be considered to be primarily a function of
the lake rainfall and catchment rainfall. The extent to which
these relationships are valid (or not) is explored later.

For the more general case of time-varying net inflows,
Eq. (4) can be solved numerically, with the observed lev-
els at the start of each forecast providing initial conditions.
For the current exploratory studies a simple iterative solution
proved to be sufficient although more computationally effi-
cient solutions could be envisaged. Regarding the estimates
for net inflows, one option would be to seek a process-based
model based on lake rainfall, tributary inflows and lake evap-
oration estimates. However, due to the difficulties in estimat-
ing these components, and the possible interdependence be-
tween them, it is often more practicable to estimate the net
inflows from the lake level and outflow terms in the water
balance, as indicated by the right hand side of Eq. (2). This is
because levels can usually be measured with little difficulty
and outflows are often monitored closely, particularly when
a lake is important for hydropower generation and/or water
supply, as with the present examples.

This approach also has the advantage of avoiding some of
the complexities of understanding the water balance but does
require a forecasting model for net inflows and a statistical
approach provides one option; for example using the follow-
ing autoregressive (AR) formulation:

yt =−r1 (t)yt−1− r2 (t)yt−2. . .− rn (t)yt−n+ et, (7)

where yt is the dependent variable, ri are the model coeffi-
cients, which can be time varying if required, n is the maxi-
mum lag time considered and et is a stochastic noise term.
Alternatively if, as might be expected, external influences
such as the lake rainfall are important, then the following
linear regression formulation might be considered:

yt = s1 (t)u1 + s2 (t)u2+ . . .sm (t)um+ et , (8)

where si are the model coefficients and ui are the external
input values, such as rainfall or climate indices, lagged by

1, . . ., m time steps. In contrast the following transfer func-
tion formulation allows both serial dependence and external
variables to be considered together with a pure time delay δ
if required:

yt =
B
(
z−1)

A
(
z−1

)ut−δ + D
(
z−1)

C
(
z−1

) et , (9)

where z−1 is the backward shift operator (z−iyt = yt−i). The
second term represents the residuals of the transfer function
input-output model via polynomials C and D and, although
not used for the net inflow component, an autoregressive
moving average (ARMA) model of this form (e.g. Box and
Jenkins, 1970) was used in the data assimilation component
described later. Here a single external input is considered but
as discussed later the formulation is easily extended to mul-
tiple inputs.

The transfer function and data assimilation aspects of the
models were implemented using the recursive estimation
techniques available as part of the CAPTAIN Toolbox, which
was developed by Lancaster Environment Centre for opera-
tion within the Matlab® programming environment. These
are described in Young et al. (2007) and Young (2011) but
in essence provide a range of routines for estimating model
parameters and outputs. The stochastic solution techniques
used inherently provide recursive estimates of parameters
and uncertainty, including how both of these vary over time,
as opposed to the simple estimation of posterior means and
variances that many other techniques provide.

2.2 Case studies

The two lakes considered were Lake Victoria and Lake
Malawi, which respectively are the first and third largest in
Africa and lie within the East African Rift, which contains a
number of other large lakes with both open (with outflows)
and closed basins.

On a regional scale, both are economically important since
the outflows are harnessed for hydropower generation and to
support large-scale irrigation schemes further downstream on
the White Nile and Shire rivers. More locally the livelihoods
of millions of people are supported through fisheries, water
supply and agriculture. To provide an indication of scale, the
combined catchment and water surface area for Lake Victo-
ria exceeds that of countries such as Uganda and Rwanda,
whilst the area of Lake Malawi and its catchment is larger
than Malawi itself.

For Lake Victoria the lake outlet is just north of the equator
and the southernmost part of the catchment is at about 3◦ S,
whilst Lake Malawi extends from about 14◦ S at the outlet to
9◦ S in the northernmost part of the catchment. The catch-
ment for Lake Victoria lies mainly in Rwanda, Tanzania,
Kenya and Uganda, whilst that for Lake Malawi is mainly
in Malawi and Tanzania. There are also small contributing
areas in the Democratic Republic of Congo (for Lake Victo-
ria) and Mozambique (for Lake Malawi).
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At their closest points, the catchments lie about 500 km
apart; however, they experience markedly different climates
in part due to the annual passage of the Intertropical Con-
vergence Zone (ITCZ). For Lake Victoria, which lies fairly
centrally within the zone’s range, there are two main rain-
fall seasons and these are typically between March and May
and October and December. In contrast, Lake Malawi lies
towards the southernmost end of the range resulting in a sin-
gle main rainfall season from November to April or May in
much of the basin, although with some evidence of a tempo-
rary reduction in rainfall intensity part way through the sea-
son (Nicholson et al., 2014). The predominant climate clas-
sifications (Peel et al., 2007) for the lake catchment areas
are tropical savannah for Lake Victoria and temperate (dry
winters, hot summers) for Lake Malawi, with regions of arid
savannah and arid steppe in the south.

Due to topographic influences, there are wide variations in
annual rainfall within each basin; both lakes are also large
enough for the difference between lake water surface tem-
peratures and the surrounding land to affect the local at-
mospheric circulation and hence precipitation and evapora-
tion. For example WMO (1983) notes that for Lake Malawi
breezes tend to be offshore in the early morning then onshore
in the afternoon, leading to “a preferential tendency for rain-
fall on the lake to occur in the early morning rather than the
late afternoon”. UNDP (1986) also notes a wind-funnelling
affect in the north-western part of the lake due to local topog-
raphy, which can result in annual rainfall exceeding 3000 mm
in this area, in contrast to the plateau areas to the west of the
lake where values are typically only 700–1000 mm. The lo-
cal impacts are even more pronounced for Lake Victoria and
have been the subject of several investigations, including the
use of mesoscale models to study the influences on atmo-
spheric circulation both locally (Sun et al., 2015) and region-
ally (Thiery et al., 2015). Lake inflows generally follow these
seasonal trends, although it is worth noting that some of the
lake tributaries are ephemeral with flows generally ceasing
towards the end of the dry season, particularly in drier parts
of the basins.

For both lakes, regular recording of lake levels began in the
1890s and some catchment rain gauge observations date back
to the period 1900–1910 for Lake Victoria and the 1920s for
Lake Malawi. For Lake Victoria monitoring of outflows be-
gan in about 1940, whilst for Lake Malawi the first observa-
tions began in 1948. Lake outflows have also been regulated
for hydropower production from 1953 in the case of Lake
Victoria and 1965 for Lake Malawi. However, the scheme
designs are very different due to the nature of the topography
and river channels at the outlet of each lake and some key
features include the following:

– Lake Victoria – the lake outlet used to be at a spectacular
natural waterfall until Owen Falls Dam was built about
3 km further downstream, drowning out the falls; hy-

dropower generation and the lake outflow are now con-
trolled at the dam.

– Lake Malawi – outflows are controlled at Kamuzu Bar-
rage more than 80 km downstream from the lake outlet,
which is possible since the change in elevation is only a
few metres between the lake and the barrage. The main
hydropower plants are in natural gorges downstream of
the barrage.

However, an important point is that the operating rules for
both schemes were, to a large extent, designed to mimic the
response of the natural lake, and these are often represented
in the form shown in Eq. (3), with values of b close to 2
(e.g. Drayton, 1984; Piper et al., 1986). Due to operational
requirements, though, there are sometimes minor departures
from these rules so a separate outflow record – termed the
“natural flows” here – was derived in which flows were
only retained when similar to those expected from the level–
outflow relationships described by Eq. (3). For the Lake Vic-
toria studies, the periods omitted only amounted to a small
part of the record (which predates more recent departures)
but this occurred slightly more frequently in the case of Lake
Malawi, primarily in the later years of the records. During
these times there is also an effect on levels although this is
much less significant due to the non-linear nature of the out-
flow relationships.

Table 1 summarises some key characteristics of the long-
term water balance for each lake based on previously pub-
lished estimates. However, whilst these values are typical, it
is worth noting that they can vary significantly between stud-
ies depending on the datasets, periods selected and estima-
tion techniques used. Regarding surface areas, estimates also
vary although generally the changes with levels are small,
for Lake Victoria amounting to about 2 % over the histori-
cal range of observed levels (e.g. Piper et al., 1986) and for
Lake Malawi by less than 1 % per metre rise or fall (Lyons et
al., 2011). Areas were therefore assumed constant for these
exploratory analyses, although these variations might be in-
cluded in a more detailed approach.

As noted earlier, historical datasets were used and here it
is worth noting two landmark hydrometeorological studies in
the 1970s and early 1980s (e.g. WMO, 1982, 1983). The de-
rived values formed the basis for a number of later studies in
which new records and information were added using a wide
variety of approaches; see for example Piper et al. (1986),
Sene and Plinston (1994), Sutcliffe and Parks (1999), Nichol-
son et al. (2000) and Kizza et al. (2012, 2013) for studies on
Lake Victoria, plus the citations therein, and Drayton (1984),
Neuland (1984), Jury and Gwazantini (2002) and Sene et
al. (2017) for Lake Malawi. The original papers should be
referred to for a discussion of the methods and datasets used
but, in many cases, the overall approach was similar: namely
to reconstruct the rainfall, inflow and evaporation terms from
gauges situated around each lake, and in some cases on is-
lands within the lake. In some studies, rainfall–runoff or sta-
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Table 1. Some key physical characteristics of Lake Victoria and
Lake Malawi from various sources including Piper et al. (1986),
Sutcliffe and Parks (1999) and Sene et al. (2017). All values indica-
tive only.

Key parameters Lake Victoria Lake Malawi
(1956–1978) (1954–1980)

Surface area (km2) 67 000 28 750
Catchment area (km2) 194 000 95 750
Lake rainfall (mm) 1878 1414
Catchment rainfall (mm yr−1) – 1178
Catchment runoff (mm yr−1) 343 1000
Lake evaporation (mm yr−1) 1595 2264
Lake outflow (mm yr−1) 524 418

tistical models were also used to infill or extend tributary in-
flow records and – in nearly all cases – the analyses were
performed on a monthly basis.

A key factor in choosing which records to use here was
how well the resulting models described the overall water
balance since this provides some confidence in the suitabil-
ity of the individual components; although, as discussed later,
over such huge areas estimates can only ever be approximate.
Several of the studies cited met this criterion and, primarily
on the basis of data availability and completeness, the fol-
lowing estimates were selected:

– Lake Victoria – monthly estimates from 1925–1978 re-
ported by Piper et al. (1986) and subsequently updated
by the Institute of Hydrology (1993) to the period 1925–
1990 for lake rainfall (6–8 shoreline rain gauges), catch-
ment rainfall (25–30 rain gauges) and tributary inflows
(up to 20 river gauges) and for 1925–1992 for levels and
outflows.

– Lake Malawi – monthly estimates for the pe-
riod November 1954 to October 1980 reported by
WMO (1983) for lake rainfall (16 shoreline rain gauges;
1 island gauge), catchment rainfall (53 rain gauges) and
tributary inflows (about 21 river gauges), and for which
aspects of the water balance appear in a number of the
studies cited here, such as Drayton (1984) and Neu-
land (1984).

The numbers in brackets indicate the approximate numbers
of gauges used to derive each component in the water bal-
ance in these studies, with ranges provided in some cases
due to differing numbers of gauges in different periods. In
the Lake Victoria studies, rainfall–runoff models were also
used to estimate inflows for ungauged catchments and to
help infill missing values, whilst for Lake Malawi, scaling
and correlation approaches were used. For the present study,
longer-term annual level records were also compiled for both
lakes from these various sources dating back to the 1890s
and overall catchment rainfall estimates derived from indi-

vidual catchment values using a simple area-weighting ap-
proach. Regarding climate indices the following values were
used: the Southern Oscillation Index (SOI; Trenberth, 1984),
Niño3.4 (NINO34; Trenberth, 1997) and the Dipole Mode
Index (DMI; JAMSTEC).

For the Lake Malawi records, it is worth noting that some-
times a small correction term is included to account for in-
flows and losses between the lake outlet and Kamuzu Bar-
rage; however. the impacts are small when considered on
a monthly basis and, as it is here, this term is often omit-
ted. As indicated above, values are for a hydrological year of
November to October but, to help comparisons with the Lake
Victoria analyses, when describing results the predominant
calendar year is cited; for example “1970” refers to the hy-
drological year 1969/70. For the Lake Victoria datasets that
were used another point to note is that, to help to account for
the increased rainfall over the lake surface, the lake rainfall
estimates based on rain gauge observations were increased
using linear scaling factors; this was to preserve an overall
water balance between the start and end points of the simu-
lation period, although with no constraints on the variability
in the intervening years.

As the many citations above indicate, much has been writ-
ten about the accuracy of the various gauge records available
and the derived water balance components, together with is-
sues such as how rainfall measured at the shoreline relates
to average rainfall at the lake surface. For these exploratory
studies, to facilitate comparisons, unless otherwise stated val-
ues for levels and other parameters were generally expressed
in standardised form, based on the departure from the mean
divided by the standard deviation in each time period of inter-
est. This also helped to reduce the uncertainties in the results
by focussing on the underlying signals rather than being con-
cerned about absolute amounts, such as the estimates for lake
rainfall. In forecasting applications, another consideration is
that real-time observations can be used to adjust forecasts
to help to account for modelling and observation errors and
the potential value of this process, called data assimilation or
adaptive modelling, is discussed later.

3 Results

3.1 Initial exploratory studies

Figure 1 shows some notable events in the recorded histories
for both lakes. These include high levels in the late 1970s and
late 1990s and – for Lake Victoria – the most extreme levels
on record in the early 1960s and a prolonged period of low
levels from the 1920s to the 1950s.

In contrast, for Lake Malawi, levels were unusually low
up to the 1930s and several studies (e.g. Drayton et al., 1984)
have suggested that this was due to a sand barrier forming
at the lake outlet or in the channel(s) downstream around
1908–1915, following which levels then rose progressively
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until the blockage(s) cleared during that decade. However,
this event falls outside the period considered here and – with
the exception of the minor impacts from hydropower opera-
tions noted earlier – for both lakes variations in levels were
therefore due primarily to climate influences. In particular
the 1961/62 event for Lake Victoria has previously been in-
vestigated in detail with some evidence of a regional shift in
climate at that time (e.g. Sutcliffe and Parks, 1999; Nicholson
and Selato, 2000).

Another notable feature of the observed levels is the appar-
ent persistence during times of falling levels and the analyti-
cal form of the water balance (Eq. 5) provides some insights
into the response during these periods with, as indicated ear-
lier, the use of a constant area and a value of b = 2 being
reasonable approximations.

Figure 2 illustrates this response for Lake Malawi for the
case of a sudden change in levels, such as might occur fol-
lowing a few weeks of heavy rainfall or recovery following a
prolonged dry spell, and similar response curves have pre-
viously been published for Lake Victoria (e.g. Institute of
Hydrology, 1993) and – using numerical simulations – for
Lake Malawi (WMO, 1983; Neuland, 1984). In both cases,
based on typical long-term mean values for the net inflows,
the estimated time constants from Eq. (5) were in the range
of 4–5 years, which may just be coincidence or is perhaps re-
flective of the balance between net inflows, areas and outflow
characteristics required for a lake in this region to have a per-
manent outflow; this is a speculative point which might be
worth further investigation since there are several other large
lakes in the African Rift Valley.

More generally these results suggest that, in addition to
monthly variations, there are longer-term aspects to the lake
response related to both climate variations and the inherent
time delays in response. From a forecasting perspective these
can potentially be exploited and, to explore these relation-
ships further, both time series and correlation plots were pre-
pared on a monthly basis, in the latter case for a range of
assumed lag times. Figure 3 shows one such example, for the
case of the Lake Victoria datasets with zero assumed time
delay between inputs and outputs. For net inflows, for both
lakes, the strongest relationships were with the lake rainfall
and catchment rainfall. Here the full records were considered
and cross correlation coefficients were in the range 0.82–0.95
at zero time delay and about 0.5–0.8 at a lag time of 1 month
for the Lake Victoria and Lake Malawi records respectively,
whilst for tributary inflows the relationships were generally
weaker than this. The serial dependence in values was also
investigated for some records and typically the autocorrela-
tion coefficients in net inflows were highest for a lag time of
1 month (0.4–0.7 for the two lakes), roughly halving for a
lag time of 2 months and continuing to reduce at longer lag
times.

Regarding climate indices, for both lake records the rela-
tionships between net inflow and the El Niño related indices
were only borderline statistically significant, with the largest

values for lag times of a few months. In contrast the max-
imum coefficients for DMI were about 0.2 for lag times of
2–4 months. Further investigation showed that for the Lake
Victoria records, but not for Lake Malawi, this linkage was
markedly higher for the second half of each year – and hence
the second rainfall season – reaching values of about 0.27
at lag times of 2–3 months. Interestingly, when compared
on a time series basis, in some periods the correspondence
was unexpectedly close; for example during the 1961–1964
event in Lake Victoria the initial peak in net inflows in 1961
was preceded by a rise in DMI a few months before, with
similar but smaller rises in advance of peak values for the
next 3 years. However, this is just a tentative conclusion and
would require further investigation if that event is of particu-
lar interest.

3.2 Net inflow forecasting

Taken together, these initial studies suggested that the fol-
lowing characteristics would provide a useful starting point
for developing a model of the net inflows for both lakes:

– Serial correlation – a dependence on values for the past
1–2 months but probably not much beyond that

– Primary external factors – a dependence on current val-
ues for lake rainfall and catchment rainfall and possibly
for the previous month

– Secondary external factors – inclusion of the DMI and
possibly one or both of the indices related to the El
Niño–Southern Oscillation (ENSO), at lag times of up
to several months

The calibration periods used for model development were
1925–1954 for Lake Victoria and 1954–1970 for Lake
Malawi, and these were chosen so that the high levels of
the 1960s for Lake Victoria and for the 1970s for both lakes
would fall within the validation periods, which were 1955–
1990 and 1971–1980 respectively. As noted earlier, standard-
ised values were used throughout at a monthly time step.

Considering the autocorrelation aspects first (Eq. 7), for
the calibration period for the Lake Victoria net inflow record,
using a simple autoregressive model the highest values
achieved for R2 were about 0.3 with a second order model.
The corresponding value for the Lake Malawi record was
rather better at about 0.6, again for a second order model.

Regarding external inputs (Eq. 8), several permutations
were considered focussing on the use of rainfall inputs and
climate indices. In terms of the R2 performance, the differ-
ences between these various regression models were gener-
ally not large, with values typically in the range 0.81–0.94
for both lakes when using time varying parameters. However,
based on the simple representation for net inflows shown in
Eq. (6), the value of k was similar for both lakes suggesting
that a weighted average of these two inputs might also be
worth exploring, but the performance was only marginally
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Figure 1. Annual lake level variations in Lake Victoria and Lake Malawi from 1900 to 2004 relative to the mean values in that period; values
are expressed in terms of indicative depths at the lake outlet. The inset shows the locations of (1) Lake Victoria and (2) Lake Malawi.

Figure 2. Examples of the response in levels for Lake Malawi from
initial values equal to 0.6, 0.8, 1.2 and 1.4 times the long-term equi-
librium values.

better than when using lake rainfall alone. The influence of
climate indices was also small (about 0.01–0.02 in terms of
R2) due to the dominance of the rainfall terms so these were
included in the data assimilation components of the models
as described later.

On this basis, the decision was taken to use the lake rainfall
as the only external input since – as discussed later – this
would have some advantages in an operational setting. For
the Lake Malawi records, best results were obtained using
the latest observed lake rainfall alone, whilst – in the case
of Lake Victoria – including the previous month’s rainfall as
well seemed worthwhile. Hence for the Lake Victoria records
the expectation was that a [2 2 0] model structure might be

appropriate, with a [1 1 0] structure for Lake Malawi, where
the notation [n m δ] refers to the parameters in Eqs. (7) to (9).

A search of all permutations in the range [1 1 0] to [3
3 3] showed these to be in the top few options in terms of
R2 plus a range of other indicators, such as the information
criterion described by Young (2011). A recursive estimation
of parameter values also showed that these were reasonably
stable over time and fixed parameter versions gave similar
values of R2: that is about 0.8 and 0.92 for the Lake Victo-
ria and Malawi records respectively. Fixed parameters were
therefore assumed for the forecasting runs described later and
Fig. 4 shows one such example for Lake Victoria for part of
the validation period. For the Lake Malawi record the val-
idation performance was similar to that during the calibra-
tion period but slightly reduced for the Lake Victoria record.
This is perhaps due to the suspected shifts in climate after the
1961 event and, from graphical comparisons, the decrease
seemed to be mainly due to slight differences in timing for
some years, rather than in magnitudes, as discussed further
in the next section.

The estimated confidence intervals are also shown and
generally encompassed both the high and low inflow obser-
vations, providing some reassurance that the main features of
the response are being captured despite the simplifications of
fixed parameter values and using lake rainfall values alone
rather than a more complex approach. However, at this stage
no noise term was included since it proved to be more con-
venient to include this as part of the data assimilation com-
ponent.
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Figure 3. Example of a correlation plot for the standardised monthly records for Lake Victoria (1925–1990) assuming zero lag time between
values (Catch= catchment).

Figure 4. Example of standardised net inflow estimates from a
transfer function model for Lake Victoria net inflows for part of the
validation period, with fixed parameter values; observations appear
as dots and the shading corresponds to twice the model standard
error, which is approximately equivalent to the 95 % confidence in-
terval. Note that, due to sampling uncertainties, the number of val-
ues within or outside the intervals varies depends on the period(s)
chosen.

3.3 Forecast performance

Having developed models for the net inflows, these were ex-
pressed in recursive form for input to the water balance equa-
tion (Eq. 4). This formulation mimics how the models would
be used in an operational setting in which the water balance
would be solved numerically each month to derive forecasts
for lake levels and outflows for the months ahead based on

rainfall observations available up to the time of the forecast.
To further extend forecast lead times, rainfall forecasts would
ideally also be required but, for these exploratory studies, it
was sufficient to use climatological estimates instead, based
on the mean monthly distributions of rainfall in the calibra-
tion period. However, to provide an indication of forecast po-
tential, the performance was also estimated assuming perfect
foresight of rainfall: that is, using historical observed values
beyond the forecast origin. In both cases, the first 2 years of
records were ignored to allow for initialisation of the auto-
correlation aspects of the models.

Figure 5 shows the estimated variations in R2 with lead
time for the validation periods for both lakes, derived by ad-
vancing the forecast origin by 1 month between each model
run and then retrospectively estimating overall values at the
required lead times. The differences between values for lev-
els and outflows are primarily due to the gaps in the derived
natural outflow record discussed earlier. As expected, per-
formance decreases with increasing lead times; for example,
for lake level estimates falling to about 0.8 after 7 months
and 0.9 after about 3–4 months. However, for the Lake Vic-
toria record, due to the rapid increase in levels in the early
1960s, this probably overstates the performance so the val-
ues of about 0.7–0.8 at 3–4 months and 0.4–0.6 at 7 months
obtained for later years and the calibration period are more
typical. This is simply an artefact of this type of performance
measure since using mean values as a reference becomes less
informative if a time series is non-stationary, such as exhibit-
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ing trends over time and/or quasi-step changes in values as
here.

The figures also show the performance for lake levels as-
suming perfect foresight of rainfall, from which a specula-
tive conclusion might be that, since many seasonal rainfall
forecast products tend towards a climatological estimate at
long lead times, the values for the control run or ensem-
ble mean might therefore asymptotically tend to those esti-
mates at longer lead times. If correct, then the differences be-
tween the climatological and perfect foresight values provide
a rough indication of the potential performance gain from us-
ing seasonal rainfall forecasts, with the remaining improve-
ments to be achieved from reducing uncertainties in the mod-
els and underlying datasets.

These results of course only give one view of performance
and given the findings from previous climate studies for these
lakes, and the cross correlation estimates from the present
study, one possibility is that the errors in model outputs might
to some extent be explained by longer-term variations in cli-
mate. From the point of view of developing data assimilation
routines, this is a more attractive option than simply devel-
oping a statistical model for the residuals since there is then
some underlying physical interpretation.

To test this hypothesis, regression models were developed
between the residuals of the forecast outputs and the climate
indices described earlier, using DMI and NINO34 as exam-
ples; similar conclusions were reached using SOI. Both sin-
gle and multiple regression models were evaluated in time-
varying and fixed parameter forms considering a range of
possible lag times and forecast lead times. For example, for
the Lake Malawi records, for the 4 month ahead forecasts,
the maximum cross correlation coefficients with DMI were
obtained for lag times of about 3–5 months, and at slightly
longer lag times of 6–9 months for NINO34 and SOI, al-
though the signs differed depending on the index chosen.
The magnitudes of the coefficients were about 0.42 and 0.28
for DMI and NINO34 in the calibration period, and slightly
lower for SOI. For the Lake Victoria record, it seemed useful
to consider slightly longer lead times and, for the 6 month
ahead forecasts, optimum lag times were about 6–7 months
for DMI and 5–6 months for NINO34, with correlation coef-
ficients of about 0.28 and 0.41 respectively, and again slightly
less for SOI. As might be expected, these relationships were
generally weaker when considering perfect foresight since
these influences may already be embedded in the observed
data to some extent.

Based on these results, and exploratory studies using sin-
gle regression models, multiple regression models for lag
times of 7 and 5 months for DMI and NINO34 were as-
sumed for the Lake Victoria record and values of 4 and
7 months for the Lake Malawi record. In both cases, the
models with time-varying parameters exhibited slightly bet-
ter performance than their fixed parameter counterparts, with
R2 values of about 0.39 and 0.19 respectively for the Lake

Victoria regression model and 0.44 and 0.27 for the Lake
Malawi model, when using both indices together.

However, the use of R2 only provides one view of per-
formance and, as already noted, has some limitations. Also,
lake levels are strongly seasonal and there might therefore
be a case to use alternative benchmarks such as seasonally
based values or metrics which incorporate lag times or mov-
ing averages as proposed by Schaefli and Gupta (2007). In-
deed there are many possible measures which could be used
(e.g. Jolliffe and Stephenson, 2011; Wilks, 2011) and this is a
topic that would merit further research. For these exploratory
studies, though, a simpler approach was adopted which was
to focus on the errors in annual peak levels since these tend
to occur around the same time each year and are more chal-
lenging to forecast than annual minima.

For the purpose of this exercise alone, separate relation-
ships were also calibrated for the validation period to further
explore the strength of these relationships. Figure 6 shows
some example results for the fixed parameter case for the
5 month ahead forecasts of peak annual levels for the Lake
Victoria record, and 4 month ahead values for Lake Malawi.
The results suggest that in many – although not all – years
the adjusted forecasts for maximum levels are closer to those
which were subsequently observed, potentially providing a
useful gain in forecast performance.

The main exception, however, was for the Lake Victo-
ria record in the validation period (1955–1990) for which
– although negative forecast errors were consistently im-
proved – positive errors were not. Interestingly, the relation-
ship with DMI in that period was also slightly stronger but
that with NINO34 no longer significant (< 0.1), which is pos-
sibly again further evidence of a shift in rainfall response.
However, for both records, further investigation would be re-
quired into the optimum approach to use; for example, ex-
ploring the influence of timing errors on model performance
and whether time varying parameters could be used to help
represent longer-term trends and other variations.

Given these uncertainties, rather than applying these ad-
justments first to re-estimate the residuals, the original series
were analysed further. Due to lake storage and climate in-
fluences, as might be expected the values showed some se-
rial correlation over periods of months superimposed upon
longer term variations. However, exploratory studies using
an ARMA approach for the residuals – with forecasts im-
plemented via a Kalman filter – provided mixed results. For
example, for the Lake Malawi records, using the same lead
time as in Fig. 6 (4 months) and climatological inputs, the
forecasts for peak annual levels were only improved in a few
years, and even degraded in some cases. As is common with
error prediction routines, the issue here seemed to be partly
due to timing differences in the residuals, although this prob-
lem seemed to be reduced to some extent when assuming
perfect foresight of rainfall, again suggesting that reducing
timing errors at the outset may assist with performance.
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Figure 5. Variations in R2 with lead time for levels and outflows for (a) Lake Victoria and (b) Lake Malawi using climatological rainfall
inputs for the validation periods and – for levels – perfect foresight of rainfall.

Various permutations of model orders and lead times were
explored and Fig. 7 shows some examples using the same
structures for each lake record, namely AR(6) and MA(5)
when using climatological inputs and AR(3) and MA(2) for
perfect foresight inputs. The lead times used were 2 months
for the Lake Victoria record and 4 and 2 months respec-
tively for the Lake Malawi record. Again, for illustration,
the results for the full record lengths are shown although the
ARMA models were calibrated just for the calibration peri-
ods.

For the case of perfect foresight, some improvement was
obtained in most years for the Lake Malawi record, with re-

sults more mixed for the climatological estimates, whilst the
performance was similar in both cases for the Lake Victoria
record, albeit using a shorter lead time for the climatologi-
cal estimates. More generally, for these examples, it seemed
as if the effect of these adjustments tails off significantly at
lead times of more than about 2–3 months for the Lake Vic-
toria records and 3–4 months for the Lake Malawi records.
To improve the results, one option might be to optimise the
model orders separately for each lake record, perhaps using
a two stage approach in which the climate index adjustments
are made first. Depending on the application, additional per-
formance measures might also be considered to better un-
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Figure 6. Illustration of the effect of including fixed parameter re-
gression relationships with DMI and NINO34 for the model residu-
als on errors in annual maximum levels at lead times of (a) 5 months
for Lake Victoria and (b) 4 months for Lake Malawi. Climatologi-
cal rainfall inputs were used and a one-to-one trend line is shown as
a guide.

derstand where to focus effort, such as taking account of the
timing differences between peak values or using threshold-
based metrics. However, these issues were not pursued fur-
ther since, as noted in the following section, for operational
forecasting alternative inputs would be used, each with their
own error characteristics and bias correction requirements.

4 Discussion and conclusions

The aim here has been to illustrate an approach to explor-
ing possible model structures considering factors such as the
choice of input variables, characteristic response times and
options for data assimilation. A mixture of transfer function,
regression and analytical techniques was used. In keeping
with this overall approach, some aspects were only devel-
oped to the stage required to draw useful conclusions rather
than providing a full solution, such as with the net inflow

Figure 7. Illustration of the effect of an ARMA approach for the
full records using (6.5) models with climatological inputs and (3.2)
models with perfect foresight for (a) Lake Victoria and (b) Lake
Malawi with a one-to-one trend line as a guide.

model and data assimilation components. In future studies,
these types of analyses might then help to guide the develop-
ment of more complex models for individual lakes, or groups
of lakes.

For the two lakes considered here, some initial findings in-
clude the possibility of using lake rainfall alone as a model
input, and the potential to use error prediction techniques that
are more typical of those used for short-range flow forecast-
ing, combined with statistical relationships incorporating cli-
mate indices. Regarding seasonal variations in levels, due to
storage influences there was some evidence of forecast skill
up to 3–6 months ahead solely from climatological rainfall
estimates, depending on the performance measures used. For
the Lake Victoria record, as found in several previous stud-
ies, there were also indications of a change in response fol-
lowing the extreme rainfall events of the early 1960s. In any
further studies, though, for these or other lakes, the results
would need to be evaluated using contemporary datasets tak-
ing account of both uncertainties in the observations and, for
regulated lakes, current operating rules via an appropriate pa-
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rameterisation of outflow relationships, including allowing
for any changes in procedures over time.

For example, one particularly difficult decision is on the
choice of rainfall records to use, and whether these should
be area-averaged values (as here) or index series from repre-
sentative gauges. As already noted, some measurement chal-
lenges include the spatial coverage of gauges and any local
enhancement of rainfall due to the influences on atmospheric
circulation from the lake. Alternatively, where rain gauge
networks are sparse, satellite observations provide another
possibility, although with their own measurement challenges
such as the need to differentiate between locally driven con-
vective and stratiform rainfall and land and water surfaces.
With rain gauge inputs, another potential challenge is the
need for data-sharing agreements when gauges are operated
by more than one organisation or country.

More generally, though, estimates for lake rainfall should
in principle be more accurate than for catchment rainfall
since there are no topographic influences to consider – other
than around the lake shoreline – and for that reason were se-
lected here. However, given the huge areas covered, the chal-
lenges in estimating the individual components in the wa-
ter balance should not be underestimated, and for forecast-
ing purposes these are perhaps best regarded as index series
themselves. The uncertainty in the estimates then cascades
into the water balance estimates and hence level and outflow
forecasts. For model calibration, this emphasises the impor-
tance of water balance studies in evaluating the suitability of
any inputs which are proposed for operational use. Also for
smaller lakes with faster response times, a weekly or even
daily time step might be required to capture the main fea-
tures of the response, particularly for tributary inflows. How-
ever, this brings new modelling challenges such as the need
to consider the spatial variability in different components of
the water balance in more detail, and the timing differences
between them. Of course, if links to rainfall are not of in-
terest, there is the option of formulating models directly in
terms of the net inflows derived from levels and outflows,
which are often easier to estimate.

Regarding rainfall forecasts, these offer the potential to ex-
tend lead times further through direct input of ensemble rain-
fall forecasts, perhaps combined with the seasonal forecasts
for climate indices which are now also routinely available.
For the two lakes considered, the focus on model develop-
ment to date has been for Lake Victoria, including opera-
tional tools for hazardous thunderstorms (Thiery et al., 2016,
2017) and research studies on developing high-resolution
models for seasonal forecasting (Argent et al., 2014). The
performance of global scale models for seasonal forecast-
ing has also been evaluated in a regional context suggest-
ing that these offer some improvements on the consensus
forecasts prepared by the Regional Climate Outlook Forums
(Mwangi et al., 2014). Promising results have also been
obtained for drought forecasting on seasonal timescales in
southern Africa (Winsemius et al., 2014).

For the development of seasonal models, the reforecasts
available from sources such as the Subseasonal to Seasonal
(S2S) Prediction Project (Vitart et al., 2017) provide a valu-
able resource. So-called custom climate indices or predictors
might also be considered based on additional meteorological
and ocean parameters; for example using relationships de-
rived from principal component analyses or a transfer func-
tion approach.

Another consideration is the modelling approach to use
and this will typically depend on the operational requirement
and the real-time data available, and to some extent the skills
and preferences of the modelling team. For example, some
additional factors to consider might possibly include artifi-
cial influences on lake inflows or outflows from hydropower
or other operations, and whether modelling components are
required for water quality, ecology, snowmelt and sediment
transport.

The classical approach to modelling a lake water balance
is to use rainfall–runoff models to estimate tributary inflows,
with separate components for area-averaging of lake and
catchment rainfall and the outflow response. The runoff com-
ponents are typically estimated in semi-distributed or dis-
tributed form using a conceptual or physical-conceptual ap-
proach, and lake evaporation is typically estimated from local
weather station records or an energy budget approach.

In contrast, if a transfer function modelling approach is
adopted, the step-by-step approach illustrated here provides a
powerful way to rapidly explore many options. However, this
does not fully exploit the power of the stochastic techniques
used, particularly regarding the use of time varying param-
eters, a concept from system engineering in which forecasts
for the parameters themselves become part of the solution,
and a way of reflecting potential long-term trends and vari-
ations in climate. In that regard, it is worth noting that the
water balance itself can be solved in transfer function form
with no further approximation for the case of discrete time
intervals (as here) and a linear outflow relationship (b = 1).

For the more general non-linear case, the same approach
can still be adopted but the model coefficients now become
a function of the levels or – to use a phrase common in sys-
tem engineering – are “state dependent” (e.g. Young, 2000).
Although this would be considerably more complex than
was required in this case, an overall solution could be en-
visaged in which the net inflow model, water balance and
data assimilation components are combined using a so-called
state dependent parameter (SDP) approach. Some aspects
of this approach have already been illustrated by the meth-
ods described here and there is extensive literature regarding
more complete solutions (e.g. Young, 2000; Sadeghi et al.,
2010), including flood forecasting applications (e.g. Young
and Beven, 1994; Leedal et al., 2013; Smith et al., 2014).
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